ebb71f3d6d190632aed9819fd4e12fef5d1215b5
[deliverable/linux.git] / arch / ia64 / kernel / process.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 */
8 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
9 #include <linux/config.h>
10
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/thread_info.h>
26 #include <linux/unistd.h>
27 #include <linux/efi.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30
31 #include <asm/cpu.h>
32 #include <asm/delay.h>
33 #include <asm/elf.h>
34 #include <asm/ia32.h>
35 #include <asm/irq.h>
36 #include <asm/pgalloc.h>
37 #include <asm/processor.h>
38 #include <asm/sal.h>
39 #include <asm/tlbflush.h>
40 #include <asm/uaccess.h>
41 #include <asm/unwind.h>
42 #include <asm/user.h>
43
44 #include "entry.h"
45
46 #ifdef CONFIG_PERFMON
47 # include <asm/perfmon.h>
48 #endif
49
50 #include "sigframe.h"
51
52 void (*ia64_mark_idle)(int);
53 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
54
55 unsigned long boot_option_idle_override = 0;
56 EXPORT_SYMBOL(boot_option_idle_override);
57
58 void
59 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
60 {
61 unsigned long ip, sp, bsp;
62 char buf[128]; /* don't make it so big that it overflows the stack! */
63
64 printk("\nCall Trace:\n");
65 do {
66 unw_get_ip(info, &ip);
67 if (ip == 0)
68 break;
69
70 unw_get_sp(info, &sp);
71 unw_get_bsp(info, &bsp);
72 snprintf(buf, sizeof(buf),
73 " [<%016lx>] %%s\n"
74 " sp=%016lx bsp=%016lx\n",
75 ip, sp, bsp);
76 print_symbol(buf, ip);
77 } while (unw_unwind(info) >= 0);
78 }
79
80 void
81 show_stack (struct task_struct *task, unsigned long *sp)
82 {
83 if (!task)
84 unw_init_running(ia64_do_show_stack, NULL);
85 else {
86 struct unw_frame_info info;
87
88 unw_init_from_blocked_task(&info, task);
89 ia64_do_show_stack(&info, NULL);
90 }
91 }
92
93 void
94 dump_stack (void)
95 {
96 show_stack(NULL, NULL);
97 }
98
99 EXPORT_SYMBOL(dump_stack);
100
101 void
102 show_regs (struct pt_regs *regs)
103 {
104 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
105
106 print_modules();
107 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
108 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
109 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
110 print_symbol("ip is at %s\n", ip);
111 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
112 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
113 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
114 regs->ar_rnat, regs->ar_bspstore, regs->pr);
115 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
116 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
117 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
118 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
119 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
120 regs->f6.u.bits[1], regs->f6.u.bits[0],
121 regs->f7.u.bits[1], regs->f7.u.bits[0]);
122 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
123 regs->f8.u.bits[1], regs->f8.u.bits[0],
124 regs->f9.u.bits[1], regs->f9.u.bits[0]);
125 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
126 regs->f10.u.bits[1], regs->f10.u.bits[0],
127 regs->f11.u.bits[1], regs->f11.u.bits[0]);
128
129 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
130 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
131 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
132 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
133 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
134 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
135 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
136 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
137 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
138
139 if (user_mode(regs)) {
140 /* print the stacked registers */
141 unsigned long val, *bsp, ndirty;
142 int i, sof, is_nat = 0;
143
144 sof = regs->cr_ifs & 0x7f; /* size of frame */
145 ndirty = (regs->loadrs >> 19);
146 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
147 for (i = 0; i < sof; ++i) {
148 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
149 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
150 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
151 }
152 } else
153 show_stack(NULL, NULL);
154 }
155
156 void
157 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
158 {
159 if (fsys_mode(current, &scr->pt)) {
160 /* defer signal-handling etc. until we return to privilege-level 0. */
161 if (!ia64_psr(&scr->pt)->lp)
162 ia64_psr(&scr->pt)->lp = 1;
163 return;
164 }
165
166 #ifdef CONFIG_PERFMON
167 if (current->thread.pfm_needs_checking)
168 pfm_handle_work();
169 #endif
170
171 /* deal with pending signal delivery */
172 if (test_thread_flag(TIF_SIGPENDING))
173 ia64_do_signal(oldset, scr, in_syscall);
174 }
175
176 static int pal_halt = 1;
177 static int can_do_pal_halt = 1;
178
179 static int __init nohalt_setup(char * str)
180 {
181 pal_halt = 0;
182 return 1;
183 }
184 __setup("nohalt", nohalt_setup);
185
186 void
187 update_pal_halt_status(int status)
188 {
189 can_do_pal_halt = pal_halt && status;
190 }
191
192 /*
193 * We use this if we don't have any better idle routine..
