Merge branch 'for-2.6.30' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2 * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3 *
4 *
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44
45 #include "misc.h"
46 #include "vti.h"
47 #include "iodev.h"
48 #include "ioapic.h"
49 #include "lapic.h"
50 #include "irq.h"
51
52 static unsigned long kvm_vmm_base;
53 static unsigned long kvm_vsa_base;
54 static unsigned long kvm_vm_buffer;
55 static unsigned long kvm_vm_buffer_size;
56 unsigned long kvm_vmm_gp;
57
58 static long vp_env_info;
59
60 static struct kvm_vmm_info *kvm_vmm_info;
61
62 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
63
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65 { NULL }
66 };
67
68 static void kvm_flush_icache(unsigned long start, unsigned long len)
69 {
70 int l;
71
72 for (l = 0; l < (len + 32); l += 32)
73 ia64_fc((void *)(start + l));
74
75 ia64_sync_i();
76 ia64_srlz_i();
77 }
78
79 static void kvm_flush_tlb_all(void)
80 {
81 unsigned long i, j, count0, count1, stride0, stride1, addr;
82 long flags;
83
84 addr = local_cpu_data->ptce_base;
85 count0 = local_cpu_data->ptce_count[0];
86 count1 = local_cpu_data->ptce_count[1];
87 stride0 = local_cpu_data->ptce_stride[0];
88 stride1 = local_cpu_data->ptce_stride[1];
89
90 local_irq_save(flags);
91 for (i = 0; i < count0; ++i) {
92 for (j = 0; j < count1; ++j) {
93 ia64_ptce(addr);
94 addr += stride1;
95 }
96 addr += stride0;
97 }
98 local_irq_restore(flags);
99 ia64_srlz_i(); /* srlz.i implies srlz.d */
100 }
101
102 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
103 {
104 struct ia64_pal_retval iprv;
105
106 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
107 (u64)opt_handler);
108
109 return iprv.status;
110 }
111
112 static DEFINE_SPINLOCK(vp_lock);
113
114 void kvm_arch_hardware_enable(void *garbage)
115 {
116 long status;
117 long tmp_base;
118 unsigned long pte;
119 unsigned long saved_psr;
120 int slot;
121
122 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
123 PAGE_KERNEL));
124 local_irq_save(saved_psr);
125 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
126 local_irq_restore(saved_psr);
127 if (slot < 0)
128 return;
129
130 spin_lock(&vp_lock);
131 status = ia64_pal_vp_init_env(kvm_vsa_base ?
132 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
133 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
134 if (status != 0) {
135 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
136 return ;
137 }
138
139 if (!kvm_vsa_base) {
140 kvm_vsa_base = tmp_base;
141 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
142 }
143 spin_unlock(&vp_lock);
144 ia64_ptr_entry(0x3, slot);
145 }
146
147 void kvm_arch_hardware_disable(void *garbage)
148 {
149
150 long status;
151 int slot;
152 unsigned long pte;
153 unsigned long saved_psr;
154 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
155
156 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
157 PAGE_KERNEL));
158
159 local_irq_save(saved_psr);
160 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
161 local_irq_restore(saved_psr);
162 if (slot < 0)
163 return;
164
165 status = ia64_pal_vp_exit_env(host_iva);
166 if (status)
167 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
168 status);
169 ia64_ptr_entry(0x3, slot);
170 }
171
172 void kvm_arch_check_processor_compat(void *rtn)
173 {
174 *(int *)rtn = 0;
175 }
176
177 int kvm_dev_ioctl_check_extension(long ext)
178 {
179
180 int r;
181
182 switch (ext) {
183 case KVM_CAP_IRQCHIP:
184 case KVM_CAP_MP_STATE:
185 case KVM_CAP_IRQ_INJECT_STATUS:
186 r = 1;
187 break;
188 case KVM_CAP_COALESCED_MMIO:
189 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190 break;
191 case KVM_CAP_IOMMU:
192 r = iommu_found();
193 break;
194 default:
195 r = 0;
196 }
197 return r;
198
199 }
200
201 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
202 gpa_t addr, int len, int is_write)
203 {
204 struct kvm_io_device *dev;
205
206 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
207
208 return dev;
209 }
210
211 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
212 {
213 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
214 kvm_run->hw.hardware_exit_reason = 1;
215 return 0;
216 }
217
218 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
219 {
220 struct kvm_mmio_req *p;
221 struct kvm_io_device *mmio_dev;
222
223 p = kvm_get_vcpu_ioreq(vcpu);
224
225 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
226 goto mmio;
227 vcpu->mmio_needed = 1;
228 vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
229 vcpu->mmio_size = kvm_run->mmio.len = p->size;
230 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
231
232 if (vcpu->mmio_is_write)
233 memcpy(vcpu->mmio_data, &p->data, p->size);
234 memcpy(kvm_run->mmio.data, &p->data, p->size);
235 kvm_run->exit_reason = KVM_EXIT_MMIO;
236 return 0;
237 mmio:
238 mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
239 if (mmio_dev) {
240 if (!p->dir)
241 kvm_iodevice_write(mmio_dev, p->addr, p->size,
242 &p->data);
243 else
244 kvm_iodevice_read(mmio_dev, p->addr, p->size,
245 &p->data);
246
247 } else
248 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
249 p->state = STATE_IORESP_READY;
250
251 return 1;
252 }
253
254 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
255 {
256 struct exit_ctl_data *p;
257
258 p = kvm_get_exit_data(vcpu);
259
260 if (p->exit_reason == EXIT_REASON_PAL_CALL)
261 return kvm_pal_emul(vcpu, kvm_run);
262 else {
263 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
264 kvm_run->hw.hardware_exit_reason = 2;
265 return 0;
266 }
267 }
268
269 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
270 {
271 struct exit_ctl_data *p;
272
273 p = kvm_get_exit_data(vcpu);
274
275 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
276 kvm_sal_emul(vcpu);
277 return 1;
278 } else {
279 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
280 kvm_run->hw.hardware_exit_reason = 3;
281 return 0;
282 }
283
284 }
285
286 /*
287 * offset: address offset to IPI space.
288 * value: deliver value.
