051e050359e490ac4a5e44a90cb6c46849ea77f9
[deliverable/linux.git] / arch / ia64 / kernel / process.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 */
8 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
9 #include <linux/config.h>
10
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/thread_info.h>
26 #include <linux/unistd.h>
27 #include <linux/efi.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31
32 #include <asm/cpu.h>
33 #include <asm/delay.h>
34 #include <asm/elf.h>
35 #include <asm/ia32.h>
36 #include <asm/irq.h>
37 #include <asm/pgalloc.h>
38 #include <asm/processor.h>
39 #include <asm/sal.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/unwind.h>
43 #include <asm/user.h>
44
45 #include "entry.h"
46
47 #ifdef CONFIG_PERFMON
48 # include <asm/perfmon.h>
49 #endif
50
51 #include "sigframe.h"
52
53 void (*ia64_mark_idle)(int);
54 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
55
56 unsigned long boot_option_idle_override = 0;
57 EXPORT_SYMBOL(boot_option_idle_override);
58
59 void
60 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
61 {
62 unsigned long ip, sp, bsp;
63 char buf[128]; /* don't make it so big that it overflows the stack! */
64
65 printk("\nCall Trace:\n");
66 do {
67 unw_get_ip(info, &ip);
68 if (ip == 0)
69 break;
70
71 unw_get_sp(info, &sp);
72 unw_get_bsp(info, &bsp);
73 snprintf(buf, sizeof(buf),
74 " [<%016lx>] %%s\n"
75 " sp=%016lx bsp=%016lx\n",
76 ip, sp, bsp);
77 print_symbol(buf, ip);
78 } while (unw_unwind(info) >= 0);
79 }
80
81 void
82 show_stack (struct task_struct *task, unsigned long *sp)
83 {
84 if (!task)
85 unw_init_running(ia64_do_show_stack, NULL);
86 else {
87 struct unw_frame_info info;
88
89 unw_init_from_blocked_task(&info, task);
90 ia64_do_show_stack(&info, NULL);
91 }
92 }
93
94 void
95 dump_stack (void)
96 {
97 show_stack(NULL, NULL);
98 }
99
100 EXPORT_SYMBOL(dump_stack);
101
102 void
103 show_regs (struct pt_regs *regs)
104 {
105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
106
107 print_modules();
108 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
109 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
110 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
111 print_symbol("ip is at %s\n", ip);
112 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
113 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
114 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
115 regs->ar_rnat, regs->ar_bspstore, regs->pr);
116 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
117 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
118 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
119 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
120 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
121 regs->f6.u.bits[1], regs->f6.u.bits[0],
122 regs->f7.u.bits[1], regs->f7.u.bits[0]);
123 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
124 regs->f8.u.bits[1], regs->f8.u.bits[0],
125 regs->f9.u.bits[1], regs->f9.u.bits[0]);
126 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
127 regs->f10.u.bits[1], regs->f10.u.bits[0],
128 regs->f11.u.bits[1], regs->f11.u.bits[0]);
129
130 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
131 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
132 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
133 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
134 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
135 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
136 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
137 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
138 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
139
140 if (user_mode(regs)) {
141 /* print the stacked registers */
142 unsigned long val, *bsp, ndirty;
143 int i, sof, is_nat = 0;
144
145 sof = regs->cr_ifs & 0x7f; /* size of frame */
146 ndirty = (regs->loadrs >> 19);
147 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
148 for (i = 0; i < sof; ++i) {
149 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
150 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
151 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
152 }
153 } else
154 show_stack(NULL, NULL);
155 }
156
157 void
158 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
159 {
160 if (fsys_mode(current, &scr->pt)) {
161 /* defer signal-handling etc. until we return to privilege-level 0. */
162 if (!ia64_psr(&scr->pt)->lp)
163 ia64_psr(&scr->pt)->lp = 1;
164 return;
165 }
166
167 #ifdef CONFIG_PERFMON
168 if (current->thread.pfm_needs_checking)
169 pfm_handle_work();
170 #endif
171
172 /* deal with pending signal delivery */
173 if (test_thread_flag(TIF_SIGPENDING))
174 ia64_do_signal(oldset, scr, in_syscall);
175 }
176
177 static int pal_halt = 1;
178 static int can_do_pal_halt = 1;
179
180 static int __init nohalt_setup(char * str)
181 {
182 pal_halt = can_do_pal_halt = 0;
183 return 1;
184 }
185 __setup("nohalt", nohalt_setup);
186
187 void
188 update_pal_halt_status(int status)
189 {
190 can_do_pal_halt = pal_halt && status;
191 }
192
193 /*
194 * We use this if we don't have any better idle routine..
