[IA64] Synchronize kernel RSE to user-space and back
[deliverable/linux.git] / arch / ia64 / kernel / process.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 *
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
10 */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31
32 #include <asm/cpu.h>
33 #include <asm/delay.h>
34 #include <asm/elf.h>
35 #include <asm/ia32.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
44 #include <asm/user.h>
45
46 #include "entry.h"
47
48 #ifdef CONFIG_PERFMON
49 # include <asm/perfmon.h>
50 #endif
51
52 #include "sigframe.h"
53
54 void (*ia64_mark_idle)(int);
55 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
56
57 unsigned long boot_option_idle_override = 0;
58 EXPORT_SYMBOL(boot_option_idle_override);
59
60 void
61 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
62 {
63 unsigned long ip, sp, bsp;
64 char buf[128]; /* don't make it so big that it overflows the stack! */
65
66 printk("\nCall Trace:\n");
67 do {
68 unw_get_ip(info, &ip);
69 if (ip == 0)
70 break;
71
72 unw_get_sp(info, &sp);
73 unw_get_bsp(info, &bsp);
74 snprintf(buf, sizeof(buf),
75 " [<%016lx>] %%s\n"
76 " sp=%016lx bsp=%016lx\n",
77 ip, sp, bsp);
78 print_symbol(buf, ip);
79 } while (unw_unwind(info) >= 0);
80 }
81
82 void
83 show_stack (struct task_struct *task, unsigned long *sp)
84 {
85 if (!task)
86 unw_init_running(ia64_do_show_stack, NULL);
87 else {
88 struct unw_frame_info info;
89
90 unw_init_from_blocked_task(&info, task);
91 ia64_do_show_stack(&info, NULL);
92 }
93 }
94
95 void
96 dump_stack (void)
97 {
98 show_stack(NULL, NULL);
99 }
100
101 EXPORT_SYMBOL(dump_stack);
102
103 void
104 show_regs (struct pt_regs *regs)
105 {
106 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
107
108 print_modules();
109 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
110 smp_processor_id(), current->comm);
111 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
112 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
113 init_utsname()->release);
114 print_symbol("ip is at %s\n", ip);
115 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
116 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
117 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
118 regs->ar_rnat, regs->ar_bspstore, regs->pr);
119 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
120 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
121 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
122 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
123 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
124 regs->f6.u.bits[1], regs->f6.u.bits[0],
125 regs->f7.u.bits[1], regs->f7.u.bits[0]);
126 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
127 regs->f8.u.bits[1], regs->f8.u.bits[0],
128 regs->f9.u.bits[1], regs->f9.u.bits[0]);
129 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
130 regs->f10.u.bits[1], regs->f10.u.bits[0],
131 regs->f11.u.bits[1], regs->f11.u.bits[0]);
132
133 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
134 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
135 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
136 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
137 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
138 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
139 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
140 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
141 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
142
143 if (user_mode(regs)) {
144 /* print the stacked registers */
145 unsigned long val, *bsp, ndirty;
146 int i, sof, is_nat = 0;
147
148 sof = regs->cr_ifs & 0x7f; /* size of frame */
149 ndirty = (regs->loadrs >> 19);
150 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
151 for (i = 0; i < sof; ++i) {
152 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
153 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
154 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
155 }
156 } else
157 show_stack(NULL, NULL);
158 }
159
160 void tsk_clear_notify_resume(struct task_struct *tsk)
161 {
162 #ifdef CONFIG_PERFMON
163 if (tsk->thread.pfm_needs_checking)
164 return;
165 #endif
166 if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE))
167 return;
168 clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME);
169 }
170
171 void
172 do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall)
173 {
174 if (fsys_mode(current, &scr->pt)) {
175 /* defer signal-handling etc. until we return to privilege-level 0. */
176 if (!ia64_psr(&scr->pt)->lp)
177 ia64_psr(&scr->pt)->lp = 1;
178 return;
179 }
180
181 #ifdef CONFIG_PERFMON
182 if (current->thread.pfm_needs_checking)
183 pfm_handle_work();
184 #endif
185
186 /* deal with pending signal delivery */
187 if (test_thread_flag(TIF_SIGPENDING)||test_thread_flag(TIF_RESTORE_SIGMASK))
188 ia64_do_signal(scr, in_syscall);
189
190 /* copy user rbs to kernel rbs */
191 if (unlikely(test_thread_flag(TIF_RESTORE_RSE)))
192 ia64_sync_krbs();
193 }
194
195 static int pal_halt = 1;
196 static int can_do_pal_halt = 1;
197
198 static int __init nohalt_setup(char * str)
199 {
200 pal_halt = can_do_pal_halt = 0;
201 return 1;
202 }
203 __setup("nohalt", nohalt_setup);
204
205 void
206 update_pal_halt_status(int status)
207 {
208 can_do_pal_halt = pal_halt && status;
209 }
210
211 /*
212 * We use this if we don't have any better idle routine..
