KVM: ia64: restore irq state before calling kvm_vcpu_init
[deliverable/linux.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2 * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3 *
4 *
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68 { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74 if (vcpu->kvm->arch.is_sn2)
75 return rtc_time();
76 else
77 #endif
78 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83 int l;
84
85 for (l = 0; l < (len + 32); l += 32)
86 ia64_fc((void *)(start + l));
87
88 ia64_sync_i();
89 ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94 unsigned long i, j, count0, count1, stride0, stride1, addr;
95 long flags;
96
97 addr = local_cpu_data->ptce_base;
98 count0 = local_cpu_data->ptce_count[0];
99 count1 = local_cpu_data->ptce_count[1];
100 stride0 = local_cpu_data->ptce_stride[0];
101 stride1 = local_cpu_data->ptce_stride[1];
102
103 local_irq_save(flags);
104 for (i = 0; i < count0; ++i) {
105 for (j = 0; j < count1; ++j) {
106 ia64_ptce(addr);
107 addr += stride1;
108 }
109 addr += stride0;
110 }
111 local_irq_restore(flags);
112 ia64_srlz_i(); /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117 struct ia64_pal_retval iprv;
118
119 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120 (u64)opt_handler);
121
122 return iprv.status;
123 }
124
125 static DEFINE_SPINLOCK(vp_lock);
126
127 void kvm_arch_hardware_enable(void *garbage)
128 {
129 long status;
130 long tmp_base;
131 unsigned long pte;
132 unsigned long saved_psr;
133 int slot;
134
135 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136 local_irq_save(saved_psr);
137 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138 local_irq_restore(saved_psr);
139 if (slot < 0)
140 return;
141
142 spin_lock(&vp_lock);
143 status = ia64_pal_vp_init_env(kvm_vsa_base ?
144 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146 if (status != 0) {
147 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148 return ;
149 }
150
151 if (!kvm_vsa_base) {
152 kvm_vsa_base = tmp_base;
153 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
154 }
155 spin_unlock(&vp_lock);
156 ia64_ptr_entry(0x3, slot);
157 }
158
159 void kvm_arch_hardware_disable(void *garbage)
160 {
161
162 long status;
163 int slot;
164 unsigned long pte;
165 unsigned long saved_psr;
166 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
167
168 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
169 PAGE_KERNEL));
170
171 local_irq_save(saved_psr);
172 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
173 local_irq_restore(saved_psr);
174 if (slot < 0)
175 return;
176
177 status = ia64_pal_vp_exit_env(host_iva);
178 if (status)
179 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
180 status);
181 ia64_ptr_entry(0x3, slot);
182 }
183
184 void kvm_arch_check_processor_compat(void *rtn)
185 {
186 *(int *)rtn = 0;
187 }
188
189 int kvm_dev_ioctl_check_extension(long ext)
190 {
191
192 int r;
193
194 switch (ext) {
195 case KVM_CAP_IRQCHIP:
196 case KVM_CAP_MP_STATE:
197 case KVM_CAP_IRQ_INJECT_STATUS:
198 r = 1;
199 break;
200 case KVM_CAP_COALESCED_MMIO:
201 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
202 break;
203 case KVM_CAP_IOMMU:
204 r = iommu_found();
205 break;
206 default:
207 r = 0;
208 }
209 return r;
210
211 }
212
213 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
214 gpa_t addr, int len, int is_write)
215 {
216 struct kvm_io_device *dev;
217
218 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
219
220 return dev;
221 }
222
223 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
226 kvm_run->hw.hardware_exit_reason = 1;
227 return 0;
228 }
229
230 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
231 {
232 struct kvm_mmio_req *p;
233 struct kvm_io_device *mmio_dev;
234
235 p = kvm_get_vcpu_ioreq(vcpu);
236
237 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
238 goto mmio;
239 vcpu->mmio_needed = 1;
240 vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
241 vcpu->mmio_size = kvm_run->mmio.len = p->size;
242 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
243
244 if (vcpu->mmio_is_write)