195 */
196 void
197 default_idle (void)
198 {
199 local_irq_enable();
200 while (!need_resched())
201 if (can_do_pal_halt)
202 safe_halt();
203 else
204 cpu_relax();
205 }
206
207 #ifdef CONFIG_HOTPLUG_CPU
208 /* We don't actually take CPU down, just spin without interrupts. */
209 static inline void play_dead(void)
210 {
211 extern void ia64_cpu_local_tick (void);
212 unsigned int this_cpu = smp_processor_id();
213
214 /* Ack it */
215 __get_cpu_var(cpu_state) = CPU_DEAD;
216
217 max_xtp();
218 local_irq_disable();
219 idle_task_exit();
220 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
221 /*
222 * The above is a point of no-return, the processor is
223 * expected to be in SAL loop now.
224 */
225 BUG();
226 }
227 #else
228 static inline void play_dead(void)
229 {
230 BUG();
231 }
232 #endif /* CONFIG_HOTPLUG_CPU */
233
234 void cpu_idle_wait(void)
235 {
236 unsigned int cpu, this_cpu = get_cpu();
237 cpumask_t map;
238
239 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
240 put_cpu();
241
242 cpus_clear(map);
243 for_each_online_cpu(cpu) {
244 per_cpu(cpu_idle_state, cpu) = 1;
245 cpu_set(cpu, map);
246 }
247
248 __get_cpu_var(cpu_idle_state) = 0;
249
250 wmb();
251 do {
252 ssleep(1);
253 for_each_online_cpu(cpu) {
254 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
255 cpu_clear(cpu, map);
256 }
257 cpus_and(map, map, cpu_online_map);
258 } while (!cpus_empty(map));
259 }
260 EXPORT_SYMBOL_GPL(cpu_idle_wait);
261
262 void __attribute__((noreturn))
263 cpu_idle (void)
264 {
265 void (*mark_idle)(int) = ia64_mark_idle;
266
267 /* endless idle loop with no priority at all */
268 while (1) {
269 #ifdef CONFIG_SMP
270 if (!need_resched())
271 min_xtp();
272 #endif
273 while (!need_resched()) {
274 void (*idle)(void);
275
276 if (__get_cpu_var(cpu_idle_state))
277 __get_cpu_var(cpu_idle_state) = 0;
278
279 rmb();
280 if (mark_idle)
281 (*mark_idle)(1);
282
283 idle = pm_idle;
284 if (!idle)
285 idle = default_idle;
286 (*idle)();
287 }
288
289 if (mark_idle)
290 (*mark_idle)(0);
291
292 #ifdef CONFIG_SMP
293 normal_xtp();
294 #endif
295 schedule();
296 check_pgt_cache();
297 if (cpu_is_offline(smp_processor_id()))
298 play_dead();
299 }
300 }
301
302 void
303 ia64_save_extra (struct task_struct *task)
304 {
305 #ifdef CONFIG_PERFMON
306 unsigned long info;
307 #endif
308
309 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
310 ia64_save_debug_regs(&task->thread.dbr[0]);
311
312 #ifdef CONFIG_PERFMON
313 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
314 pfm_save_regs(task);
315
316 info = __get_cpu_var(pfm_syst_info);
317 if (info & PFM_CPUINFO_SYST_WIDE)
318 pfm_syst_wide_update_task(task, info, 0);
319 #endif
320
321 #ifdef CONFIG_IA32_SUPPORT
322 if (IS_IA32_PROCESS(ia64_task_regs(task)))
323 ia32_save_state(task);
324 #endif
325 }
326
327 void
328 ia64_load_extra (struct task_struct *task)
329 {
330 #ifdef CONFIG_PERFMON
331 unsigned long info;
332 #endif
333
334 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
335 ia64_load_debug_regs(&task->thread.dbr[0]);
336
337 #ifdef CONFIG_PERFMON
338 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
339 pfm_load_regs(task);
340
341 info = __get_cpu_var(pfm_syst_info);
342 if (info & PFM_CPUINFO_SYST_WIDE)
343 pfm_syst_wide_update_task(task, info, 1);
344 #endif
345
346 #ifdef CONFIG_IA32_SUPPORT
347 if (IS_IA32_PROCESS(ia64_task_regs(task)))
348 ia32_load_state(task);
349 #endif
350 }
351
352 /*
353 * Copy the state of an ia-64 thread.