213 */
214 void
215 default_idle (void)
216 {
217 local_irq_enable();
218 while (!need_resched()) {
219 if (can_do_pal_halt) {
220 local_irq_disable();
221 if (!need_resched()) {
222 safe_halt();
223 }
224 local_irq_enable();
225 } else
226 cpu_relax();
227 }
228 }
229
230 #ifdef CONFIG_HOTPLUG_CPU
231 /* We don't actually take CPU down, just spin without interrupts. */
232 static inline void play_dead(void)
233 {
234 extern void ia64_cpu_local_tick (void);
235 unsigned int this_cpu = smp_processor_id();
236
237 /* Ack it */
238 __get_cpu_var(cpu_state) = CPU_DEAD;
239
240 max_xtp();
241 local_irq_disable();
242 idle_task_exit();
243 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
244 /*
245 * The above is a point of no-return, the processor is
246 * expected to be in SAL loop now.
247 */
248 BUG();
249 }
250 #else
251 static inline void play_dead(void)
252 {
253 BUG();
254 }
255 #endif /* CONFIG_HOTPLUG_CPU */
256
257 void cpu_idle_wait(void)
258 {
259 unsigned int cpu, this_cpu = get_cpu();
260 cpumask_t map;
261 cpumask_t tmp = current->cpus_allowed;
262
263 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
264 put_cpu();
265
266 cpus_clear(map);
267 for_each_online_cpu(cpu) {
268 per_cpu(cpu_idle_state, cpu) = 1;
269 cpu_set(cpu, map);
270 }
271
272 __get_cpu_var(cpu_idle_state) = 0;
273
274 wmb();
275 do {
276 ssleep(1);
277 for_each_online_cpu(cpu) {
278 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
279 cpu_clear(cpu, map);
280 }
281 cpus_and(map, map, cpu_online_map);
282 } while (!cpus_empty(map));
283 set_cpus_allowed(current, tmp);
284 }
285 EXPORT_SYMBOL_GPL(cpu_idle_wait);
286
287 void __attribute__((noreturn))
288 cpu_idle (void)
289 {
290 void (*mark_idle)(int) = ia64_mark_idle;
291 int cpu = smp_processor_id();
292
293 /* endless idle loop with no priority at all */
294 while (1) {
295 if (can_do_pal_halt) {
296 current_thread_info()->status &= ~TS_POLLING;
297 /*
298 * TS_POLLING-cleared state must be visible before we
299 * test NEED_RESCHED:
300 */
301 smp_mb();
302 } else {
303 current_thread_info()->status |= TS_POLLING;
304 }
305
306 if (!need_resched()) {
307 void (*idle)(void);
308 #ifdef CONFIG_SMP
309 min_xtp();
310 #endif
311 if (__get_cpu_var(cpu_idle_state))
312 __get_cpu_var(cpu_idle_state) = 0;
313
314 rmb();
315 if (mark_idle)
316 (*mark_idle)(1);
317
318 idle = pm_idle;
319 if (!idle)
320 idle = default_idle;
321 (*idle)();
322 if (mark_idle)
323 (*mark_idle)(0);
324 #ifdef CONFIG_SMP
325 normal_xtp();
326 #endif
327 }
328 preempt_enable_no_resched();
329 schedule();
330 preempt_disable();
331 check_pgt_cache();
332 if (cpu_is_offline(cpu))
333 play_dead();
334 }
335 }
336
337 void
