[PATCH] Register sysfs file for hotplugged new node
[deliverable/linux.git] / arch / ia64 / kernel / topology.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
14 */
15
16 #include <linux/config.h>
17 #include <linux/cpu.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/node.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28
29 static struct ia64_cpu *sysfs_cpus;
30
31 int arch_register_cpu(int num)
32 {
33 struct node *parent = NULL;
34
35 #ifdef CONFIG_NUMA
36 parent = &node_devices[cpu_to_node(num)];
37 #endif /* CONFIG_NUMA */
38
39 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
40 /*
41 * If CPEI cannot be re-targetted, and this is
42 * CPEI target, then dont create the control file
43 */
44 if (!can_cpei_retarget() && is_cpu_cpei_target(num))
45 sysfs_cpus[num].cpu.no_control = 1;
46 #endif
47
48 return register_cpu(&sysfs_cpus[num].cpu, num, parent);
49 }
50
51 #ifdef CONFIG_HOTPLUG_CPU
52
53 void arch_unregister_cpu(int num)
54 {
55 struct node *parent = NULL;
56
57 #ifdef CONFIG_NUMA
58 int node = cpu_to_node(num);
59 parent = &node_devices[node];
60 #endif /* CONFIG_NUMA */
61
62 return unregister_cpu(&sysfs_cpus[num].cpu, parent);
63 }
64 EXPORT_SYMBOL(arch_register_cpu);
65 EXPORT_SYMBOL(arch_unregister_cpu);
66 #endif /*CONFIG_HOTPLUG_CPU*/
67
68
69 static int __init topology_init(void)
70 {
71 int i, err = 0;
72
73 #ifdef CONFIG_NUMA
74 /*
75 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
76 */
77 for_each_online_node(i) {
78 if ((err = register_one_node(i)))
79 goto out;
80 }
81 #endif
82
83 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
84 if (!sysfs_cpus) {
85 err = -ENOMEM;
86 goto out;
87 }
88
89 for_each_present_cpu(i) {
90 if((err = arch_register_cpu(i)))
91 goto out;
92 }
93 out:
94 return err;
95 }
96
97 subsys_initcall(topology_init);
98
99
100 /*
101 * Export cpu cache information through sysfs
102 */
103
104 /*
105 * A bunch of string array to get pretty printing
106 */
107 static const char *cache_types[] = {
108 "", /* not used */
109 "Instruction",
110 "Data",
111 "Unified" /* unified */
112 };
113
114 static const char *cache_mattrib[]={
115 "WriteThrough",
116 "WriteBack",
117 "", /* reserved */
118 "" /* reserved */
119 };
120
121 struct cache_info {
122 pal_cache_config_info_t cci;
123 cpumask_t shared_cpu_map;
124 int level;
125 int type;
126 struct kobject kobj;
127 };
128
129 struct cpu_cache_info {
130 struct cache_info *cache_leaves;
131 int num_cache_leaves;
132 struct kobject kobj;
133 };
134
135 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
136 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
137
138 #ifdef CONFIG_SMP
139 static void cache_shared_cpu_map_setup( unsigned int cpu,
140 struct cache_info * this_leaf)
141 {
142 pal_cache_shared_info_t csi;
143 int num_shared, i = 0;
144 unsigned int j;
145
146 if (cpu_data(cpu)->threads_per_core <= 1 &&
147 cpu_data(cpu)->cores_per_socket <= 1) {
148 cpu_set(cpu, this_leaf->shared_cpu_map);
149 return;
150 }
151
152 if (ia64_pal_cache_shared_info(this_leaf->level,
153 this_leaf->type,
154 0,
155 &csi) != PAL_STATUS_SUCCESS)
156 return;
157
158 num_shared = (int) csi.num_shared;
159 do {
160 for_each_possible_cpu(j)
161 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
162 && cpu_data(j)->core_id == csi.log1_cid
163 && cpu_data(j)->thread_id == csi.log1_tid)
164 cpu_set(j, this_leaf->shared_cpu_map);
165
166 i++;
167 } while (i < num_shared &&
168 ia64_pal_cache_shared_info(this_leaf->level,
169 this_leaf->type,
170 i,
171 &csi) == PAL_STATUS_SUCCESS);
172 }
173 #else
174 static void cache_shared_cpu_map_setup(unsigned int cpu,
175 struct cache_info * this_leaf)
176 {
177 cpu_set(cpu, this_leaf->shared_cpu_map);
178 return;
179 }
180 #endif
181
182 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
183 char *buf)
184 {
185 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
186 }
187
188 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
189 char *buf)
190 {
191 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
192 }
193
194 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
195 {
196 return sprintf(buf,
197 "%s\n",
198 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
199 }
200
201 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
202 {
203 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
204 }
205
206 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
207 {
208 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
209 number_of_sets /= this_leaf->cci.pcci_assoc;
210 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
211
212 return sprintf(buf, "%u\n", number_of_sets);
213 }
214
215 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
216 {
217 ssize_t len;
218 cpumask_t shared_cpu_map;
219
220 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
221 len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
222 len += sprintf(buf+len, "\n");
223 return len;
224 }
225
226 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
227 {
228 int type = this_leaf->type + this_leaf->cci.pcci_unified;
229 return sprintf(buf, "%s\n", cache_types[type]);
230 }
231
232 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
233 {
234 return sprintf(buf, "%u\n", this_leaf->level);
235 }
236
237 struct cache_attr {
238 struct attribute attr;
239 ssize_t (*show)(struct cache_info *, char *);
240 ssize_t (*store)(struct cache_info *, const char *, size_t count);
241 };
242
243 #ifdef define_one_ro
244 #undef define_one_ro
245 #endif
246 #define define_one_ro(_name) \
247 static struct cache_attr _name = \
248 __ATTR(_name, 0444, show_##_name, NULL)
249