289 */
290 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
291 uint64_t vector)
292 {
293 switch (dm) {
294 case SAPIC_FIXED:
295 kvm_apic_set_irq(vcpu, vector, 0);
296 break;
297 case SAPIC_NMI:
298 kvm_apic_set_irq(vcpu, 2, 0);
299 break;
300 case SAPIC_EXTINT:
301 kvm_apic_set_irq(vcpu, 0, 0);
302 break;
303 case SAPIC_INIT:
304 case SAPIC_PMI:
305 default:
306 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
307 break;
308 }
309 }
310
311 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
312 unsigned long eid)
313 {
314 union ia64_lid lid;
315 int i;
316
317 for (i = 0; i < kvm->arch.online_vcpus; i++) {
318 if (kvm->vcpus[i]) {
319 lid.val = VCPU_LID(kvm->vcpus[i]);
320 if (lid.id == id && lid.eid == eid)
321 return kvm->vcpus[i];
322 }
323 }
324
325 return NULL;
326 }
327
328 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
329 {
330 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
331 struct kvm_vcpu *target_vcpu;
332 struct kvm_pt_regs *regs;
333 union ia64_ipi_a addr = p->u.ipi_data.addr;
334 union ia64_ipi_d data = p->u.ipi_data.data;
335
336 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
337 if (!target_vcpu)
338 return handle_vm_error(vcpu, kvm_run);
339
340 if (!target_vcpu->arch.launched) {
341 regs = vcpu_regs(target_vcpu);
342
343 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
344 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
345
346 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
347 if (waitqueue_active(&target_vcpu->wq))
348 wake_up_interruptible(&target_vcpu->wq);
349 } else {
350 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
351 if (target_vcpu != vcpu)
352 kvm_vcpu_kick(target_vcpu);
353 }
354
355 return 1;
356 }
357
358 struct call_data {
359 struct kvm_ptc_g ptc_g_data;
360 struct kvm_vcpu *vcpu;
361 };
362
363 static void vcpu_global_purge(void *info)
364 {
365 struct call_data *p = (struct call_data *)info;
366 struct kvm_vcpu *vcpu = p->vcpu;
367
368 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
369 return;
370
371 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
372 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
373 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
374 p->ptc_g_data;
375 } else {
376 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
377 vcpu->arch.ptc_g_count = 0;
378 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
379 }
380 }
381
382 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
383 {
384 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
385 struct kvm *kvm = vcpu->kvm;
386 struct call_data call_data;
387 int i;
388
389 call_data.ptc_g_data = p->u.ptc_g_data;
390
391 for (i = 0; i < kvm->arch.online_vcpus; i++) {
392 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
393 KVM_MP_STATE_UNINITIALIZED ||
394 vcpu == kvm->vcpus[i])
395 continue;
396
397 if (waitqueue_active(&kvm->vcpus[i]->wq))
398 wake_up_interruptible(&kvm->vcpus[i]->wq);
399
400 if (kvm->vcpus[i]->cpu != -1) {
401 call_data.vcpu = kvm->vcpus[i];
402 smp_call_function_single(kvm->vcpus[i]->cpu,
403 vcpu_global_purge, &call_data, 1);
404 } else
405 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
406
407 }
408 return 1;
409 }
410
411 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
412 {
413 return 1;
414 }
415
416 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
417 {
418
419 ktime_t kt;
420 long itc_diff;
421 unsigned long vcpu_now_itc;
422 unsigned long expires;
423 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
424 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
425 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
426
427 if (irqchip_in_kernel(vcpu->kvm)) {
428
429 vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
430
431 if (time_after(vcpu_now_itc, vpd->itm)) {
432 vcpu->arch.timer_check = 1;
433 return 1;
434 }
435 itc_diff = vpd->itm - vcpu_now_itc;
436 if (itc_diff < 0)
437 itc_diff = -itc_diff;
438
439 expires = div64_u64(itc_diff, cyc_per_usec);
440 kt = ktime_set(0, 1000 * expires);
441
442 vcpu->arch.ht_active = 1;
443 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
444
445 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
446 kvm_vcpu_block(vcpu);
447 hrtimer_cancel(p_ht);
448 vcpu->arch.ht_active = 0;
449
450 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
451 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
452 vcpu->arch.mp_state =
453 KVM_MP_STATE_RUNNABLE;
454
455 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
456 return -EINTR;
457 return 1;
458 } else {
459 printk(KERN_ERR"kvm: Unsupported userspace halt!");
460 return 0;
461 }
462 }
463
464 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
465 struct kvm_run *kvm_run)
466 {
467 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
468 return 0;
469 }
470
471 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
472 struct kvm_run *kvm_run)
473 {
474 return 1;
475 }
476
477 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
478 struct kvm_run *kvm_run)
479 {
480 printk("VMM: %s", vcpu->arch.log_buf);
481 return 1;
482 }
483
484 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
485 struct kvm_run *kvm_run) = {
486 [EXIT_REASON_VM_PANIC] = handle_vm_error,
487 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
488 [EXIT_REASON_PAL_CALL] = handle_pal_call,
489 [EXIT_REASON_SAL_CALL] = handle_sal_call,
490 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
491 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
492 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
493 [EXIT_REASON_IPI] = handle_ipi,
494 [EXIT_REASON_PTC_G] = handle_global_purge,
495 [EXIT_REASON_DEBUG] = handle_vcpu_debug,
496
497 };
498
499 static const int kvm_vti_max_exit_handlers =
500 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
501
502 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
503 {
504 struct exit_ctl_data *p_exit_data;
505
506 p_exit_data = kvm_get_exit_data(vcpu);
507 return p_exit_data->exit_reason;
508 }
509
510 /*
511 * The guest has exited. See if we can fix it or if we need userspace
512 * assistance.
