rtc: add platform driver for EFI
[deliverable/linux.git] / arch / ia64 / kernel / time.c
1 /*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33
34 #include "fsyscall_gtod_data.h"
35
36 static cycle_t itc_get_cycles(void);
37
38 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39 .lock = SEQLOCK_UNLOCKED,
40 };
41
42 struct itc_jitter_data_t itc_jitter_data;
43
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50
51 #endif
52
53 #ifdef CONFIG_PARAVIRT
54 static void
55 paravirt_clocksource_resume(void)
56 {
57 if (pv_time_ops.clocksource_resume)
58 pv_time_ops.clocksource_resume();
59 }
60 #endif
61
62 static struct clocksource clocksource_itc = {
63 .name = "itc",
64 .rating = 350,
65 .read = itc_get_cycles,
66 .mask = CLOCKSOURCE_MASK(64),
67 .mult = 0, /*to be calculated*/
68 .shift = 16,
69 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
70 #ifdef CONFIG_PARAVIRT
71 .resume = paravirt_clocksource_resume,
72 #endif
73 };
74 static struct clocksource *itc_clocksource;
75
76 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
77
78 #include <linux/kernel_stat.h>
79
80 extern cputime_t cycle_to_cputime(u64 cyc);
81
82 /*
83 * Called from the context switch with interrupts disabled, to charge all
84 * accumulated times to the current process, and to prepare accounting on
85 * the next process.
86 */
87 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
88 {
89 struct thread_info *pi = task_thread_info(prev);
90 struct thread_info *ni = task_thread_info(next);
91 cputime_t delta_stime, delta_utime;
92 __u64 now;
93
94 now = ia64_get_itc();
95
96 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
97 if (idle_task(smp_processor_id()) != prev)
98 account_system_time(prev, 0, delta_stime, delta_stime);
99 else
100 account_idle_time(delta_stime);
101
102 if (pi->ac_utime) {
103 delta_utime = cycle_to_cputime(pi->ac_utime);
104 account_user_time(prev, delta_utime, delta_utime);
105 }
106
107 pi->ac_stamp = ni->ac_stamp = now;
108 ni->ac_stime = ni->ac_utime = 0;
109 }
110
111 /*
112 * Account time for a transition between system, hard irq or soft irq state.
113 * Note that this function is called with interrupts enabled.
114 */
115 void account_system_vtime(struct task_struct *tsk)
116 {
117 struct thread_info *ti = task_thread_info(tsk);
118 unsigned long flags;
119 cputime_t delta_stime;
120 __u64 now;
121
122 local_irq_save(flags);
123
124 now = ia64_get_itc();
125
126 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
127 if (irq_count() || idle_task(smp_processor_id()) != tsk)
128 account_system_time(tsk, 0, delta_stime, delta_stime);
129 else
130 account_idle_time(delta_stime);
131 ti->ac_stime = 0;
132
133 ti->ac_stamp = now;
134
135 local_irq_restore(flags);
136 }
137 EXPORT_SYMBOL_GPL(account_system_vtime);
138
139 /*
140 * Called from the timer interrupt handler to charge accumulated user time
141 * to the current process. Must be called with interrupts disabled.
142 */
143 void account_process_tick(struct task_struct *p, int user_tick)
144 {
145 struct thread_info *ti = task_thread_info(p);
146 cputime_t delta_utime;
147
148 if (ti->ac_utime) {
149 delta_utime = cycle_to_cputime(ti->ac_utime);
150 account_user_time(p, delta_utime, delta_utime);
151 ti->ac_utime = 0;
152 }
153 }
154
155 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
156
157 static irqreturn_t
158 timer_interrupt (int irq, void *dev_id)
159 {
160 unsigned long new_itm;
161
162 if (unlikely(cpu_is_offline(smp_processor_id()))) {
163 return IRQ_HANDLED;
164 }
165
166 platform_timer_interrupt(irq, dev_id);
167
168 new_itm = local_cpu_data->itm_next;
169
170 if (!time_after(ia64_get_itc(), new_itm))
171 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
172 ia64_get_itc(), new_itm);
173
174 profile_tick(CPU_PROFILING);
175
176 if (paravirt_do_steal_accounting(&new_itm))
177 goto skip_process_time_accounting;
178
179 while (1) {
180 update_process_times(user_mode(get_irq_regs()));
181
182 new_itm += local_cpu_data->itm_delta;
183
184 if (smp_processor_id() == time_keeper_id) {
185 /*
186 * Here we are in the timer irq handler. We have irqs locally
187 * disabled, but we don't know if the timer_bh is running on
188 * another CPU. We need to avoid to SMP race by acquiring the
189 * xtime_lock.