245 memcpy(vcpu->mmio_data, &p->data, p->size);
246 memcpy(kvm_run->mmio.data, &p->data, p->size);
247 kvm_run->exit_reason = KVM_EXIT_MMIO;
248 return 0;
249 mmio:
250 mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
251 if (mmio_dev) {
252 if (!p->dir)
253 kvm_iodevice_write(mmio_dev, p->addr, p->size,
254 &p->data);
255 else
256 kvm_iodevice_read(mmio_dev, p->addr, p->size,
257 &p->data);
258
259 } else
260 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
261 p->state = STATE_IORESP_READY;
262
263 return 1;
264 }
265
266 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
267 {
268 struct exit_ctl_data *p;
269
270 p = kvm_get_exit_data(vcpu);
271
272 if (p->exit_reason == EXIT_REASON_PAL_CALL)
273 return kvm_pal_emul(vcpu, kvm_run);
274 else {
275 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
276 kvm_run->hw.hardware_exit_reason = 2;
277 return 0;
278 }
279 }
280
281 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
282 {
283 struct exit_ctl_data *p;
284
285 p = kvm_get_exit_data(vcpu);
286
287 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
288 kvm_sal_emul(vcpu);
289 return 1;
290 } else {
291 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
292 kvm_run->hw.hardware_exit_reason = 3;
293 return 0;
294 }
295
296 }
297
298 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
299 {
300 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
301
302 if (!test_and_set_bit(vector, &vpd->irr[0])) {
303 vcpu->arch.irq_new_pending = 1;
304 kvm_vcpu_kick(vcpu);
305 return 1;
306 }
307 return 0;
308 }
309
310 /*
311 * offset: address offset to IPI space.
312 * value: deliver value.
313 */
314 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
315 uint64_t vector)
316 {
317 switch (dm) {
318 case SAPIC_FIXED:
319 break;
320 case SAPIC_NMI:
321 vector = 2;
322 break;
323 case SAPIC_EXTINT:
324 vector = 0;
325 break;
326 case SAPIC_INIT:
327 case SAPIC_PMI:
328 default:
329 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
330 return;
331 }
332 __apic_accept_irq(vcpu, vector);
333 }
334
335 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
336 unsigned long eid)
337 {
338 union ia64_lid lid;
339 int i;
340
341 for (i = 0; i < kvm->arch.online_vcpus; i++) {
342 if (kvm->vcpus[i]) {
343 lid.val = VCPU_LID(kvm->vcpus[i]);
344 if (lid.id == id && lid.eid == eid)
345 return kvm->vcpus[i];
346 }
347 }
348
349 return NULL;
350 }
351
352 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
353 {
354 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
355 struct kvm_vcpu *target_vcpu;
356 struct kvm_pt_regs *regs;
357 union ia64_ipi_a addr = p->u.ipi_data.addr;
358 union ia64_ipi_d data = p->u.ipi_data.data;
359
360 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
361 if (!target_vcpu)
362 return handle_vm_error(vcpu, kvm_run);
363
364 if (!target_vcpu->arch.launched) {
365 regs = vcpu_regs(target_vcpu);
366
367 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
368 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
369
370 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
371 if (waitqueue_active(&target_vcpu->wq))
372 wake_up_interruptible(&target_vcpu->wq);
373 } else {
374 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
375 if (target_vcpu != vcpu)
376 kvm_vcpu_kick(target_vcpu);
377 }
378
379 return 1;
380 }
381
382 struct call_data {
383 struct kvm_ptc_g ptc_g_data;
384 struct kvm_vcpu *vcpu;
385 };
386
387 static void vcpu_global_purge(void *info)
388 {
389 struct call_data *p = (struct call_data *)info;
390 struct kvm_vcpu *vcpu = p->vcpu;
391
392 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
393 return;
394
395 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
396 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
397 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
398 p->ptc_g_data;
399 } else {
400 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
401 vcpu->arch.ptc_g_count = 0;
402 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
403 }
404 }
405
406 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
407 {