513 */
514 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
515 {
516 u32 exit_reason = kvm_get_exit_reason(vcpu);
517 vcpu->arch.last_exit = exit_reason;
518
519 if (exit_reason < kvm_vti_max_exit_handlers
520 && kvm_vti_exit_handlers[exit_reason])
521 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
522 else {
523 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
524 kvm_run->hw.hardware_exit_reason = exit_reason;
525 }
526 return 0;
527 }
528
529 static inline void vti_set_rr6(unsigned long rr6)
530 {
531 ia64_set_rr(RR6, rr6);
532 ia64_srlz_i();
533 }
534
535 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
536 {
537 unsigned long pte;
538 struct kvm *kvm = vcpu->kvm;
539 int r;
540
541 /*Insert a pair of tr to map vmm*/
542 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
543 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
544 if (r < 0)
545 goto out;
546 vcpu->arch.vmm_tr_slot = r;
547 /*Insert a pairt of tr to map data of vm*/
548 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
549 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
550 pte, KVM_VM_DATA_SHIFT);
551 if (r < 0)
552 goto out;
553 vcpu->arch.vm_tr_slot = r;
554 r = 0;
555 out:
556 return r;
557
558 }
559
560 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
561 {
562
563 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
564 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
565
566 }
567
568 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
569 {
570 int cpu = smp_processor_id();
571
572 if (vcpu->arch.last_run_cpu != cpu ||
573 per_cpu(last_vcpu, cpu) != vcpu) {
574 per_cpu(last_vcpu, cpu) = vcpu;
575 vcpu->arch.last_run_cpu = cpu;
576 kvm_flush_tlb_all();
577 }
578
579 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
580 vti_set_rr6(vcpu->arch.vmm_rr);
581 return kvm_insert_vmm_mapping(vcpu);
582 }
583 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
584 {
585 kvm_purge_vmm_mapping(vcpu);
586 vti_set_rr6(vcpu->arch.host_rr6);
587 }
588
589 static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
590 {
591 union context *host_ctx, *guest_ctx;
592 int r;
593
594 /*Get host and guest context with guest address space.*/
595 host_ctx = kvm_get_host_context(vcpu);
596 guest_ctx = kvm_get_guest_context(vcpu);
597
598 r = kvm_vcpu_pre_transition(vcpu);
599 if (r < 0)
600 goto out;
601 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
602 kvm_vcpu_post_transition(vcpu);
603 r = 0;
604 out:
605 return r;
606 }
607
608 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
609 {
610 int r;
611
612 again:
613 preempt_disable();
614 local_irq_disable();
615
616 if (signal_pending(current)) {
617 local_irq_enable();
618 preempt_enable();
619 r = -EINTR;
620 kvm_run->exit_reason = KVM_EXIT_INTR;
621 goto out;
622 }
623
624 vcpu->guest_mode = 1;
625 kvm_guest_enter();
626 down_read(&vcpu->kvm->slots_lock);
627 r = vti_vcpu_run(vcpu, kvm_run);
628 if (r < 0) {
629 local_irq_enable();
630 preempt_enable();
631 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
632 goto out;
633 }
634
635 vcpu->arch.launched = 1;
636 vcpu->guest_mode = 0;
637 local_irq_enable();
638
639 /*
640 * We must have an instruction between local_irq_enable() and
641 * kvm_guest_exit(), so the timer interrupt isn't delayed by
642 * the interrupt shadow. The stat.exits increment will do nicely.
643 * But we need to prevent reordering, hence this barrier():
644 */
645 barrier();
646 kvm_guest_exit();
647 up_read(&vcpu->kvm->slots_lock);
648 preempt_enable();
649
650 r = kvm_handle_exit(kvm_run, vcpu);
651
652 if (r > 0) {
653 if (!need_resched())
654 goto again;
655 }
656
657 out:
658 if (r > 0) {
659 kvm_resched(vcpu);
660 goto again;
661 }
662
663 return r;
664 }
665
666 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
667 {
668 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
669
670 if (!vcpu->mmio_is_write)
671 memcpy(&p->data, vcpu->mmio_data, 8);
672 p->state = STATE_IORESP_READY;
673 }
674
675 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
676 {
677 int r;
678 sigset_t sigsaved;
679
680 vcpu_load(vcpu);
681
682 if (vcpu->sigset_active)
683 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
684
685 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
686 kvm_vcpu_block(vcpu);
687 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
688 r = -EAGAIN;
689 goto out;
690 }
691
692 if (vcpu->mmio_needed) {
693 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
694 kvm_set_mmio_data(vcpu);
695 vcpu->mmio_read_completed = 1;
696 vcpu->mmio_needed = 0;
697 }
698 r = __vcpu_run(vcpu, kvm_run);
699 out:
700 if (vcpu->sigset_active)
701 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
702
703 vcpu_put(vcpu);
704 return r;
705 }
706
707 static struct kvm *kvm_alloc_kvm(void)
708 {
709
710 struct kvm *kvm;
711 uint64_t vm_base;
712
713 BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
714
715 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
716
717 if (!vm_base)
718 return ERR_PTR(-ENOMEM);
719
720 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
721 kvm = (struct kvm *)(vm_base +
722 offsetof(struct kvm_vm_data, kvm_vm_struct));
723 kvm->arch.vm_base = vm_base;
724 printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
725
726 return kvm;
727 }
728
729 struct kvm_io_range {
730 unsigned long start;
731 unsigned long size;
732 unsigned long type;
733 };
734
735 static const struct kvm_io_range io_ranges[] = {
736 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
737 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
738 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
739 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
740 {PIB_START, PIB_SIZE, GPFN_PIB},
741 };
742
743 static void kvm_build_io_pmt(struct kvm *kvm)
744 {
745 unsigned long i, j;
746
747 /* Mark I/O ranges */
748 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
749 i++) {
750 for (j = io_ranges[i].start;
751 j < io_ranges[i].start + io_ranges[i].size;
752 j += PAGE_SIZE)
753 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