250 define_one_ro(level);
251 define_one_ro(type);
252 define_one_ro(coherency_line_size);
253 define_one_ro(ways_of_associativity);
254 define_one_ro(size);
255 define_one_ro(number_of_sets);
256 define_one_ro(shared_cpu_map);
257 define_one_ro(attributes);
258
259 static struct attribute * cache_default_attrs[] = {
260 &type.attr,
261 &level.attr,
262 &coherency_line_size.attr,
263 &ways_of_associativity.attr,
264 &attributes.attr,
265 &size.attr,
266 &number_of_sets.attr,
267 &shared_cpu_map.attr,
268 NULL
269 };
270
271 #define to_object(k) container_of(k, struct cache_info, kobj)
272 #define to_attr(a) container_of(a, struct cache_attr, attr)
273
274 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
275 {
276 struct cache_attr *fattr = to_attr(attr);
277 struct cache_info *this_leaf = to_object(kobj);
278 ssize_t ret;
279
280 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
281 return ret;
282 }
283
284 static struct sysfs_ops cache_sysfs_ops = {
285 .show = cache_show
286 };
287
288 static struct kobj_type cache_ktype = {
289 .sysfs_ops = &cache_sysfs_ops,
290 .default_attrs = cache_default_attrs,
291 };
292
293 static struct kobj_type cache_ktype_percpu_entry = {
294 .sysfs_ops = &cache_sysfs_ops,
295 };
296
297 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
298 {
299 kfree(all_cpu_cache_info[cpu].cache_leaves);
300 all_cpu_cache_info[cpu].cache_leaves = NULL;
301 all_cpu_cache_info[cpu].num_cache_leaves = 0;
302 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
303 return;
304 }
305
306 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
307 {
308 u64 i, levels, unique_caches;
309 pal_cache_config_info_t cci;
310 int j;
311 s64 status;
312 struct cache_info *this_cache;
313 int num_cache_leaves = 0;
314
315 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
316 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
317 return -1;
318 }
319
320 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
321 GFP_KERNEL);
322 if (this_cache == NULL)
323 return -ENOMEM;
324
325 for (i=0; i < levels; i++) {
326 for (j=2; j >0 ; j--) {
327 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
328 PAL_STATUS_SUCCESS)
329 continue;
330
331 this_cache[num_cache_leaves].cci = cci;
332 this_cache[num_cache_leaves].level = i + 1;
333 this_cache[num_cache_leaves].type = j;
334
335 cache_shared_cpu_map_setup(cpu,
336 &this_cache[num_cache_leaves]);
337 num_cache_leaves ++;
338 }
339 }
340
341 all_cpu_cache_info[cpu].cache_leaves = this_cache;
342 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
343
344 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
345
346 return 0;
347 }
348
349 /* Add cache interface for CPU device */
350 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
351 {
352 unsigned int cpu = sys_dev->id;
353 unsigned long i, j;
354 struct cache_info *this_object;
355 int retval = 0;
356 cpumask_t oldmask;
357
358 if (all_cpu_cache_info[cpu].kobj.parent)
359 return 0;
360
361 oldmask = current->cpus_allowed;
362 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
363 if (unlikely(retval))
364 return retval;
365
366 retval = cpu_cache_sysfs_init(cpu);
367 set_cpus_allowed(current, oldmask);
368 if (unlikely(retval < 0))
369 return retval;
370
371 all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
372 kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
373 all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
374 retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
375
376 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
377 this_object = LEAF_KOBJECT_PTR(cpu,i);
378 this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
379 kobject_set_name(&(this_object->kobj), "index%1lu", i);
380 this_object->kobj.ktype = &cache_ktype;
381 retval = kobject_register(&(this_object->kobj));
382 if (unlikely(retval)) {
383 for (j = 0; j < i; j++) {
384 kobject_unregister(
385 &(LEAF_KOBJECT_PTR(cpu,j)->kobj));
386 }
387 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
388 cpu_cache_sysfs_exit(cpu);
389 break;
390 }
391 }
392 return retval;
393 }
394
395 /* Remove cache interface for CPU device */
396 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
397 {
398 unsigned int cpu = sys_dev->id;
399 unsigned long i;
400
401 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
402 kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
403
404 if (all_cpu_cache_info[cpu].kobj.parent) {
405 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
406 memset(&all_cpu_cache_info[cpu].kobj,
407 0,
408 sizeof(struct kobject));
409 }
410
411 cpu_cache_sysfs_exit(cpu);
412
413 return 0;
414 }
415
416 /*
417 * When a cpu is hot-plugged, do a check and initiate
418 * cache kobject if necessary
419 */
420 static int cache_cpu_callback(struct notifier_block *nfb,
421 unsigned long action, void *hcpu)
422 {
423 unsigned int cpu = (unsigned long)hcpu;
424 struct sys_device *sys_dev;
425
426 sys_dev = get_cpu_sysdev(cpu);
427 switch (action) {
428 case CPU_ONLINE:
429 cache_add_dev(sys_dev);
430 break;
431 case CPU_DEAD:
432 cache_remove_dev(sys_dev);
433 break;
434 }
435 return NOTIFY_OK;
436 }
437
438 static struct notifier_block cache_cpu_notifier =
439 {
440 .notifier_call = cache_cpu_callback
441 };
442
443 static int __cpuinit cache_sysfs_init(void)
444 {
445 int i;
446
447 for_each_online_cpu(i) {
448 cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
449 (void *)(long)i);
450 }
451
452 register_cpu_notifier(&cache_cpu_notifier);
453
454 return 0;
455 }
456
457 device_initcall(cache_sysfs_init);
458
This page took 0.046155 seconds and 5 git commands to generate.