[PATCH] Return probe redesign: ia64 specific implementation
[deliverable/linux.git] / arch / ia64 / kernel / process.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 */
8 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
9 #include <linux/config.h>
10
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/thread_info.h>
26 #include <linux/unistd.h>
27 #include <linux/efi.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31
32 #include <asm/cpu.h>
33 #include <asm/delay.h>
34 #include <asm/elf.h>
35 #include <asm/ia32.h>
36 #include <asm/irq.h>
37 #include <asm/pgalloc.h>
38 #include <asm/processor.h>
39 #include <asm/sal.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/unwind.h>
43 #include <asm/user.h>
44
45 #include "entry.h"
46
47 #ifdef CONFIG_PERFMON
48 # include <asm/perfmon.h>
49 #endif
50
51 #include "sigframe.h"
52
53 void (*ia64_mark_idle)(int);
54 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
55
56 unsigned long boot_option_idle_override = 0;
57 EXPORT_SYMBOL(boot_option_idle_override);
58
59 void
60 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
61 {
62 unsigned long ip, sp, bsp;
63 char buf[128]; /* don't make it so big that it overflows the stack! */
64
65 printk("\nCall Trace:\n");
66 do {
67 unw_get_ip(info, &ip);
68 if (ip == 0)
69 break;
70
71 unw_get_sp(info, &sp);
72 unw_get_bsp(info, &bsp);
73 snprintf(buf, sizeof(buf),
74 " [<%016lx>] %%s\n"
75 " sp=%016lx bsp=%016lx\n",
76 ip, sp, bsp);
77 print_symbol(buf, ip);
78 } while (unw_unwind(info) >= 0);
79 }
80
81 void
82 show_stack (struct task_struct *task, unsigned long *sp)
83 {
84 if (!task)
85 unw_init_running(ia64_do_show_stack, NULL);
86 else {
87 struct unw_frame_info info;
88
89 unw_init_from_blocked_task(&info, task);
90 ia64_do_show_stack(&info, NULL);
91 }
92 }
93
94 void
95 dump_stack (void)
96 {
97 show_stack(NULL, NULL);
98 }
99
100 EXPORT_SYMBOL(dump_stack);
101
102 void
103 show_regs (struct pt_regs *regs)
104 {
105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
106
107 print_modules();
108 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
109 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
110 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
111 print_symbol("ip is at %s\n", ip);
112 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
113 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
114 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
115 regs->ar_rnat, regs->ar_bspstore, regs->pr);
116 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
117 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
118 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
119 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
120 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
121 regs->f6.u.bits[1], regs->f6.u.bits[0],
122 regs->f7.u.bits[1], regs->f7.u.bits[0]);
123 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
124 regs->f8.u.bits[1], regs->f8.u.bits[0],
125 regs->f9.u.bits[1], regs->f9.u.bits[0]);
126 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
127 regs->f10.u.bits[1], regs->f10.u.bits[0],
128 regs->f11.u.bits[1], regs->f11.u.bits[0]);
129
130 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
131 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
132 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
133 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
134 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
135 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
136 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
137 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
138 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
139
140 if (user_mode(regs)) {
141 /* print the stacked registers */
142 unsigned long val, *bsp, ndirty;
143 int i, sof, is_nat = 0;
144
145 sof = regs->cr_ifs & 0x7f; /* size of frame */
146 ndirty = (regs->loadrs >> 19);
147 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
148 for (i = 0; i < sof; ++i) {
149 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
150 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
151 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
152 }
153 } else
154 show_stack(NULL, NULL);
155 }
156
157 void
158 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
159 {
160 if (fsys_mode(current, &scr->pt)) {
161 /* defer signal-handling etc. until we return to privilege-level 0. */
162 if (!ia64_psr(&scr->pt)->lp)
163 ia64_psr(&scr->pt)->lp = 1;
164 return;
165 }
166
167 #ifdef CONFIG_PERFMON
168 if (current->thread.pfm_needs_checking)
169 pfm_handle_work();
170 #endif
171
172 /* deal with pending signal delivery */
173 if (test_thread_flag(TIF_SIGPENDING))
174 ia64_do_signal(oldset, scr, in_syscall);
175 }
176
177 static int pal_halt = 1;
178 static int can_do_pal_halt = 1;
179
180 static int __init nohalt_setup(char * str)
181 {
182 pal_halt = 0;
183 return 1;
184 }
185 __setup("nohalt", nohalt_setup);
186
187 void
188 update_pal_halt_status(int status)
189 {
190 can_do_pal_halt = pal_halt && status;
191 }
192
193 /*
194 * We use this if we don't have any better idle routine..