754 io_ranges[i].type, 0);
755 }
756
757 }
758
759 /*Use unused rids to virtualize guest rid.*/
760 #define GUEST_PHYSICAL_RR0 0x1739
761 #define GUEST_PHYSICAL_RR4 0x2739
762 #define VMM_INIT_RR 0x1660
763
764 static void kvm_init_vm(struct kvm *kvm)
765 {
766 BUG_ON(!kvm);
767
768 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
769 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
770 kvm->arch.vmm_init_rr = VMM_INIT_RR;
771
772 /*
773 *Fill P2M entries for MMIO/IO ranges
774 */
775 kvm_build_io_pmt(kvm);
776
777 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
778
779 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
780 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
781 }
782
783 struct kvm *kvm_arch_create_vm(void)
784 {
785 struct kvm *kvm = kvm_alloc_kvm();
786
787 if (IS_ERR(kvm))
788 return ERR_PTR(-ENOMEM);
789 kvm_init_vm(kvm);
790
791 kvm->arch.online_vcpus = 0;
792
793 return kvm;
794
795 }
796
797 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
798 struct kvm_irqchip *chip)
799 {
800 int r;
801
802 r = 0;
803 switch (chip->chip_id) {
804 case KVM_IRQCHIP_IOAPIC:
805 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
806 sizeof(struct kvm_ioapic_state));
807 break;
808 default:
809 r = -EINVAL;
810 break;
811 }
812 return r;
813 }
814
815 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
816 {
817 int r;
818
819 r = 0;
820 switch (chip->chip_id) {
821 case KVM_IRQCHIP_IOAPIC:
822 memcpy(ioapic_irqchip(kvm),
823 &chip->chip.ioapic,
824 sizeof(struct kvm_ioapic_state));
825 break;
826 default:
827 r = -EINVAL;
828 break;
829 }
830 return r;
831 }
832
833 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
834
835 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
836 {
837 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
838 int i;
839
840 vcpu_load(vcpu);
841
842 for (i = 0; i < 16; i++) {
843 vpd->vgr[i] = regs->vpd.vgr[i];
844 vpd->vbgr[i] = regs->vpd.vbgr[i];
845 }
846 for (i = 0; i < 128; i++)
847 vpd->vcr[i] = regs->vpd.vcr[i];
848 vpd->vhpi = regs->vpd.vhpi;
849 vpd->vnat = regs->vpd.vnat;
850 vpd->vbnat = regs->vpd.vbnat;
851 vpd->vpsr = regs->vpd.vpsr;
852
853 vpd->vpr = regs->vpd.vpr;
854
855 memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
856
857 RESTORE_REGS(mp_state);
858 RESTORE_REGS(vmm_rr);
859 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
860 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
861 RESTORE_REGS(itr_regions);
862 RESTORE_REGS(dtr_regions);
863 RESTORE_REGS(tc_regions);
864 RESTORE_REGS(irq_check);
865 RESTORE_REGS(itc_check);
866 RESTORE_REGS(timer_check);
867 RESTORE_REGS(timer_pending);
868 RESTORE_REGS(last_itc);
869 for (i = 0; i < 8; i++) {
870 vcpu->arch.vrr[i] = regs->vrr[i];
871 vcpu->arch.ibr[i] = regs->ibr[i];
872 vcpu->arch.dbr[i] = regs->dbr[i];
873 }
874 for (i = 0; i < 4; i++)
875 vcpu->arch.insvc[i] = regs->insvc[i];
876 RESTORE_REGS(xtp);
877 RESTORE_REGS(metaphysical_rr0);
878 RESTORE_REGS(metaphysical_rr4);
879 RESTORE_REGS(metaphysical_saved_rr0);
880 RESTORE_REGS(metaphysical_saved_rr4);
881 RESTORE_REGS(fp_psr);
882 RESTORE_REGS(saved_gp);
883
884 vcpu->arch.irq_new_pending = 1;
885 vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
886 set_bit(KVM_REQ_RESUME, &vcpu->requests);
887
888 vcpu_put(vcpu);
889
890 return 0;
891 }
892
893 long kvm_arch_vm_ioctl(struct file *filp,
894 unsigned int ioctl, unsigned long arg)
895 {
896 struct kvm *kvm = filp->private_data;
897 void __user *argp = (void __user *)arg;
898 int r = -EINVAL;
899
900 switch (ioctl) {
901 case KVM_SET_MEMORY_REGION: {
902 struct kvm_memory_region kvm_mem;
903 struct kvm_userspace_memory_region kvm_userspace_mem;
904
905 r = -EFAULT;
906 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
907 goto out;
908 kvm_userspace_mem.slot = kvm_mem.slot;
909 kvm_userspace_mem.flags = kvm_mem.flags;
910 kvm_userspace_mem.guest_phys_addr =
911 kvm_mem.guest_phys_addr;
912 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
913 r = kvm_vm_ioctl_set_memory_region(kvm,
914 &kvm_userspace_mem, 0);
915 if (r)
916 goto out;
917 break;
918 }
919 case KVM_CREATE_IRQCHIP:
920 r = -EFAULT;
921 r = kvm_ioapic_init(kvm);
922 if (r)
923 goto out;
924 r = kvm_setup_default_irq_routing(kvm);
925 if (r) {
926 kfree(kvm->arch.vioapic);
927 goto out;
928 }
929 break;
930 case KVM_IRQ_LINE_STATUS:
931 case KVM_IRQ_LINE: {
932 struct kvm_irq_level irq_event;
933
934 r = -EFAULT;
935 if (copy_from_user(&irq_event, argp, sizeof irq_event))
936 goto out;
937 if (irqchip_in_kernel(kvm)) {
938 __s32 status;
939 mutex_lock(&kvm->lock);
940 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
941 irq_event.irq, irq_event.level);
942 mutex_unlock(&kvm->lock);
943 if (ioctl == KVM_IRQ_LINE_STATUS) {
944 irq_event.status = status;
945 if (copy_to_user(argp, &irq_event,
946 sizeof irq_event))
947 goto out;
948 }
949 r = 0;
950 }
951 break;
952 }
953 case KVM_GET_IRQCHIP: {
954 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
955 struct kvm_irqchip chip;
956
957 r = -EFAULT;
958 if (copy_from_user(&chip, argp, sizeof chip))
959 goto out;
960 r = -ENXIO;
961 if (!irqchip_in_kernel(kvm))
962 goto out;
963 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
964 if (r)
965 goto out;
966 r = -EFAULT;
967 if (copy_to_user(argp, &chip, sizeof chip))
968 goto out;
969 r = 0;
970 break;
971 }
972 case KVM_SET_IRQCHIP: {
973 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
974 struct kvm_irqchip chip;
975
976 r = -EFAULT;
977 if (copy_from_user(&chip, argp, sizeof chip))
978 goto out;
979 r = -ENXIO;
980 if (!irqchip_in_kernel(kvm))
981 goto out;
982 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
983 if (r)
984 goto out;
985 r = 0;
986 break;
987 }
988 default:
989 ;
990 }
991 out:
992 return r;
993 }
994
995 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
996 struct kvm_sregs *sregs)
997 {
998 return -EINVAL;
999 }
1000
1001 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1002 struct kvm_sregs *sregs)
1003 {
1004 return -EINVAL;