354 *
355 * We get here through the following call chain:
356 *
357 * from user-level: from kernel:
358 *
359 * <clone syscall> <some kernel call frames>
360 * sys_clone :
361 * do_fork do_fork
362 * copy_thread copy_thread
363 *
364 * This means that the stack layout is as follows:
365 *
366 * +---------------------+ (highest addr)
367 * | struct pt_regs |
368 * +---------------------+
369 * | struct switch_stack |
370 * +---------------------+
371 * | |
372 * | memory stack |
373 * | | <-- sp (lowest addr)
374 * +---------------------+
375 *
376 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
377 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
378 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
379 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
380 * the stack is page aligned and the page size is at least 4KB, this is always the case,
381 * so there is nothing to worry about.
382 */
383 int
384 copy_thread (int nr, unsigned long clone_flags,
385 unsigned long user_stack_base, unsigned long user_stack_size,
386 struct task_struct *p, struct pt_regs *regs)
387 {
388 extern char ia64_ret_from_clone, ia32_ret_from_clone;
389 struct switch_stack *child_stack, *stack;
390 unsigned long rbs, child_rbs, rbs_size;
391 struct pt_regs *child_ptregs;
392 int retval = 0;
393
394 #ifdef CONFIG_SMP
395 /*
396 * For SMP idle threads, fork_by_hand() calls do_fork with
397 * NULL regs.
398 */
399 if (!regs)
400 return 0;
401 #endif
402
403 stack = ((struct switch_stack *) regs) - 1;
404
405 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
406 child_stack = (struct switch_stack *) child_ptregs - 1;
407
408 /* copy parent's switch_stack & pt_regs to child: */
409 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
410
411 rbs = (unsigned long) current + IA64_RBS_OFFSET;
412 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
413 rbs_size = stack->ar_bspstore - rbs;
414
415 /* copy the parent's register backing store to the child: */
416 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
417
418 if (likely(user_mode(child_ptregs))) {
419 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
420 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
421 if (user_stack_base) {
422 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
423 child_ptregs->ar_bspstore = user_stack_base;
424 child_ptregs->ar_rnat = 0;
425 child_ptregs->loadrs = 0;
426 }
427 } else {
428 /*
429 * Note: we simply preserve the relative position of
430 * the stack pointer here. There is no need to
431 * allocate a scratch area here, since that will have
432 * been taken care of by the caller of sys_clone()
433 * already.
434 */
435 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
436 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
437 }
438 child_stack->ar_bspstore = child_rbs + rbs_size;
439 if (IS_IA32_PROCESS(regs))
440 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
441 else
442 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
443
444 /* copy parts of thread_struct: */
445 p->thread.ksp = (unsigned long) child_stack - 16;
446
447 /* stop some PSR bits from being inherited.
448 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
449 * therefore we must specify them explicitly here and not include them in
450 * IA64_PSR_BITS_TO_CLEAR.
451 */
452 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
453 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
454
455 /*
456 * NOTE: The calling convention considers all floating point
457 * registers in the high partition (fph) to be scratch. Since
458 * the only way to get to this point is through a system call,
459 * we know that the values in fph are all dead. Hence, there
460 * is no need to inherit the fph state from the parent to the
461 * child and all we have to do is to make sure that
462 * IA64_THREAD_FPH_VALID is cleared in the child.
463 *
464 * XXX We could push this optimization a bit further by
465 * clearing IA64_THREAD_FPH_VALID on ANY system call.
466 * However, it's not clear this is worth doing. Also, it
467 * would be a slight deviation from the normal Linux system
468 * call behavior where scratch registers are preserved across
469 * system calls (unless used by the system call itself).