190 */
191 write_seqlock(&xtime_lock);
192 do_timer(1);
193 local_cpu_data->itm_next = new_itm;
194 write_sequnlock(&xtime_lock);
195 } else
196 local_cpu_data->itm_next = new_itm;
197
198 if (time_after(new_itm, ia64_get_itc()))
199 break;
200
201 /*
202 * Allow IPIs to interrupt the timer loop.
203 */
204 local_irq_enable();
205 local_irq_disable();
206 }
207
208 skip_process_time_accounting:
209
210 do {
211 /*
212 * If we're too close to the next clock tick for
213 * comfort, we increase the safety margin by
214 * intentionally dropping the next tick(s). We do NOT
215 * update itm.next because that would force us to call
216 * do_timer() which in turn would let our clock run
217 * too fast (with the potentially devastating effect
218 * of losing monotony of time).
219 */
220 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
221 new_itm += local_cpu_data->itm_delta;
222 ia64_set_itm(new_itm);
223 /* double check, in case we got hit by a (slow) PMI: */
224 } while (time_after_eq(ia64_get_itc(), new_itm));
225 return IRQ_HANDLED;
226 }
227
228 /*
229 * Encapsulate access to the itm structure for SMP.
230 */
231 void
232 ia64_cpu_local_tick (void)
233 {
234 int cpu = smp_processor_id();
235 unsigned long shift = 0, delta;
236
237 /* arrange for the cycle counter to generate a timer interrupt: */
238 ia64_set_itv(IA64_TIMER_VECTOR);
239
240 delta = local_cpu_data->itm_delta;
241 /*
242 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
243 * same time:
244 */
245 if (cpu) {
246 unsigned long hi = 1UL << ia64_fls(cpu);
247 shift = (2*(cpu - hi) + 1) * delta/hi/2;
248 }
249 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
250 ia64_set_itm(local_cpu_data->itm_next);
251 }
252
253 static int nojitter;
254
255 static int __init nojitter_setup(char *str)
256 {
257 nojitter = 1;
258 printk("Jitter checking for ITC timers disabled\n");
259 return 1;
260 }
261
262 __setup("nojitter", nojitter_setup);
263
264
265 void __devinit
266 ia64_init_itm (void)
267 {
268 unsigned long platform_base_freq, itc_freq;
269 struct pal_freq_ratio itc_ratio, proc_ratio;
270 long status, platform_base_drift, itc_drift;
271
272 /*
273 * According to SAL v2.6, we need to use a SAL call to determine the platform base
274 * frequency and then a PAL call to determine the frequency ratio between the ITC
275 * and the base frequency.
276 */
277 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
278 &platform_base_freq, &platform_base_drift);
279 if (status != 0) {
280 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
281 } else {
282 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
283 if (status != 0)
284 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
285 }
286 if (status != 0) {
287 /* invent "random" values */
288 printk(KERN_ERR
289 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
290 platform_base_freq = 100000000;
291 platform_base_drift = -1; /* no drift info */
292 itc_ratio.num = 3;
293 itc_ratio.den = 1;
294 }
295 if (platform_base_freq < 40000000) {
296 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
297 platform_base_freq);
298 platform_base_freq = 75000000;
299 platform_base_drift = -1;
300 }
301 if (!proc_ratio.den)
302 proc_ratio.den = 1; /* avoid division by zero */
303 if (!itc_ratio.den)
304 itc_ratio.den = 1; /* avoid division by zero */
305
306 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
307
308 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
309 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
310 "ITC freq=%lu.%03luMHz", smp_processor_id(),
311 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
312 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
313
314 if (platform_base_drift != -1) {
315 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
316 printk("+/-%ldppm\n", itc_drift);
317 } else {
318 itc_drift = -1;
319 printk("\n");
320 }
321
322 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
323 local_cpu_data->itc_freq = itc_freq;
324 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
325 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
326 + itc_freq/2)/itc_freq;
327
328 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
329 #ifdef CONFIG_SMP
330 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
331 * Jitter compensation requires a cmpxchg which may limit
332 * the scalability of the syscalls for retrieving time.