338 ia64_save_extra (struct task_struct *task)
339 {
340 #ifdef CONFIG_PERFMON
341 unsigned long info;
342 #endif
343
344 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
345 ia64_save_debug_regs(&task->thread.dbr[0]);
346
347 #ifdef CONFIG_PERFMON
348 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
349 pfm_save_regs(task);
350
351 info = __get_cpu_var(pfm_syst_info);
352 if (info & PFM_CPUINFO_SYST_WIDE)
353 pfm_syst_wide_update_task(task, info, 0);
354 #endif
355
356 #ifdef CONFIG_IA32_SUPPORT
357 if (IS_IA32_PROCESS(task_pt_regs(task)))
358 ia32_save_state(task);
359 #endif
360 }
361
362 void
363 ia64_load_extra (struct task_struct *task)
364 {
365 #ifdef CONFIG_PERFMON
366 unsigned long info;
367 #endif
368
369 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
370 ia64_load_debug_regs(&task->thread.dbr[0]);
371
372 #ifdef CONFIG_PERFMON
373 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
374 pfm_load_regs(task);
375
376 info = __get_cpu_var(pfm_syst_info);
377 if (info & PFM_CPUINFO_SYST_WIDE)
378 pfm_syst_wide_update_task(task, info, 1);
379 #endif
380
381 #ifdef CONFIG_IA32_SUPPORT
382 if (IS_IA32_PROCESS(task_pt_regs(task)))
383 ia32_load_state(task);
384 #endif
385 }
386
387 /*
388 * Copy the state of an ia-64 thread.
389 *
390 * We get here through the following call chain:
391 *
392 * from user-level: from kernel:
393 *
394 * <clone syscall> <some kernel call frames>
395 * sys_clone :
396 * do_fork do_fork
397 * copy_thread copy_thread
398 *
399 * This means that the stack layout is as follows:
400 *
401 * +---------------------+ (highest addr)
402 * | struct pt_regs |
403 * +---------------------+
404 * | struct switch_stack |
405 * +---------------------+
406 * | |
407 * | memory stack |
408 * | | <-- sp (lowest addr)
409 * +---------------------+
410 *
411 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
412 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
413 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
414 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
415 * the stack is page aligned and the page size is at least 4KB, this is always the case,
416 * so there is nothing to worry about.
417 */
418 int
419 copy_thread (int nr, unsigned long clone_flags,
420 unsigned long user_stack_base, unsigned long user_stack_size,
421 struct task_struct *p, struct pt_regs *regs)
422 {
423 extern char ia64_ret_from_clone, ia32_ret_from_clone;
424 struct switch_stack *child_stack, *stack;
425 unsigned long rbs, child_rbs, rbs_size;
426 struct pt_regs *child_ptregs;
427 int retval = 0;
428
429 #ifdef CONFIG_SMP
430 /*
431 * For SMP idle threads, fork_by_hand() calls do_fork with
432 * NULL regs.