470 */
471 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
472 | IA64_THREAD_PM_VALID)
473 # define THREAD_FLAGS_TO_SET 0
474 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
475 | THREAD_FLAGS_TO_SET);
476 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
477 #ifdef CONFIG_IA32_SUPPORT
478 /*
479 * If we're cloning an IA32 task then save the IA32 extra
480 * state from the current task to the new task
481 */
482 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
483 ia32_save_state(p);
484 if (clone_flags & CLONE_SETTLS)
485 retval = ia32_clone_tls(p, child_ptregs);
486
487 /* Copy partially mapped page list */
488 if (!retval)
489 retval = ia32_copy_partial_page_list(p, clone_flags);
490 }
491 #endif
492
493 #ifdef CONFIG_PERFMON
494 if (current->thread.pfm_context)
495 pfm_inherit(p, child_ptregs);
496 #endif
497 return retval;
498 }
499
500 static void
501 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
502 {
503 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
504 elf_greg_t *dst = arg;
505 struct pt_regs *pt;
506 char nat;
507 int i;
508
509 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
510
511 if (unw_unwind_to_user(info) < 0)
512 return;
513
514 unw_get_sp(info, &sp);
515 pt = (struct pt_regs *) (sp + 16);
516
517 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
518
519 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
520 return;
521
522 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
523 &ar_rnat);
524
525 /*
526 * coredump format:
527 * r0-r31
528 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
529 * predicate registers (p0-p63)
530 * b0-b7
531 * ip cfm user-mask
532 * ar.rsc ar.bsp ar.bspstore ar.rnat
533 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
534 */
535
536 /* r0 is zero */
537 for (i = 1, mask = (1UL << i); i < 32; ++i) {
538 unw_get_gr(info, i, &dst[i], &nat);
539 if (nat)
540 nat_bits |= mask;
541 mask <<= 1;
542 }
543 dst[32] = nat_bits;
544 unw_get_pr(info, &dst[33]);
545
546 for (i = 0; i < 8; ++i)
547 unw_get_br(info, i, &dst[34 + i]);
548
549 unw_get_rp(info, &ip);
550 dst[42] = ip + ia64_psr(pt)->ri;
551 dst[43] = cfm;
552 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
553
554 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
555 /*
556 * For bsp and bspstore, unw_get_ar() would return the kernel
557 * addresses, but we need the user-level addresses instead:
558 */
559 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
560 dst[47] = pt->ar_bspstore;
561 dst[48] = ar_rnat;
562 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
563 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
564 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
565 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
566 unw_get_ar(info, UNW_AR_LC, &dst[53]);
567 unw_get_ar(info, UNW_AR_EC, &dst[54]);
568 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
569 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
570 }
571
572 void
573 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
574 {
575 elf_fpreg_t *dst = arg;
576 int i;
577
578 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
579
580 if (unw_unwind_to_user(info) < 0)
581 return;
582
583 /* f0 is 0.0, f1 is 1.0 */
584
585 for (i = 2; i < 32; ++i)
586 unw_get_fr(info, i, dst + i);
587
588 ia64_flush_fph(task);
589 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
590 memcpy(dst + 32, task->thread.fph, 96*16);
591 }
592
593 void
594 do_copy_regs (struct unw_frame_info *info, void *arg)
595 {
596 do_copy_task_regs(current, info, arg);
597 }
598
599 void
600 do_dump_fpu (struct unw_frame_info *info, void *arg)
601 {
602 do_dump_task_fpu(current, info, arg);
603 }
604
605 int
606 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
607 {
608 struct unw_frame_info tcore_info;
609
610 if (current == task) {
611 unw_init_running(do_copy_regs, regs);
612 } else {
613 memset(&tcore_info, 0, sizeof(tcore_info));
614 unw_init_from_blocked_task(&tcore_info, task);
615 do_copy_task_regs(task, &tcore_info, regs);
616 }
617 return 1;
618 }
619
620 void
621 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
622 {
623 unw_init_running(do_copy_regs, dst);
624 }
625
626 int
627 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
628 {
629 struct unw_frame_info tcore_info;
630
631 if (current == task) {
632 unw_init_running(do_dump_fpu, dst);
633 } else {
634 memset(&tcore_info, 0, sizeof(tcore_info));
635 unw_init_from_blocked_task(&tcore_info, task);
636 do_dump_task_fpu(task, &tcore_info, dst);
637 }
638 return 1;
639 }
640
641 int
642 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
643 {
644 unw_init_running(do_dump_fpu, dst);
645 return 1; /* f0-f31 are always valid so we always return 1 */
646 }
647
648 long
649 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
650 struct pt_regs *regs)
651 {
652 char *fname;
653 int error;
654
655 fname = getname(filename);
656 error = PTR_ERR(fname);
657 if (IS_ERR(fname))
658 goto out;
659 error = do_execve(fname, argv, envp, regs);
660 putname(fname);
661 out:
662 return error;
663 }
664
665 pid_t
666 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
667 {
668 extern void start_kernel_thread (void);
669 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
670 struct {
671 struct switch_stack sw;
672 struct pt_regs pt;
673 } regs;
674
675 memset(&regs, 0, sizeof(regs));
676 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
677 regs.pt.r1 = helper_fptr[1]; /* set GP */
678 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
679 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
680 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
681 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
682 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
683 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
684 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
685 regs.sw.pr = (1 << PRED_KERNEL_STACK);
686 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
687 }
688 EXPORT_SYMBOL(kernel_thread);
689
690 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
691 int
692 kernel_thread_helper (int (*fn)(void *), void *arg)
693 {
694 #ifdef CONFIG_IA32_SUPPORT
695 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
696 /* A kernel thread is always a 64-bit process. */
697 current->thread.map_base = DEFAULT_MAP_BASE;
698 current->thread.task_size = DEFAULT_TASK_SIZE;
699 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
700 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
701 }
702 #endif
703 return (*fn)(arg);
704 }
705
706 /*
707 * Flush thread state. This is called when a thread does an execve().