195 */
196 void
197 default_idle (void)
198 {
199 while (!need_resched())
200 if (can_do_pal_halt)
201 safe_halt();
202 else
203 cpu_relax();
204 }
205
206 #ifdef CONFIG_HOTPLUG_CPU
207 /* We don't actually take CPU down, just spin without interrupts. */
208 static inline void play_dead(void)
209 {
210 extern void ia64_cpu_local_tick (void);
211 unsigned int this_cpu = smp_processor_id();
212
213 /* Ack it */
214 __get_cpu_var(cpu_state) = CPU_DEAD;
215
216 max_xtp();
217 local_irq_disable();
218 idle_task_exit();
219 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
220 /*
221 * The above is a point of no-return, the processor is
222 * expected to be in SAL loop now.
223 */
224 BUG();
225 }
226 #else
227 static inline void play_dead(void)
228 {
229 BUG();
230 }
231 #endif /* CONFIG_HOTPLUG_CPU */
232
233 void cpu_idle_wait(void)
234 {
235 unsigned int cpu, this_cpu = get_cpu();
236 cpumask_t map;
237
238 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
239 put_cpu();
240
241 cpus_clear(map);
242 for_each_online_cpu(cpu) {
243 per_cpu(cpu_idle_state, cpu) = 1;
244 cpu_set(cpu, map);
245 }
246
247 __get_cpu_var(cpu_idle_state) = 0;
248
249 wmb();
250 do {
251 ssleep(1);
252 for_each_online_cpu(cpu) {
253 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
254 cpu_clear(cpu, map);
255 }
256 cpus_and(map, map, cpu_online_map);
257 } while (!cpus_empty(map));
258 }
259 EXPORT_SYMBOL_GPL(cpu_idle_wait);
260
261 void __attribute__((noreturn))
262 cpu_idle (void)
263 {
264 void (*mark_idle)(int) = ia64_mark_idle;
265
266 /* endless idle loop with no priority at all */
267 while (1) {
268 #ifdef CONFIG_SMP
269 if (!need_resched())
270 min_xtp();
271 #endif
272 while (!need_resched()) {
273 void (*idle)(void);
274
275 if (__get_cpu_var(cpu_idle_state))
276 __get_cpu_var(cpu_idle_state) = 0;
277
278 rmb();
279 if (mark_idle)
280 (*mark_idle)(1);
281
282 idle = pm_idle;
283 if (!idle)
284 idle = default_idle;
285 (*idle)();
286 }
287
288 if (mark_idle)
289 (*mark_idle)(0);
290
291 #ifdef CONFIG_SMP
292 normal_xtp();
293 #endif
294 schedule();
295 check_pgt_cache();
296 if (cpu_is_offline(smp_processor_id()))
297 play_dead();
298 }
299 }
300
301 void
302 ia64_save_extra (struct task_struct *task)
303 {
304 #ifdef CONFIG_PERFMON
305 unsigned long info;
306 #endif
307
308 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
309 ia64_save_debug_regs(&task->thread.dbr[0]);
310
311 #ifdef CONFIG_PERFMON
312 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
313 pfm_save_regs(task);
314
315 info = __get_cpu_var(pfm_syst_info);
316 if (info & PFM_CPUINFO_SYST_WIDE)
317 pfm_syst_wide_update_task(task, info, 0);
318 #endif
319
320 #ifdef CONFIG_IA32_SUPPORT
321 if (IS_IA32_PROCESS(ia64_task_regs(task)))
322 ia32_save_state(task);
323 #endif
324 }
325
326 void
327 ia64_load_extra (struct task_struct *task)
328 {
329 #ifdef CONFIG_PERFMON
330 unsigned long info;
331 #endif
332
333 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
334 ia64_load_debug_regs(&task->thread.dbr[0]);
335
336 #ifdef CONFIG_PERFMON
337 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
338 pfm_load_regs(task);
339
340 info = __get_cpu_var(pfm_syst_info);
341 if (info & PFM_CPUINFO_SYST_WIDE)
342 pfm_syst_wide_update_task(task, info, 1);
343 #endif
344
345 #ifdef CONFIG_IA32_SUPPORT
346 if (IS_IA32_PROCESS(ia64_task_regs(task)))
347 ia32_load_state(task);
348 #endif
349 }
350
351 /*
352 * Copy the state of an ia-64 thread.