194 */
195 void
196 default_idle (void)
197 {
198 while (!need_resched())
199 if (can_do_pal_halt)
200 safe_halt();
201 else
202 cpu_relax();
203 }
204
205 #ifdef CONFIG_HOTPLUG_CPU
206 /* We don't actually take CPU down, just spin without interrupts. */
207 static inline void play_dead(void)
208 {
209 extern void ia64_cpu_local_tick (void);
210 unsigned int this_cpu = smp_processor_id();
211
212 /* Ack it */
213 __get_cpu_var(cpu_state) = CPU_DEAD;
214
215 max_xtp();
216 local_irq_disable();
217 idle_task_exit();
218 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
219 /*
220 * The above is a point of no-return, the processor is
221 * expected to be in SAL loop now.
222 */
223 BUG();
224 }
225 #else
226 static inline void play_dead(void)
227 {
228 BUG();
229 }
230 #endif /* CONFIG_HOTPLUG_CPU */
231
232 void cpu_idle_wait(void)
233 {
234 unsigned int cpu, this_cpu = get_cpu();
235 cpumask_t map;
236
237 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
238 put_cpu();
239
240 cpus_clear(map);
241 for_each_online_cpu(cpu) {
242 per_cpu(cpu_idle_state, cpu) = 1;
243 cpu_set(cpu, map);
244 }
245
246 __get_cpu_var(cpu_idle_state) = 0;
247
248 wmb();
249 do {
250 ssleep(1);
251 for_each_online_cpu(cpu) {
252 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
253 cpu_clear(cpu, map);
254 }
255 cpus_and(map, map, cpu_online_map);
256 } while (!cpus_empty(map));
257 }
258 EXPORT_SYMBOL_GPL(cpu_idle_wait);
259
260 void __attribute__((noreturn))
261 cpu_idle (void)
262 {
263 void (*mark_idle)(int) = ia64_mark_idle;
264
265 /* endless idle loop with no priority at all */
266 while (1) {
267 #ifdef CONFIG_SMP
268 if (!need_resched())
269 min_xtp();
270 #endif
271 while (!need_resched()) {
272 void (*idle)(void);
273
274 if (__get_cpu_var(cpu_idle_state))
275 __get_cpu_var(cpu_idle_state) = 0;
276
277 rmb();
278 if (mark_idle)
279 (*mark_idle)(1);
280
281 idle = pm_idle;
282 if (!idle)
283 idle = default_idle;
284 (*idle)();
285 }
286
287 if (mark_idle)
288 (*mark_idle)(0);
289
290 #ifdef CONFIG_SMP
291 normal_xtp();
292 #endif
293 schedule();
294 check_pgt_cache();
295 if (cpu_is_offline(smp_processor_id()))
296 play_dead();
297 }
298 }
299
300 void
301 ia64_save_extra (struct task_struct *task)
302 {
303 #ifdef CONFIG_PERFMON
304 unsigned long info;
305 #endif
306
307 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
308 ia64_save_debug_regs(&task->thread.dbr[0]);
309
310 #ifdef CONFIG_PERFMON
311 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
312 pfm_save_regs(task);
313
314 info = __get_cpu_var(pfm_syst_info);
315 if (info & PFM_CPUINFO_SYST_WIDE)
316 pfm_syst_wide_update_task(task, info, 0);
317 #endif
318
319 #ifdef CONFIG_IA32_SUPPORT
320 if (IS_IA32_PROCESS(ia64_task_regs(task)))
321 ia32_save_state(task);
322 #endif
323 }
324
325 void
326 ia64_load_extra (struct task_struct *task)
327 {
328 #ifdef CONFIG_PERFMON
329 unsigned long info;
330 #endif
331
332 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
333 ia64_load_debug_regs(&task->thread.dbr[0]);
334
335 #ifdef CONFIG_PERFMON
336 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
337 pfm_load_regs(task);
338
339 info = __get_cpu_var(pfm_syst_info);
340 if (info & PFM_CPUINFO_SYST_WIDE)
341 pfm_syst_wide_update_task(task, info, 1);
342 #endif
343
344 #ifdef CONFIG_IA32_SUPPORT
345 if (IS_IA32_PROCESS(ia64_task_regs(task)))
346 ia32_load_state(task);
347 #endif
348 }
349
350 /*
351 * Copy the state of an ia-64 thread.