333 * The ITC synchronization is usually successful to within a few
334 * ITC ticks but this is not a sure thing. If you need to improve
335 * timer performance in SMP situations then boot the kernel with the
336 * "nojitter" option. However, doing so may result in time fluctuating (maybe
337 * even going backward) if the ITC offsets between the individual CPUs
338 * are too large.
339 */
340 if (!nojitter)
341 itc_jitter_data.itc_jitter = 1;
342 #endif
343 } else
344 /*
345 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
346 * ITC values may fluctuate significantly between processors.
347 * Clock should not be used for hrtimers. Mark itc as only
348 * useful for boot and testing.
349 *
350 * Note that jitter compensation is off! There is no point of
351 * synchronizing ITCs since they may be large differentials
352 * that change over time.
353 *
354 * The only way to fix this would be to repeatedly sync the
355 * ITCs. Until that time we have to avoid ITC.
356 */
357 clocksource_itc.rating = 50;
358
359 paravirt_init_missing_ticks_accounting(smp_processor_id());
360
361 /* avoid softlock up message when cpu is unplug and plugged again. */
362 touch_softlockup_watchdog();
363
364 /* Setup the CPU local timer tick */
365 ia64_cpu_local_tick();
366
367 if (!itc_clocksource) {
368 /* Sort out mult/shift values: */
369 clocksource_itc.mult =
370 clocksource_hz2mult(local_cpu_data->itc_freq,
371 clocksource_itc.shift);
372 clocksource_register(&clocksource_itc);
373 itc_clocksource = &clocksource_itc;
374 }
375 }
376
377 static cycle_t itc_get_cycles(void)
378 {
379 u64 lcycle, now, ret;
380
381 if (!itc_jitter_data.itc_jitter)
382 return get_cycles();
383
384 lcycle = itc_jitter_data.itc_lastcycle;
385 now = get_cycles();
386 if (lcycle && time_after(lcycle, now))
387 return lcycle;
388
389 /*
390 * Keep track of the last timer value returned.
391 * In an SMP environment, you could lose out in contention of
392 * cmpxchg. If so, your cmpxchg returns new value which the
393 * winner of contention updated to. Use the new value instead.
394 */
395 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
396 if (unlikely(ret != lcycle))
397 return ret;
398
399 return now;
400 }
401
402
403 static struct irqaction timer_irqaction = {
404 .handler = timer_interrupt,
405 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
406 .name = "timer"
407 };
408
409 static struct platform_device rtc_efi_dev = {
410 .name = "rtc-efi",
411 .id = -1,
412 };
413
414 static int __init rtc_init(void)
415 {
416 if (platform_device_register(&rtc_efi_dev) < 0)
417 printk(KERN_ERR "unable to register rtc device...\n");
418
419 /* not necessarily an error */
420 return 0;
421 }
422 module_init(rtc_init);
423
424 void __init
425 time_init (void)
426 {
427 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
428 efi_gettimeofday(&xtime);
429 ia64_init_itm();
430
431 /*
432 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
433 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
434 */
435 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
436 }
437
438 /*
439 * Generic udelay assumes that if preemption is allowed and the thread
440 * migrates to another CPU, that the ITC values are synchronized across
441 * all CPUs.
442 */
443 static void
444 ia64_itc_udelay (unsigned long usecs)
445 {
446 unsigned long start = ia64_get_itc();
447 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
448
449 while (time_before(ia64_get_itc(), end))
450 cpu_relax();
451 }
452
453 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
454
455 void
456 udelay (unsigned long usecs)
457 {
458 (*ia64_udelay)(usecs);
459 }
460 EXPORT_SYMBOL(udelay);
461
462 /* IA64 doesn't cache the timezone */
463 void update_vsyscall_tz(void)
464 {
465 }
466
467 void update_vsyscall(struct timespec *wall, struct clocksource *c)
468 {
469 unsigned long flags;
470
471 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
472
473 /* copy fsyscall clock data */
474 fsyscall_gtod_data.clk_mask = c->mask;
475 fsyscall_gtod_data.clk_mult = c->mult;
476 fsyscall_gtod_data.clk_shift = c->shift;
477 fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
478 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
479
480 /* copy kernel time structures */
481 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
482 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
483 fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
484 + wall->tv_sec;
485 fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
486 + wall->tv_nsec;
487
488 /* normalize */
489 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
490 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
491 fsyscall_gtod_data.monotonic_time.tv_sec++;
492 }
493
494 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
495 }
496
This page took 0.055273 seconds and 5 git commands to generate.