433 */
434 if (!regs)
435 return 0;
436 #endif
437
438 stack = ((struct switch_stack *) regs) - 1;
439
440 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
441 child_stack = (struct switch_stack *) child_ptregs - 1;
442
443 /* copy parent's switch_stack & pt_regs to child: */
444 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
445
446 rbs = (unsigned long) current + IA64_RBS_OFFSET;
447 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
448 rbs_size = stack->ar_bspstore - rbs;
449
450 /* copy the parent's register backing store to the child: */
451 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
452
453 if (likely(user_mode(child_ptregs))) {
454 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
455 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
456 if (user_stack_base) {
457 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
458 child_ptregs->ar_bspstore = user_stack_base;
459 child_ptregs->ar_rnat = 0;
460 child_ptregs->loadrs = 0;
461 }
462 } else {
463 /*
464 * Note: we simply preserve the relative position of
465 * the stack pointer here. There is no need to
466 * allocate a scratch area here, since that will have
467 * been taken care of by the caller of sys_clone()
468 * already.
469 */
470 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
471 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
472 }
473 child_stack->ar_bspstore = child_rbs + rbs_size;
474 if (IS_IA32_PROCESS(regs))
475 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
476 else
477 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
478
479 /* copy parts of thread_struct: */
480 p->thread.ksp = (unsigned long) child_stack - 16;
481
482 /* stop some PSR bits from being inherited.
483 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
484 * therefore we must specify them explicitly here and not include them in
485 * IA64_PSR_BITS_TO_CLEAR.
486 */
487 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
488 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
489
490 /*
491 * NOTE: The calling convention considers all floating point
492 * registers in the high partition (fph) to be scratch. Since
493 * the only way to get to this point is through a system call,
494 * we know that the values in fph are all dead. Hence, there
495 * is no need to inherit the fph state from the parent to the
496 * child and all we have to do is to make sure that
497 * IA64_THREAD_FPH_VALID is cleared in the child.
498 *
499 * XXX We could push this optimization a bit further by
500 * clearing IA64_THREAD_FPH_VALID on ANY system call.
501 * However, it's not clear this is worth doing. Also, it
502 * would be a slight deviation from the normal Linux system
503 * call behavior where scratch registers are preserved across
504 * system calls (unless used by the system call itself).
505 */
506 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
507 | IA64_THREAD_PM_VALID)
508 # define THREAD_FLAGS_TO_SET 0
509 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
510 | THREAD_FLAGS_TO_SET);
511 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
512 #ifdef CONFIG_IA32_SUPPORT
513 /*
514 * If we're cloning an IA32 task then save the IA32 extra
515 * state from the current task to the new task
516 */
517 if (IS_IA32_PROCESS(task_pt_regs(current))) {
518 ia32_save_state(p);
519 if (clone_flags & CLONE_SETTLS)
520 retval = ia32_clone_tls(p, child_ptregs);
521
522 /* Copy partially mapped page list */
523 if (!retval)
524 retval = ia32_copy_ia64_partial_page_list(p,
525 clone_flags);
526 }
527 #endif
528
529 #ifdef CONFIG_PERFMON
530 if (current->thread.pfm_context)
531 pfm_inherit(p, child_ptregs);
532 #endif
533 return retval;
534 }
535
536 static void
537 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
538 {
539 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
540 unsigned long uninitialized_var(ip); /* GCC be quiet */
541 elf_greg_t *dst = arg;
542 struct pt_regs *pt;
543 char nat;
544 int i;
545
546 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
547
548 if (unw_unwind_to_user(info) < 0)
549 return;
550
551 unw_get_sp(info, &sp);
552 pt = (struct pt_regs *) (sp + 16);
553
554 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
555
556 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
557 return;
558
559 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
560 &ar_rnat);
561
562 /*
563 * coredump format:
564 * r0-r31
565 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
566 * predicate registers (p0-p63)
567 * b0-b7
568 * ip cfm user-mask
569 * ar.rsc ar.bsp ar.bspstore ar.rnat
570 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
571 */
572
573 /* r0 is zero */
574 for (i = 1, mask = (1UL << i); i < 32; ++i) {
575 unw_get_gr(info, i, &dst[i], &nat);