352 *
353 * We get here through the following call chain:
354 *
355 * from user-level: from kernel:
356 *
357 * <clone syscall> <some kernel call frames>
358 * sys_clone :
359 * do_fork do_fork
360 * copy_thread copy_thread
361 *
362 * This means that the stack layout is as follows:
363 *
364 * +---------------------+ (highest addr)
365 * | struct pt_regs |
366 * +---------------------+
367 * | struct switch_stack |
368 * +---------------------+
369 * | |
370 * | memory stack |
371 * | | <-- sp (lowest addr)
372 * +---------------------+
373 *
374 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
375 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
376 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
377 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
378 * the stack is page aligned and the page size is at least 4KB, this is always the case,
379 * so there is nothing to worry about.
380 */
381 int
382 copy_thread (int nr, unsigned long clone_flags,
383 unsigned long user_stack_base, unsigned long user_stack_size,
384 struct task_struct *p, struct pt_regs *regs)
385 {
386 extern char ia64_ret_from_clone, ia32_ret_from_clone;
387 struct switch_stack *child_stack, *stack;
388 unsigned long rbs, child_rbs, rbs_size;
389 struct pt_regs *child_ptregs;
390 int retval = 0;
391
392 #ifdef CONFIG_SMP
393 /*
394 * For SMP idle threads, fork_by_hand() calls do_fork with
395 * NULL regs.
396 */
397 if (!regs)
398 return 0;
399 #endif
400
401 stack = ((struct switch_stack *) regs) - 1;
402
403 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
404 child_stack = (struct switch_stack *) child_ptregs - 1;
405
406 /* copy parent's switch_stack & pt_regs to child: */
407 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
408
409 rbs = (unsigned long) current + IA64_RBS_OFFSET;
410 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
411 rbs_size = stack->ar_bspstore - rbs;
412
413 /* copy the parent's register backing store to the child: */
414 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
415
416 if (likely(user_mode(child_ptregs))) {
417 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
418 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
419 if (user_stack_base) {
420 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
421 child_ptregs->ar_bspstore = user_stack_base;
422 child_ptregs->ar_rnat = 0;
423 child_ptregs->loadrs = 0;
424 }
425 } else {
426 /*
427 * Note: we simply preserve the relative position of
428 * the stack pointer here. There is no need to
429 * allocate a scratch area here, since that will have
430 * been taken care of by the caller of sys_clone()
431 * already.
432 */
433 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
434 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
435 }
436 child_stack->ar_bspstore = child_rbs + rbs_size;
437 if (IS_IA32_PROCESS(regs))
438 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
439 else
440 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
441
442 /* copy parts of thread_struct: */
443 p->thread.ksp = (unsigned long) child_stack - 16;
444
445 /* stop some PSR bits from being inherited.
446 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
447 * therefore we must specify them explicitly here and not include them in
448 * IA64_PSR_BITS_TO_CLEAR.
449 */
450 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
451 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
452
453 /*
454 * NOTE: The calling convention considers all floating point
455 * registers in the high partition (fph) to be scratch. Since
456 * the only way to get to this point is through a system call,
457 * we know that the values in fph are all dead. Hence, there
458 * is no need to inherit the fph state from the parent to the
459 * child and all we have to do is to make sure that
460 * IA64_THREAD_FPH_VALID is cleared in the child.
461 *
462 * XXX We could push this optimization a bit further by
463 * clearing IA64_THREAD_FPH_VALID on ANY system call.
464 * However, it's not clear this is worth doing. Also, it
465 * would be a slight deviation from the normal Linux system
466 * call behavior where scratch registers are preserved across
467 * system calls (unless used by the system call itself).