1005
1006 }
1007 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1008 struct kvm_translation *tr)
1009 {
1010
1011 return -EINVAL;
1012 }
1013
1014 static int kvm_alloc_vmm_area(void)
1015 {
1016 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1017 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1018 get_order(KVM_VMM_SIZE));
1019 if (!kvm_vmm_base)
1020 return -ENOMEM;
1021
1022 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1023 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1024
1025 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1026 kvm_vmm_base, kvm_vm_buffer);
1027 }
1028
1029 return 0;
1030 }
1031
1032 static void kvm_free_vmm_area(void)
1033 {
1034 if (kvm_vmm_base) {
1035 /*Zero this area before free to avoid bits leak!!*/
1036 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1037 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1038 kvm_vmm_base = 0;
1039 kvm_vm_buffer = 0;
1040 kvm_vsa_base = 0;
1041 }
1042 }
1043
1044 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1045 {
1046 }
1047
1048 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1049 {
1050 int i;
1051 union cpuid3_t cpuid3;
1052 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1053
1054 if (IS_ERR(vpd))
1055 return PTR_ERR(vpd);
1056
1057 /* CPUID init */
1058 for (i = 0; i < 5; i++)
1059 vpd->vcpuid[i] = ia64_get_cpuid(i);
1060
1061 /* Limit the CPUID number to 5 */
1062 cpuid3.value = vpd->vcpuid[3];
1063 cpuid3.number = 4; /* 5 - 1 */
1064 vpd->vcpuid[3] = cpuid3.value;
1065
1066 /*Set vac and vdc fields*/
1067 vpd->vac.a_from_int_cr = 1;
1068 vpd->vac.a_to_int_cr = 1;
1069 vpd->vac.a_from_psr = 1;
1070 vpd->vac.a_from_cpuid = 1;
1071 vpd->vac.a_cover = 1;
1072 vpd->vac.a_bsw = 1;
1073 vpd->vac.a_int = 1;
1074 vpd->vdc.d_vmsw = 1;
1075
1076 /*Set virtual buffer*/
1077 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1078
1079 return 0;
1080 }
1081
1082 static int vti_create_vp(struct kvm_vcpu *vcpu)
1083 {
1084 long ret;
1085 struct vpd *vpd = vcpu->arch.vpd;
1086 unsigned long vmm_ivt;
1087
1088 vmm_ivt = kvm_vmm_info->vmm_ivt;
1089
1090 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1091
1092 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1093
1094 if (ret) {
1095 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1096 return -EINVAL;
1097 }
1098 return 0;
1099 }
1100
1101 static void init_ptce_info(struct kvm_vcpu *vcpu)
1102 {
1103 ia64_ptce_info_t ptce = {0};
1104
1105 ia64_get_ptce(&ptce);
1106 vcpu->arch.ptce_base = ptce.base;
1107 vcpu->arch.ptce_count[0] = ptce.count[0];
1108 vcpu->arch.ptce_count[1] = ptce.count[1];
1109 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1110 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1111 }
1112
1113 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1114 {
1115 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1116
1117 if (hrtimer_cancel(p_ht))
1118 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1119 }
1120
1121 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1122 {
1123 struct kvm_vcpu *vcpu;
1124 wait_queue_head_t *q;
1125
1126 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1127 q = &vcpu->wq;
1128
1129 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1130 goto out;
1131
1132 if (waitqueue_active(q))
1133 wake_up_interruptible(q);
1134
1135 out:
1136 vcpu->arch.timer_fired = 1;
1137 vcpu->arch.timer_check = 1;
1138 return HRTIMER_NORESTART;
1139 }
1140
1141 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1142
1143 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1144 {
1145 struct kvm_vcpu *v;
1146 int r;
1147 int i;
1148 long itc_offset;
1149 struct kvm *kvm = vcpu->kvm;
1150 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1151
1152 union context *p_ctx = &vcpu->arch.guest;
1153 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1154
1155 /*Init vcpu context for first run.*/
1156 if (IS_ERR(vmm_vcpu))
1157 return PTR_ERR(vmm_vcpu);
1158
1159 if (vcpu->vcpu_id == 0) {
1160 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1161
1162 /*Set entry address for first run.*/
1163 regs->cr_iip = PALE_RESET_ENTRY;
1164
1165 /*Initialize itc offset for vcpus*/
1166 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1167 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1168 v = (struct kvm_vcpu *)((char *)vcpu +
1169 sizeof(struct kvm_vcpu_data) * i);
1170 v->arch.itc_offset = itc_offset;
1171 v->arch.last_itc = 0;
1172 }
1173 } else
1174 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1175
1176 r = -ENOMEM;
1177 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1178 if (!vcpu->arch.apic)
1179 goto out;
1180 vcpu->arch.apic->vcpu = vcpu;
1181
1182 p_ctx->gr[1] = 0;
1183 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1184 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1185 p_ctx->psr = 0x1008522000UL;
1186 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1187 p_ctx->caller_unat = 0;
1188 p_ctx->pr = 0x0;
1189 p_ctx->ar[36] = 0x0; /*unat*/
1190 p_ctx->ar[19] = 0x0; /*rnat*/
1191 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1192 ((sizeof(struct kvm_vcpu)+15) & ~15);
1193 p_ctx->ar[64] = 0x0; /*pfs*/
1194 p_ctx->cr[0] = 0x7e04UL;
1195 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1196 p_ctx->cr[8] = 0x3c;
1197
1198 /*Initilize region register*/
1199 p_ctx->rr[0] = 0x30;
1200 p_ctx->rr[1] = 0x30;
1201 p_ctx->rr[2] = 0x30;
1202 p_ctx->rr[3] = 0x30;
1203 p_ctx->rr[4] = 0x30;
1204 p_ctx->rr[5] = 0x30;
1205 p_ctx->rr[7] = 0x30;
1206
1207 /*Initilize branch register 0*/
1208 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1209
1210 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1211 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1212 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1213
1214 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1215 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1216
1217 vcpu->arch.last_run_cpu = -1;
1218 vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1219 vcpu->arch.vsa_base = kvm_vsa_base;