576 if (nat)
577 nat_bits |= mask;
578 mask <<= 1;
579 }
580 dst[32] = nat_bits;
581 unw_get_pr(info, &dst[33]);
582
583 for (i = 0; i < 8; ++i)
584 unw_get_br(info, i, &dst[34 + i]);
585
586 unw_get_rp(info, &ip);
587 dst[42] = ip + ia64_psr(pt)->ri;
588 dst[43] = cfm;
589 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
590
591 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
592 /*
593 * For bsp and bspstore, unw_get_ar() would return the kernel
594 * addresses, but we need the user-level addresses instead:
595 */
596 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
597 dst[47] = pt->ar_bspstore;
598 dst[48] = ar_rnat;
599 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
600 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
601 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
602 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
603 unw_get_ar(info, UNW_AR_LC, &dst[53]);
604 unw_get_ar(info, UNW_AR_EC, &dst[54]);
605 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
606 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
607 }
608
609 void
610 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
611 {
612 elf_fpreg_t *dst = arg;
613 int i;
614
615 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
616
617 if (unw_unwind_to_user(info) < 0)
618 return;
619
620 /* f0 is 0.0, f1 is 1.0 */
621
622 for (i = 2; i < 32; ++i)
623 unw_get_fr(info, i, dst + i);
624
625 ia64_flush_fph(task);
626 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
627 memcpy(dst + 32, task->thread.fph, 96*16);
628 }
629
630 void
631 do_copy_regs (struct unw_frame_info *info, void *arg)
632 {
633 do_copy_task_regs(current, info, arg);
634 }
635
636 void
637 do_dump_fpu (struct unw_frame_info *info, void *arg)
638 {
639 do_dump_task_fpu(current, info, arg);
640 }
641
642 int
643 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
644 {
645 struct unw_frame_info tcore_info;
646
647 if (current == task) {
648 unw_init_running(do_copy_regs, regs);
649 } else {
650 memset(&tcore_info, 0, sizeof(tcore_info));
651 unw_init_from_blocked_task(&tcore_info, task);
652 do_copy_task_regs(task, &tcore_info, regs);
653 }
654 return 1;
655 }
656
657 void
658 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
659 {
660 unw_init_running(do_copy_regs, dst);
661 }
662
663 int
664 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
665 {
666 struct unw_frame_info tcore_info;
667
668 if (current == task) {
669 unw_init_running(do_dump_fpu, dst);
670 } else {
671 memset(&tcore_info, 0, sizeof(tcore_info));
672 unw_init_from_blocked_task(&tcore_info, task);
673 do_dump_task_fpu(task, &tcore_info, dst);
674 }
675 return 1;
676 }
677
678 int
679 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
680 {
681 unw_init_running(do_dump_fpu, dst);
682 return 1; /* f0-f31 are always valid so we always return 1 */
683 }
684
685 long
686 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
687 struct pt_regs *regs)
688 {
689 char *fname;
690 int error;
691
692 fname = getname(filename);
693 error = PTR_ERR(fname);
694 if (IS_ERR(fname))
695 goto out;
696 error = do_execve(fname, argv, envp, regs);
697 putname(fname);
698 out:
699 return error;
700 }
701
702 pid_t
703 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
704 {
705 extern void start_kernel_thread (void);
706 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
707 struct {
708 struct switch_stack sw;
709 struct pt_regs pt;
710 } regs;
711
712 memset(&regs, 0, sizeof(regs));
713 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
714 regs.pt.r1 = helper_fptr[1]; /* set GP */
715 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
716 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
717 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
718 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
719 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
720 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
721 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
722 regs.sw.pr = (1 << PRED_KERNEL_STACK);
723 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
724 }
725 EXPORT_SYMBOL(kernel_thread);
726
727 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
728 int
729 kernel_thread_helper (int (*fn)(void *), void *arg)
730 {
731 #ifdef CONFIG_IA32_SUPPORT
732 if (IS_IA32_PROCESS(task_pt_regs(current))) {
733 /* A kernel thread is always a 64-bit process. */
734 current->thread.map_base = DEFAULT_MAP_BASE;
735 current->thread.task_size = DEFAULT_TASK_SIZE;
736 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
737 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
738 }
739 #endif
740 return (*fn)(arg);
741 }
742
743 /*
744 * Flush thread state. This is called when a thread does an execve().