353 *
354 * We get here through the following call chain:
355 *
356 * from user-level: from kernel:
357 *
358 * <clone syscall> <some kernel call frames>
359 * sys_clone :
360 * do_fork do_fork
361 * copy_thread copy_thread
362 *
363 * This means that the stack layout is as follows:
364 *
365 * +---------------------+ (highest addr)
366 * | struct pt_regs |
367 * +---------------------+
368 * | struct switch_stack |
369 * +---------------------+
370 * | |
371 * | memory stack |
372 * | | <-- sp (lowest addr)
373 * +---------------------+
374 *
375 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
376 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
377 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
378 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
379 * the stack is page aligned and the page size is at least 4KB, this is always the case,
380 * so there is nothing to worry about.
381 */
382 int
383 copy_thread (int nr, unsigned long clone_flags,
384 unsigned long user_stack_base, unsigned long user_stack_size,
385 struct task_struct *p, struct pt_regs *regs)
386 {
387 extern char ia64_ret_from_clone, ia32_ret_from_clone;
388 struct switch_stack *child_stack, *stack;
389 unsigned long rbs, child_rbs, rbs_size;
390 struct pt_regs *child_ptregs;
391 int retval = 0;
392
393 #ifdef CONFIG_SMP
394 /*
395 * For SMP idle threads, fork_by_hand() calls do_fork with
396 * NULL regs.
397 */
398 if (!regs)
399 return 0;
400 #endif
401
402 stack = ((struct switch_stack *) regs) - 1;
403
404 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
405 child_stack = (struct switch_stack *) child_ptregs - 1;
406
407 /* copy parent's switch_stack & pt_regs to child: */
408 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
409
410 rbs = (unsigned long) current + IA64_RBS_OFFSET;
411 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
412 rbs_size = stack->ar_bspstore - rbs;
413
414 /* copy the parent's register backing store to the child: */
415 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
416
417 if (likely(user_mode(child_ptregs))) {
418 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
419 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
420 if (user_stack_base) {
421 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
422 child_ptregs->ar_bspstore = user_stack_base;
423 child_ptregs->ar_rnat = 0;
424 child_ptregs->loadrs = 0;
425 }
426 } else {
427 /*
428 * Note: we simply preserve the relative position of
429 * the stack pointer here. There is no need to
430 * allocate a scratch area here, since that will have
431 * been taken care of by the caller of sys_clone()
432 * already.
433 */
434 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
435 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
436 }
437 child_stack->ar_bspstore = child_rbs + rbs_size;
438 if (IS_IA32_PROCESS(regs))
439 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
440 else
441 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
442
443 /* copy parts of thread_struct: */
444 p->thread.ksp = (unsigned long) child_stack - 16;
445
446 /* stop some PSR bits from being inherited.
447 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
448 * therefore we must specify them explicitly here and not include them in
449 * IA64_PSR_BITS_TO_CLEAR.
450 */
451 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
452 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
453
454 /*
455 * NOTE: The calling convention considers all floating point
456 * registers in the high partition (fph) to be scratch. Since
457 * the only way to get to this point is through a system call,
458 * we know that the values in fph are all dead. Hence, there
459 * is no need to inherit the fph state from the parent to the
460 * child and all we have to do is to make sure that
461 * IA64_THREAD_FPH_VALID is cleared in the child.
462 *
463 * XXX We could push this optimization a bit further by
464 * clearing IA64_THREAD_FPH_VALID on ANY system call.
465 * However, it's not clear this is worth doing. Also, it
466 * would be a slight deviation from the normal Linux system
467 * call behavior where scratch registers are preserved across
468 * system calls (unless used by the system call itself).