1220 vcpu->arch.__gp = kvm_vmm_gp;
1221 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1222 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1223 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1224 init_ptce_info(vcpu);
1225
1226 r = 0;
1227 out:
1228 return r;
1229 }
1230
1231 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1232 {
1233 unsigned long psr;
1234 int r;
1235
1236 local_irq_save(psr);
1237 r = kvm_insert_vmm_mapping(vcpu);
1238 if (r)
1239 goto fail;
1240 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1241 if (r)
1242 goto fail;
1243
1244 r = vti_init_vpd(vcpu);
1245 if (r) {
1246 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1247 goto uninit;
1248 }
1249
1250 r = vti_create_vp(vcpu);
1251 if (r)
1252 goto uninit;
1253
1254 kvm_purge_vmm_mapping(vcpu);
1255 local_irq_restore(psr);
1256
1257 return 0;
1258 uninit:
1259 kvm_vcpu_uninit(vcpu);
1260 fail:
1261 local_irq_restore(psr);
1262 return r;
1263 }
1264
1265 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1266 unsigned int id)
1267 {
1268 struct kvm_vcpu *vcpu;
1269 unsigned long vm_base = kvm->arch.vm_base;
1270 int r;
1271 int cpu;
1272
1273 BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1274
1275 r = -EINVAL;
1276 if (id >= KVM_MAX_VCPUS) {
1277 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1278 KVM_MAX_VCPUS);
1279 goto fail;
1280 }
1281
1282 r = -ENOMEM;
1283 if (!vm_base) {
1284 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1285 goto fail;
1286 }
1287 vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1288 vcpu_data[id].vcpu_struct));
1289 vcpu->kvm = kvm;
1290
1291 cpu = get_cpu();
1292 vti_vcpu_load(vcpu, cpu);
1293 r = vti_vcpu_setup(vcpu, id);
1294 put_cpu();
1295
1296 if (r) {
1297 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1298 goto fail;
1299 }
1300
1301 kvm->arch.online_vcpus++;
1302
1303 return vcpu;
1304 fail:
1305 return ERR_PTR(r);
1306 }
1307
1308 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1309 {
1310 return 0;
1311 }
1312
1313 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1314 {
1315 return -EINVAL;
1316 }
1317
1318 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1319 {
1320 return -EINVAL;
1321 }
1322
1323 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1324 struct kvm_guest_debug *dbg)
1325 {
1326 return -EINVAL;
1327 }
1328
1329 static void free_kvm(struct kvm *kvm)
1330 {
1331 unsigned long vm_base = kvm->arch.vm_base;
1332
1333 if (vm_base) {
1334 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1335 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1336 }
1337
1338 }
1339
1340 static void kvm_release_vm_pages(struct kvm *kvm)
1341 {
1342 struct kvm_memory_slot *memslot;
1343 int i, j;
1344 unsigned long base_gfn;
1345
1346 for (i = 0; i < kvm->nmemslots; i++) {
1347 memslot = &kvm->memslots[i];
1348 base_gfn = memslot->base_gfn;
1349
1350 for (j = 0; j < memslot->npages; j++) {
1351 if (memslot->rmap[j])
1352 put_page((struct page *)memslot->rmap[j]);
1353 }
1354 }
1355 }
1356
1357 void kvm_arch_sync_events(struct kvm *kvm)
1358 {
1359 }
1360
1361 void kvm_arch_destroy_vm(struct kvm *kvm)
1362 {
1363 kvm_iommu_unmap_guest(kvm);
1364 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1365 kvm_free_all_assigned_devices(kvm);
1366 #endif
1367 kfree(kvm->arch.vioapic);
1368 kvm_release_vm_pages(kvm);
1369 kvm_free_physmem(kvm);
1370 free_kvm(kvm);
1371 }
1372
1373 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1374 {
1375 }
1376
1377 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1378 {
1379 if (cpu != vcpu->cpu) {
1380 vcpu->cpu = cpu;
1381 if (vcpu->arch.ht_active)
1382 kvm_migrate_hlt_timer(vcpu);
1383 }
1384 }
1385
1386 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1387
1388 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1389 {
1390 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1391 int i;
1392
1393 vcpu_load(vcpu);
1394
1395 for (i = 0; i < 16; i++) {
1396 regs->vpd.vgr[i] = vpd->vgr[i];
1397 regs->vpd.vbgr[i] = vpd->vbgr[i];
1398 }
1399 for (i = 0; i < 128; i++)
1400 regs->vpd.vcr[i] = vpd->vcr[i];
1401 regs->vpd.vhpi = vpd->vhpi;
1402 regs->vpd.vnat = vpd->vnat;
1403 regs->vpd.vbnat = vpd->vbnat;
1404 regs->vpd.vpsr = vpd->vpsr;
1405 regs->vpd.vpr = vpd->vpr;
1406
1407 memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1408
1409 SAVE_REGS(mp_state);
1410 SAVE_REGS(vmm_rr);
1411 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1412 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1413 SAVE_REGS(itr_regions);
1414 SAVE_REGS(dtr_regions);
1415 SAVE_REGS(tc_regions);
1416 SAVE_REGS(irq_check);
1417 SAVE_REGS(itc_check);
1418 SAVE_REGS(timer_check);
1419 SAVE_REGS(timer_pending);
1420 SAVE_REGS(last_itc);
1421 for (i = 0; i < 8; i++) {
1422 regs->vrr[i] = vcpu->arch.vrr[i];
1423 regs->ibr[i] = vcpu->arch.ibr[i];
1424 regs->dbr[i] = vcpu->arch.dbr[i];
1425 }
1426 for (i = 0; i < 4; i++)
1427 regs->insvc[i] = vcpu->arch.insvc[i];
1428 regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1429 SAVE_REGS(xtp);
1430 SAVE_REGS(metaphysical_rr0);
1431 SAVE_REGS(metaphysical_rr4);
1432 SAVE_REGS(metaphysical_saved_rr0);
1433 SAVE_REGS(metaphysical_saved_rr4);
1434 SAVE_REGS(fp_psr);
1435 SAVE_REGS(saved_gp);
1436
1437 vcpu_put(vcpu);
1438 return 0;
1439 }
1440
1441 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1442 struct kvm_ia64_vcpu_stack *stack)
1443 {
1444 memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1445 return 0;
1446 }
1447
1448 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1449 struct kvm_ia64_vcpu_stack *stack)
1450 {
1451 memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1452 sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1453
1454 vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1455 return 0;
1456 }
1457
1458 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1459 {
1460
1461 hrtimer_cancel(&vcpu->arch.hlt_timer);
1462 kfree(vcpu->arch.apic);
1463 }
1464
1465
1466 long kvm_arch_vcpu_ioctl(struct file *filp,