745 */
746 void
747 flush_thread (void)
748 {
749 /* drop floating-point and debug-register state if it exists: */
750 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
751 ia64_drop_fpu(current);
752 #ifdef CONFIG_IA32_SUPPORT
753 if (IS_IA32_PROCESS(task_pt_regs(current))) {
754 ia32_drop_ia64_partial_page_list(current);
755 current->thread.task_size = IA32_PAGE_OFFSET;
756 set_fs(USER_DS);
757 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
758 }
759 #endif
760 }
761
762 /*
763 * Clean up state associated with current thread. This is called when
764 * the thread calls exit().
765 */
766 void
767 exit_thread (void)
768 {
769
770 ia64_drop_fpu(current);
771 #ifdef CONFIG_PERFMON
772 /* if needed, stop monitoring and flush state to perfmon context */
773 if (current->thread.pfm_context)
774 pfm_exit_thread(current);
775
776 /* free debug register resources */
777 if (current->thread.flags & IA64_THREAD_DBG_VALID)
778 pfm_release_debug_registers(current);
779 #endif
780 if (IS_IA32_PROCESS(task_pt_regs(current)))
781 ia32_drop_ia64_partial_page_list(current);
782 }
783
784 unsigned long
785 get_wchan (struct task_struct *p)
786 {
787 struct unw_frame_info info;
788 unsigned long ip;
789 int count = 0;
790
791 if (!p || p == current || p->state == TASK_RUNNING)
792 return 0;
793
794 /*
795 * Note: p may not be a blocked task (it could be current or
796 * another process running on some other CPU. Rather than
797 * trying to determine if p is really blocked, we just assume
798 * it's blocked and rely on the unwind routines to fail
799 * gracefully if the process wasn't really blocked after all.
800 * --davidm 99/12/15
801 */
802 unw_init_from_blocked_task(&info, p);
803 do {
804 if (p->state == TASK_RUNNING)
805 return 0;
806 if (unw_unwind(&info) < 0)
807 return 0;
808 unw_get_ip(&info, &ip);
809 if (!in_sched_functions(ip))
810 return ip;
811 } while (count++ < 16);
812 return 0;
813 }
814
815 void
816 cpu_halt (void)
817 {
818 pal_power_mgmt_info_u_t power_info[8];
819 unsigned long min_power;
820 int i, min_power_state;
821
822 if (ia64_pal_halt_info(power_info) != 0)
823 return;
824
825 min_power_state = 0;
826 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
827 for (i = 1; i < 8; ++i)
828 if (power_info[i].pal_power_mgmt_info_s.im
829 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
830 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
831 min_power_state = i;
832 }
833
834 while (1)
835 ia64_pal_halt(min_power_state);
836 }
837
838 void machine_shutdown(void)
839 {
840 #ifdef CONFIG_HOTPLUG_CPU
841 int cpu;
842
843 for_each_online_cpu(cpu) {
844 if (cpu != smp_processor_id())
845 cpu_down(cpu);
846 }
847 #endif
848 #ifdef CONFIG_KEXEC
849 kexec_disable_iosapic();
850 #endif
851 }
852
853 void
854 machine_restart (char *restart_cmd)
855 {
856 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
857 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
858 }
859
860 void
861 machine_halt (void)
862 {
863 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
864 cpu_halt();
865 }
866
867 void
868 machine_power_off (void)
869 {
870 if (pm_power_off)
871 pm_power_off();
872 machine_halt();
873 }
874
This page took 0.049204 seconds and 5 git commands to generate.