468 */
469 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
470 | IA64_THREAD_PM_VALID)
471 # define THREAD_FLAGS_TO_SET 0
472 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
473 | THREAD_FLAGS_TO_SET);
474 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
475 #ifdef CONFIG_IA32_SUPPORT
476 /*
477 * If we're cloning an IA32 task then save the IA32 extra
478 * state from the current task to the new task
479 */
480 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
481 ia32_save_state(p);
482 if (clone_flags & CLONE_SETTLS)
483 retval = ia32_clone_tls(p, child_ptregs);
484
485 /* Copy partially mapped page list */
486 if (!retval)
487 retval = ia32_copy_partial_page_list(p, clone_flags);
488 }
489 #endif
490
491 #ifdef CONFIG_PERFMON
492 if (current->thread.pfm_context)
493 pfm_inherit(p, child_ptregs);
494 #endif
495 return retval;
496 }
497
498 static void
499 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
500 {
501 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
502 elf_greg_t *dst = arg;
503 struct pt_regs *pt;
504 char nat;
505 int i;
506
507 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
508
509 if (unw_unwind_to_user(info) < 0)
510 return;
511
512 unw_get_sp(info, &sp);
513 pt = (struct pt_regs *) (sp + 16);
514
515 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
516
517 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
518 return;
519
520 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
521 &ar_rnat);
522
523 /*
524 * coredump format:
525 * r0-r31
526 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
527 * predicate registers (p0-p63)
528 * b0-b7
529 * ip cfm user-mask
530 * ar.rsc ar.bsp ar.bspstore ar.rnat
531 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
532 */
533
534 /* r0 is zero */
535 for (i = 1, mask = (1UL << i); i < 32; ++i) {
536 unw_get_gr(info, i, &dst[i], &nat);
537 if (nat)
538 nat_bits |= mask;
539 mask <<= 1;
540 }
541 dst[32] = nat_bits;
542 unw_get_pr(info, &dst[33]);
543
544 for (i = 0; i < 8; ++i)
545 unw_get_br(info, i, &dst[34 + i]);
546
547 unw_get_rp(info, &ip);
548 dst[42] = ip + ia64_psr(pt)->ri;
549 dst[43] = cfm;
550 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
551
552 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
553 /*
554 * For bsp and bspstore, unw_get_ar() would return the kernel
555 * addresses, but we need the user-level addresses instead:
556 */
557 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
558 dst[47] = pt->ar_bspstore;
559 dst[48] = ar_rnat;
560 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
561 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
562 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
563 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
564 unw_get_ar(info, UNW_AR_LC, &dst[53]);
565 unw_get_ar(info, UNW_AR_EC, &dst[54]);
566 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
567 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
568 }
569
570 void
571 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
572 {
573 elf_fpreg_t *dst = arg;
574 int i;
575
576 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
577
578 if (unw_unwind_to_user(info) < 0)
579 return;
580
581 /* f0 is 0.0, f1 is 1.0 */
582
583 for (i = 2; i < 32; ++i)
584 unw_get_fr(info, i, dst + i);
585
586 ia64_flush_fph(task);
587 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
588 memcpy(dst + 32, task->thread.fph, 96*16);
589 }
590
591 void
592 do_copy_regs (struct unw_frame_info *info, void *arg)
593 {
594 do_copy_task_regs(current, info, arg);
595 }
596
597 void
598 do_dump_fpu (struct unw_frame_info *info, void *arg)
599 {
600 do_dump_task_fpu(current, info, arg);
601 }
602
603 int
604 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
605 {
606 struct unw_frame_info tcore_info;
607
608 if (current == task) {
609 unw_init_running(do_copy_regs, regs);
610 } else {
611 memset(&tcore_info, 0, sizeof(tcore_info));
612 unw_init_from_blocked_task(&tcore_info, task);
613 do_copy_task_regs(task, &tcore_info, regs);
614 }
615 return 1;
616 }
617
618 void
619 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
620 {
621 unw_init_running(do_copy_regs, dst);
622 }
623
624 int
625 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
626 {
627 struct unw_frame_info tcore_info;
628
629 if (current == task) {
630 unw_init_running(do_dump_fpu, dst);
631 } else {
632 memset(&tcore_info, 0, sizeof(tcore_info));
633 unw_init_from_blocked_task(&tcore_info, task);
634 do_dump_task_fpu(task, &tcore_info, dst);
635 }
636 return 1;
637 }
638
639 int
640 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
641 {
642 unw_init_running(do_dump_fpu, dst);