1467 unsigned int ioctl, unsigned long arg)
1468 {
1469 struct kvm_vcpu *vcpu = filp->private_data;
1470 void __user *argp = (void __user *)arg;
1471 struct kvm_ia64_vcpu_stack *stack = NULL;
1472 long r;
1473
1474 switch (ioctl) {
1475 case KVM_IA64_VCPU_GET_STACK: {
1476 struct kvm_ia64_vcpu_stack __user *user_stack;
1477 void __user *first_p = argp;
1478
1479 r = -EFAULT;
1480 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1481 goto out;
1482
1483 if (!access_ok(VERIFY_WRITE, user_stack,
1484 sizeof(struct kvm_ia64_vcpu_stack))) {
1485 printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1486 "Illegal user destination address for stack\n");
1487 goto out;
1488 }
1489 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1490 if (!stack) {
1491 r = -ENOMEM;
1492 goto out;
1493 }
1494
1495 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1496 if (r)
1497 goto out;
1498
1499 if (copy_to_user(user_stack, stack,
1500 sizeof(struct kvm_ia64_vcpu_stack)))
1501 goto out;
1502
1503 break;
1504 }
1505 case KVM_IA64_VCPU_SET_STACK: {
1506 struct kvm_ia64_vcpu_stack __user *user_stack;
1507 void __user *first_p = argp;
1508
1509 r = -EFAULT;
1510 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1511 goto out;
1512
1513 if (!access_ok(VERIFY_READ, user_stack,
1514 sizeof(struct kvm_ia64_vcpu_stack))) {
1515 printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1516 "Illegal user address for stack\n");
1517 goto out;
1518 }
1519 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1520 if (!stack) {
1521 r = -ENOMEM;
1522 goto out;
1523 }
1524 if (copy_from_user(stack, user_stack,
1525 sizeof(struct kvm_ia64_vcpu_stack)))
1526 goto out;
1527
1528 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1529 break;
1530 }
1531
1532 default:
1533 r = -EINVAL;
1534 }
1535
1536 out:
1537 kfree(stack);
1538 return r;
1539 }
1540
1541 int kvm_arch_set_memory_region(struct kvm *kvm,
1542 struct kvm_userspace_memory_region *mem,
1543 struct kvm_memory_slot old,
1544 int user_alloc)
1545 {
1546 unsigned long i;
1547 unsigned long pfn;
1548 int npages = mem->memory_size >> PAGE_SHIFT;
1549 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1550 unsigned long base_gfn = memslot->base_gfn;
1551
1552 if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1553 return -ENOMEM;
1554
1555 for (i = 0; i < npages; i++) {
1556 pfn = gfn_to_pfn(kvm, base_gfn + i);
1557 if (!kvm_is_mmio_pfn(pfn)) {
1558 kvm_set_pmt_entry(kvm, base_gfn + i,
1559 pfn << PAGE_SHIFT,
1560 _PAGE_AR_RWX | _PAGE_MA_WB);
1561 memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1562 } else {
1563 kvm_set_pmt_entry(kvm, base_gfn + i,
1564 GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1565 _PAGE_MA_UC);
1566 memslot->rmap[i] = 0;
1567 }
1568 }
1569
1570 return 0;
1571 }
1572
1573 void kvm_arch_flush_shadow(struct kvm *kvm)
1574 {
1575 }
1576
1577 long kvm_arch_dev_ioctl(struct file *filp,
1578 unsigned int ioctl, unsigned long arg)
1579 {
1580 return -EINVAL;
1581 }
1582
1583 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1584 {
1585 kvm_vcpu_uninit(vcpu);
1586 }
1587
1588 static int vti_cpu_has_kvm_support(void)
1589 {
1590 long avail = 1, status = 1, control = 1;
1591 long ret;
1592
1593 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1594 if (ret)
1595 goto out;
1596
1597 if (!(avail & PAL_PROC_VM_BIT))
1598 goto out;
1599
1600 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1601
1602 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1603 if (ret)
1604 goto out;
1605 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1606
1607 if (!(vp_env_info & VP_OPCODE)) {
1608 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1609 "vm_env_info:0x%lx\n", vp_env_info);
1610 }
1611
1612 return 1;
1613 out:
1614 return 0;
1615 }
1616
1617 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1618 struct module *module)
1619 {
1620 unsigned long module_base;
1621 unsigned long vmm_size;
1622
1623 unsigned long vmm_offset, func_offset, fdesc_offset;
1624 struct fdesc *p_fdesc;
1625
1626 BUG_ON(!module);
1627
1628 if (!kvm_vmm_base) {
1629 printk("kvm: kvm area hasn't been initilized yet!!\n");
1630 return -EFAULT;
1631 }
1632
1633 /*Calculate new position of relocated vmm module.*/
1634 module_base = (unsigned long)module->module_core;
1635 vmm_size = module->core_size;
1636 if (unlikely(vmm_size > KVM_VMM_SIZE))
1637 return -EFAULT;
1638
1639 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1640 kvm_flush_icache(kvm_vmm_base, vmm_size);
1641
1642 /*Recalculate kvm_vmm_info based on new VMM*/
1643 vmm_offset = vmm_info->vmm_ivt - module_base;
1644 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1645 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1646 kvm_vmm_info->vmm_ivt);
1647
1648 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1649 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1650 fdesc_offset);
1651 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1652 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1653 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1654 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1655
1656 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1657 KVM_VMM_BASE+func_offset);
1658
1659 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1660 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1661 fdesc_offset);
1662 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1663 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1664 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1665 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1666
1667 kvm_vmm_gp = p_fdesc->gp;
1668
1669 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1670 kvm_vmm_info->vmm_entry);
1671 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1672 KVM_VMM_BASE + func_offset);
1673
1674 return 0;
1675 }
1676
1677 int kvm_arch_init(void *opaque)
1678 {
1679 int r;
1680 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1681
1682 if (!vti_cpu_has_kvm_support()) {
1683 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1684 r = -EOPNOTSUPP;