469 */
470 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
471 | IA64_THREAD_PM_VALID)
472 # define THREAD_FLAGS_TO_SET 0
473 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
474 | THREAD_FLAGS_TO_SET);
475 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
476 #ifdef CONFIG_IA32_SUPPORT
477 /*
478 * If we're cloning an IA32 task then save the IA32 extra
479 * state from the current task to the new task
480 */
481 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
482 ia32_save_state(p);
483 if (clone_flags & CLONE_SETTLS)
484 retval = ia32_clone_tls(p, child_ptregs);
485
486 /* Copy partially mapped page list */
487 if (!retval)
488 retval = ia32_copy_partial_page_list(p, clone_flags);
489 }
490 #endif
491
492 #ifdef CONFIG_PERFMON
493 if (current->thread.pfm_context)
494 pfm_inherit(p, child_ptregs);
495 #endif
496 return retval;
497 }
498
499 static void
500 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
501 {
502 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
503 elf_greg_t *dst = arg;
504 struct pt_regs *pt;
505 char nat;
506 int i;
507
508 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
509
510 if (unw_unwind_to_user(info) < 0)
511 return;
512
513 unw_get_sp(info, &sp);
514 pt = (struct pt_regs *) (sp + 16);
515
516 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
517
518 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
519 return;
520
521 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
522 &ar_rnat);
523
524 /*
525 * coredump format:
526 * r0-r31
527 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
528 * predicate registers (p0-p63)
529 * b0-b7
530 * ip cfm user-mask
531 * ar.rsc ar.bsp ar.bspstore ar.rnat
532 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
533 */
534
535 /* r0 is zero */
536 for (i = 1, mask = (1UL << i); i < 32; ++i) {
537 unw_get_gr(info, i, &dst[i], &nat);
538 if (nat)
539 nat_bits |= mask;
540 mask <<= 1;
541 }
542 dst[32] = nat_bits;
543 unw_get_pr(info, &dst[33]);
544
545 for (i = 0; i < 8; ++i)
546 unw_get_br(info, i, &dst[34 + i]);
547
548 unw_get_rp(info, &ip);
549 dst[42] = ip + ia64_psr(pt)->ri;
550 dst[43] = cfm;
551 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
552
553 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
554 /*
555 * For bsp and bspstore, unw_get_ar() would return the kernel
556 * addresses, but we need the user-level addresses instead:
557 */
558 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
559 dst[47] = pt->ar_bspstore;
560 dst[48] = ar_rnat;
561 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
562 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
563 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
564 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
565 unw_get_ar(info, UNW_AR_LC, &dst[53]);
566 unw_get_ar(info, UNW_AR_EC, &dst[54]);
567 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
568 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
569 }
570
571 void
572 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
573 {
574 elf_fpreg_t *dst = arg;
575 int i;
576
577 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
578
579 if (unw_unwind_to_user(info) < 0)
580 return;
581
582 /* f0 is 0.0, f1 is 1.0 */
583
584 for (i = 2; i < 32; ++i)
585 unw_get_fr(info, i, dst + i);
586
587 ia64_flush_fph(task);
588 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
589 memcpy(dst + 32, task->thread.fph, 96*16);
590 }
591
592 void
593 do_copy_regs (struct unw_frame_info *info, void *arg)
594 {
595 do_copy_task_regs(current, info, arg);
596 }
597
598 void
599 do_dump_fpu (struct unw_frame_info *info, void *arg)
600 {
601 do_dump_task_fpu(current, info, arg);
602 }
603
604 int
605 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
606 {
607 struct unw_frame_info tcore_info;
608
609 if (current == task) {
610 unw_init_running(do_copy_regs, regs);
611 } else {
612 memset(&tcore_info, 0, sizeof(tcore_info));
613 unw_init_from_blocked_task(&tcore_info, task);
614 do_copy_task_regs(task, &tcore_info, regs);
615 }
616 return 1;
617 }
618
619 void
620 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
621 {
622 unw_init_running(do_copy_regs, dst);
623 }
624
625 int
626 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
627 {
628 struct unw_frame_info tcore_info;
629
630 if (current == task) {
631 unw_init_running(do_dump_fpu, dst);
632 } else {
633 memset(&tcore_info, 0, sizeof(tcore_info));
634 unw_init_from_blocked_task(&tcore_info, task);
635 do_dump_task_fpu(task, &tcore_info, dst);
636 }
637 return 1;
638 }
639
640 int
641 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
642 {
643 unw_init_running(do_dump_fpu, dst);
644 return 1; /* f0-f31 are always valid so we always return 1 */
645 }
646
647 long
648 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
649 struct pt_regs *regs)
650 {
651 char *fname;
652 int error;
653
654 fname = getname(filename);
655 error = PTR_ERR(fname);
656 if (IS_ERR(fname))
657 goto out;
658 error = do_execve(fname, argv, envp, regs);
659 putname(fname);
660 out:
661 return error;
662 }
663
664 pid_t
665 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
666 {
667 extern void start_kernel_thread (void);
668 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
669 struct {
670 struct switch_stack sw;
671 struct pt_regs pt;
672 } regs;
673
674 memset(&regs, 0, sizeof(regs));
675 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
676 regs.pt.r1 = helper_fptr[1]; /* set GP */
677 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
678 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
679 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
680 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
681 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
682 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
683 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
684 regs.sw.pr = (1 << PRED_KERNEL_STACK);
685 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
686 }
687 EXPORT_SYMBOL(kernel_thread);
688
689 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
690 int
691 kernel_thread_helper (int (*fn)(void *), void *arg)
692 {
693 #ifdef CONFIG_IA32_SUPPORT
694 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
695 /* A kernel thread is always a 64-bit process. */
696 current->thread.map_base = DEFAULT_MAP_BASE;
697 current->thread.task_size = DEFAULT_TASK_SIZE;
698 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
699 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
700 }
701 #endif
702 return (*fn)(arg);
703 }
704
705 /*
706 * Flush thread state. This is called when a thread does an execve().