708 */
709 void
710 flush_thread (void)
711 {
712 /*
713 * Remove function-return probe instances associated with this task
714 * and put them back on the free list. Do not insert an exit probe for
715 * this function, it will be disabled by kprobe_flush_task if you do.
716 */
717 kprobe_flush_task(current);
718
719 /* drop floating-point and debug-register state if it exists: */
720 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
721 ia64_drop_fpu(current);
722 if (IS_IA32_PROCESS(ia64_task_regs(current)))
723 ia32_drop_partial_page_list(current);
724 }
725
726 /*
727 * Clean up state associated with current thread. This is called when
728 * the thread calls exit().
729 */
730 void
731 exit_thread (void)
732 {
733
734 /*
735 * Remove function-return probe instances associated with this task
736 * and put them back on the free list. Do not insert an exit probe for
737 * this function, it will be disabled by kprobe_flush_task if you do.
738 */
739 kprobe_flush_task(current);
740
741 ia64_drop_fpu(current);
742 #ifdef CONFIG_PERFMON
743 /* if needed, stop monitoring and flush state to perfmon context */
744 if (current->thread.pfm_context)
745 pfm_exit_thread(current);
746
747 /* free debug register resources */
748 if (current->thread.flags & IA64_THREAD_DBG_VALID)
749 pfm_release_debug_registers(current);
750 #endif
751 if (IS_IA32_PROCESS(ia64_task_regs(current)))
752 ia32_drop_partial_page_list(current);
753 }
754
755 unsigned long
756 get_wchan (struct task_struct *p)
757 {
758 struct unw_frame_info info;
759 unsigned long ip;
760 int count = 0;
761
762 /*
763 * Note: p may not be a blocked task (it could be current or
764 * another process running on some other CPU. Rather than
765 * trying to determine if p is really blocked, we just assume
766 * it's blocked and rely on the unwind routines to fail
767 * gracefully if the process wasn't really blocked after all.
768 * --davidm 99/12/15
769 */
770 unw_init_from_blocked_task(&info, p);
771 do {
772 if (unw_unwind(&info) < 0)
773 return 0;
774 unw_get_ip(&info, &ip);
775 if (!in_sched_functions(ip))
776 return ip;
777 } while (count++ < 16);
778 return 0;
779 }
780
781 void
782 cpu_halt (void)
783 {
784 pal_power_mgmt_info_u_t power_info[8];
785 unsigned long min_power;
786 int i, min_power_state;
787
788 if (ia64_pal_halt_info(power_info) != 0)
789 return;
790
791 min_power_state = 0;
792 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
793 for (i = 1; i < 8; ++i)
794 if (power_info[i].pal_power_mgmt_info_s.im
795 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
796 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
797 min_power_state = i;
798 }
799
800 while (1)
801 ia64_pal_halt(min_power_state);
802 }
803
804 void
805 machine_restart (char *restart_cmd)
806 {
807 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
808 }
809
810 void
811 machine_halt (void)
812 {
813 cpu_halt();
814 }
815
816 void
817 machine_power_off (void)
818 {
819 if (pm_power_off)
820 pm_power_off();
821 machine_halt();
822 }
823
This page took 0.048395 seconds and 5 git commands to generate.