1685 goto out;
1686 }
1687
1688 if (kvm_vmm_info) {
1689 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1690 r = -EEXIST;
1691 goto out;
1692 }
1693
1694 r = -ENOMEM;
1695 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1696 if (!kvm_vmm_info)
1697 goto out;
1698
1699 if (kvm_alloc_vmm_area())
1700 goto out_free0;
1701
1702 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1703 if (r)
1704 goto out_free1;
1705
1706 return 0;
1707
1708 out_free1:
1709 kvm_free_vmm_area();
1710 out_free0:
1711 kfree(kvm_vmm_info);
1712 out:
1713 return r;
1714 }
1715
1716 void kvm_arch_exit(void)
1717 {
1718 kvm_free_vmm_area();
1719 kfree(kvm_vmm_info);
1720 kvm_vmm_info = NULL;
1721 }
1722
1723 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1724 struct kvm_dirty_log *log)
1725 {
1726 struct kvm_memory_slot *memslot;
1727 int r, i;
1728 long n, base;
1729 unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1730 offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1731
1732 r = -EINVAL;
1733 if (log->slot >= KVM_MEMORY_SLOTS)
1734 goto out;
1735
1736 memslot = &kvm->memslots[log->slot];
1737 r = -ENOENT;
1738 if (!memslot->dirty_bitmap)
1739 goto out;
1740
1741 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1742 base = memslot->base_gfn / BITS_PER_LONG;
1743
1744 for (i = 0; i < n/sizeof(long); ++i) {
1745 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1746 dirty_bitmap[base + i] = 0;
1747 }
1748 r = 0;
1749 out:
1750 return r;
1751 }
1752
1753 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1754 struct kvm_dirty_log *log)
1755 {
1756 int r;
1757 int n;
1758 struct kvm_memory_slot *memslot;
1759 int is_dirty = 0;
1760
1761 spin_lock(&kvm->arch.dirty_log_lock);
1762
1763 r = kvm_ia64_sync_dirty_log(kvm, log);
1764 if (r)
1765 goto out;
1766
1767 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1768 if (r)
1769 goto out;
1770
1771 /* If nothing is dirty, don't bother messing with page tables. */
1772 if (is_dirty) {
1773 kvm_flush_remote_tlbs(kvm);
1774 memslot = &kvm->memslots[log->slot];
1775 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1776 memset(memslot->dirty_bitmap, 0, n);
1777 }
1778 r = 0;
1779 out:
1780 spin_unlock(&kvm->arch.dirty_log_lock);
1781 return r;
1782 }
1783
1784 int kvm_arch_hardware_setup(void)
1785 {
1786 return 0;
1787 }
1788
1789 void kvm_arch_hardware_unsetup(void)
1790 {
1791 }
1792
1793 static void vcpu_kick_intr(void *info)
1794 {
1795 #ifdef DEBUG
1796 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1797 printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1798 #endif
1799 }
1800
1801 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1802 {
1803 int ipi_pcpu = vcpu->cpu;
1804 int cpu = get_cpu();
1805
1806 if (waitqueue_active(&vcpu->wq))
1807 wake_up_interruptible(&vcpu->wq);
1808
1809 if (vcpu->guest_mode && cpu != ipi_pcpu)
1810 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1811 put_cpu();
1812 }
1813
1814 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
1815 {
1816
1817 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1818
1819 if (!test_and_set_bit(vec, &vpd->irr[0])) {
1820 vcpu->arch.irq_new_pending = 1;
1821 kvm_vcpu_kick(vcpu);
1822 return 1;
1823 }
1824 return 0;
1825 }
1826
1827 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1828 {
1829 return apic->vcpu->vcpu_id == dest;
1830 }
1831
1832 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1833 {
1834 return 0;
1835 }
1836
1837 struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
1838 unsigned long bitmap)
1839 {
1840 struct kvm_vcpu *lvcpu = kvm->vcpus[0];
1841 int i;
1842
1843 for (i = 1; i < kvm->arch.online_vcpus; i++) {
1844 if (!kvm->vcpus[i])
1845 continue;
1846 if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
1847 lvcpu = kvm->vcpus[i];
1848 }
1849
1850 return lvcpu;
1851 }
1852
1853 static int find_highest_bits(int *dat)
1854 {
1855 u32 bits, bitnum;
1856 int i;
1857
1858 /* loop for all 256 bits */
1859 for (i = 7; i >= 0 ; i--) {
1860 bits = dat[i];
1861 if (bits) {
1862 bitnum = fls(bits);
1863 return i * 32 + bitnum - 1;
1864 }
1865 }
1866
1867 return -1;
1868 }
1869
1870 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1871 {
1872 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1873
1874 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1875 return NMI_VECTOR;
1876 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1877 return ExtINT_VECTOR;
1878
1879 return find_highest_bits((int *)&vpd->irr[0]);
1880 }
1881
1882 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1883 {
1884 if (kvm_highest_pending_irq(vcpu) != -1)
1885 return 1;
1886 return 0;
1887 }
1888
1889 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1890 {
1891 return vcpu->arch.timer_fired;
1892 }
1893
1894 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1895 {
1896 return gfn;
1897 }
1898
1899 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1900 {
1901 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1902 }
1903
1904 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1905 struct kvm_mp_state *mp_state)
1906 {
1907 vcpu_load(vcpu);
1908 mp_state->mp_state = vcpu->arch.mp_state;
1909 vcpu_put(vcpu);
1910 return 0;
1911 }
1912
1913 static int vcpu_reset(struct kvm_vcpu *vcpu)
1914 {
1915 int r;
1916 long psr;
1917 local_irq_save(psr);
1918 r = kvm_insert_vmm_mapping(vcpu);
1919 if (r)
1920 goto fail;
1921
1922 vcpu->arch.launched = 0;
1923 kvm_arch_vcpu_uninit(vcpu);
1924 r = kvm_arch_vcpu_init(vcpu);
1925 if (r)
1926 goto fail;
1927
1928 kvm_purge_vmm_mapping(vcpu);
1929 r = 0;
1930 fail:
1931 local_irq_restore(psr);
1932 return r;
1933 }
1934
1935 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1936 struct kvm_mp_state *mp_state)
1937 {
1938 int r = 0;
1939
1940 vcpu_load(vcpu);
1941 vcpu->arch.mp_state = mp_state->mp_state;
1942 if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1943 r = vcpu_reset(vcpu);
1944 vcpu_put(vcpu);
1945 return r;
1946 }
This page took 0.067835 seconds and 6 git commands to generate.