707 */
708 void
709 flush_thread (void)
710 {
711 /*
712 * Remove function-return probe instances associated with this task
713 * and put them back on the free list. Do not insert an exit probe for
714 * this function, it will be disabled by kprobe_flush_task if you do.
715 */
716 kprobe_flush_task(current);
717
718 /* drop floating-point and debug-register state if it exists: */
719 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
720 ia64_drop_fpu(current);
721 if (IS_IA32_PROCESS(ia64_task_regs(current)))
722 ia32_drop_partial_page_list(current);
723 }
724
725 /*
726 * Clean up state associated with current thread. This is called when
727 * the thread calls exit().
728 */
729 void
730 exit_thread (void)
731 {
732
733 /*
734 * Remove function-return probe instances associated with this task
735 * and put them back on the free list. Do not insert an exit probe for
736 * this function, it will be disabled by kprobe_flush_task if you do.
737 */
738 kprobe_flush_task(current);
739
740 ia64_drop_fpu(current);
741 #ifdef CONFIG_PERFMON
742 /* if needed, stop monitoring and flush state to perfmon context */
743 if (current->thread.pfm_context)
744 pfm_exit_thread(current);
745
746 /* free debug register resources */
747 if (current->thread.flags & IA64_THREAD_DBG_VALID)
748 pfm_release_debug_registers(current);
749 #endif
750 if (IS_IA32_PROCESS(ia64_task_regs(current)))
751 ia32_drop_partial_page_list(current);
752 }
753
754 unsigned long
755 get_wchan (struct task_struct *p)
756 {
757 struct unw_frame_info info;
758 unsigned long ip;
759 int count = 0;
760
761 /*
762 * Note: p may not be a blocked task (it could be current or
763 * another process running on some other CPU. Rather than
764 * trying to determine if p is really blocked, we just assume
765 * it's blocked and rely on the unwind routines to fail
766 * gracefully if the process wasn't really blocked after all.
767 * --davidm 99/12/15
768 */
769 unw_init_from_blocked_task(&info, p);
770 do {
771 if (unw_unwind(&info) < 0)
772 return 0;
773 unw_get_ip(&info, &ip);
774 if (!in_sched_functions(ip))
775 return ip;
776 } while (count++ < 16);
777 return 0;
778 }
779
780 void
781 cpu_halt (void)
782 {
783 pal_power_mgmt_info_u_t power_info[8];
784 unsigned long min_power;
785 int i, min_power_state;
786
787 if (ia64_pal_halt_info(power_info) != 0)
788 return;
789
790 min_power_state = 0;
791 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
792 for (i = 1; i < 8; ++i)
793 if (power_info[i].pal_power_mgmt_info_s.im
794 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
795 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
796 min_power_state = i;
797 }
798
799 while (1)
800 ia64_pal_halt(min_power_state);
801 }
802
803 void
804 machine_restart (char *restart_cmd)
805 {
806 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
807 }
808
809 EXPORT_SYMBOL(machine_restart);
810
811 void
812 machine_halt (void)
813 {
814 cpu_halt();
815 }
816
817 EXPORT_SYMBOL(machine_halt);
818
819 void
820 machine_power_off (void)
821 {
822 if (pm_power_off)
823 pm_power_off();
824 machine_halt();
825 }
826
827 EXPORT_SYMBOL(machine_power_off);
This page took 0.116871 seconds and 6 git commands to generate.