643 return 1; /* f0-f31 are always valid so we always return 1 */
644 }
645
646 long
647 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
648 struct pt_regs *regs)
649 {
650 char *fname;
651 int error;
652
653 fname = getname(filename);
654 error = PTR_ERR(fname);
655 if (IS_ERR(fname))
656 goto out;
657 error = do_execve(fname, argv, envp, regs);
658 putname(fname);
659 out:
660 return error;
661 }
662
663 pid_t
664 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
665 {
666 extern void start_kernel_thread (void);
667 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
668 struct {
669 struct switch_stack sw;
670 struct pt_regs pt;
671 } regs;
672
673 memset(&regs, 0, sizeof(regs));
674 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
675 regs.pt.r1 = helper_fptr[1]; /* set GP */
676 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
677 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
678 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
679 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
680 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
681 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
682 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
683 regs.sw.pr = (1 << PRED_KERNEL_STACK);
684 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
685 }
686 EXPORT_SYMBOL(kernel_thread);
687
688 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
689 int
690 kernel_thread_helper (int (*fn)(void *), void *arg)
691 {
692 #ifdef CONFIG_IA32_SUPPORT
693 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
694 /* A kernel thread is always a 64-bit process. */
695 current->thread.map_base = DEFAULT_MAP_BASE;
696 current->thread.task_size = DEFAULT_TASK_SIZE;
697 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
698 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
699 }
700 #endif
701 return (*fn)(arg);
702 }
703
704 /*
705 * Flush thread state. This is called when a thread does an execve().
706 */
707 void
708 flush_thread (void)
709 {
710 /* drop floating-point and debug-register state if it exists: */
711 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
712 ia64_drop_fpu(current);
713 if (IS_IA32_PROCESS(ia64_task_regs(current)))
714 ia32_drop_partial_page_list(current);
715 }
716
717 /*
718 * Clean up state associated with current thread. This is called when
719 * the thread calls exit().
720 */
721 void
722 exit_thread (void)
723 {
724 ia64_drop_fpu(current);
725 #ifdef CONFIG_PERFMON
726 /* if needed, stop monitoring and flush state to perfmon context */
727 if (current->thread.pfm_context)
728 pfm_exit_thread(current);
729
730 /* free debug register resources */
731 if (current->thread.flags & IA64_THREAD_DBG_VALID)
732 pfm_release_debug_registers(current);
733 #endif
734 if (IS_IA32_PROCESS(ia64_task_regs(current)))
735 ia32_drop_partial_page_list(current);
736 }
737
738 unsigned long
739 get_wchan (struct task_struct *p)
740 {
741 struct unw_frame_info info;
742 unsigned long ip;
743 int count = 0;
744
745 /*
746 * Note: p may not be a blocked task (it could be current or
747 * another process running on some other CPU. Rather than
748 * trying to determine if p is really blocked, we just assume
749 * it's blocked and rely on the unwind routines to fail
750 * gracefully if the process wasn't really blocked after all.
751 * --davidm 99/12/15
752 */
753 unw_init_from_blocked_task(&info, p);
754 do {
755 if (unw_unwind(&info) < 0)
756 return 0;
757 unw_get_ip(&info, &ip);
758 if (!in_sched_functions(ip))
759 return ip;
760 } while (count++ < 16);
761 return 0;
762 }
763
764 void
765 cpu_halt (void)
766 {
767 pal_power_mgmt_info_u_t power_info[8];
768 unsigned long min_power;
769 int i, min_power_state;
770
771 if (ia64_pal_halt_info(power_info) != 0)
772 return;
773
774 min_power_state = 0;
775 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
776 for (i = 1; i < 8; ++i)
777 if (power_info[i].pal_power_mgmt_info_s.im
778 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
779 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
780 min_power_state = i;
781 }
782
783 while (1)
784 ia64_pal_halt(min_power_state);
785 }
786
787 void
788 machine_restart (char *restart_cmd)
789 {
790 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
791 }
792
793 EXPORT_SYMBOL(machine_restart);
794
795 void
796 machine_halt (void)
797 {
798 cpu_halt();
799 }
800
801 EXPORT_SYMBOL(machine_halt);
802
803 void
804 machine_power_off (void)
805 {
806 if (pm_power_off)
807 pm_power_off();
808 machine_halt();
809 }
810
811 EXPORT_SYMBOL(machine_power_off);
This page took 0.088064 seconds and 5 git commands to generate.