408 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
409 struct kvm *kvm = vcpu->kvm;
410 struct call_data call_data;
411 int i;
412
413 call_data.ptc_g_data = p->u.ptc_g_data;
414
415 for (i = 0; i < kvm->arch.online_vcpus; i++) {
416 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
417 KVM_MP_STATE_UNINITIALIZED ||
418 vcpu == kvm->vcpus[i])
419 continue;
420
421 if (waitqueue_active(&kvm->vcpus[i]->wq))
422 wake_up_interruptible(&kvm->vcpus[i]->wq);
423
424 if (kvm->vcpus[i]->cpu != -1) {
425 call_data.vcpu = kvm->vcpus[i];
426 smp_call_function_single(kvm->vcpus[i]->cpu,
427 vcpu_global_purge, &call_data, 1);
428 } else
429 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
430
431 }
432 return 1;
433 }
434
435 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
436 {
437 return 1;
438 }
439
440 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
441 {
442 unsigned long pte, rtc_phys_addr, map_addr;
443 int slot;
444
445 map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
446 rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
447 pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
448 slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
449 vcpu->arch.sn_rtc_tr_slot = slot;
450 if (slot < 0) {
451 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
452 slot = 0;
453 }
454 return slot;
455 }
456
457 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
458 {
459
460 ktime_t kt;
461 long itc_diff;
462 unsigned long vcpu_now_itc;
463 unsigned long expires;
464 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
465 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
466 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
467
468 if (irqchip_in_kernel(vcpu->kvm)) {
469
470 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
471
472 if (time_after(vcpu_now_itc, vpd->itm)) {
473 vcpu->arch.timer_check = 1;
474 return 1;
475 }
476 itc_diff = vpd->itm - vcpu_now_itc;
477 if (itc_diff < 0)
478 itc_diff = -itc_diff;
479
480 expires = div64_u64(itc_diff, cyc_per_usec);
481 kt = ktime_set(0, 1000 * expires);
482
483 vcpu->arch.ht_active = 1;
484 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
485
486 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
487 kvm_vcpu_block(vcpu);
488 hrtimer_cancel(p_ht);
489 vcpu->arch.ht_active = 0;
490
491 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
492 kvm_cpu_has_pending_timer(vcpu))
493 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
494 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
495
496 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
497 return -EINTR;
498 return 1;
499 } else {
500 printk(KERN_ERR"kvm: Unsupported userspace halt!");
501 return 0;
502 }
503 }
504
505 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
506 struct kvm_run *kvm_run)
507 {
508 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
509 return 0;
510 }
511
512 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
513 struct kvm_run *kvm_run)
514 {
515 return 1;
516 }
517
518 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
519 struct kvm_run *kvm_run)
520 {
521 printk("VMM: %s", vcpu->arch.log_buf);
522 return 1;
523 }
524
525 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
526 struct kvm_run *kvm_run) = {
527 [EXIT_REASON_VM_PANIC] = handle_vm_error,
528 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
529 [EXIT_REASON_PAL_CALL] = handle_pal_call,
530 [EXIT_REASON_SAL_CALL] = handle_sal_call,
531 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
532 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
533 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
534 [EXIT_REASON_IPI] = handle_ipi,
535 [EXIT_REASON_PTC_G] = handle_global_purge,
536 [EXIT_REASON_DEBUG] = handle_vcpu_debug,
537
538 };
539
540 static const int kvm_vti_max_exit_handlers =
541 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
542
543 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
544 {
545 struct exit_ctl_data *p_exit_data;
546
547 p_exit_data = kvm_get_exit_data(vcpu);
548 return p_exit_data->exit_reason;
549 }
550
551 /*
552 * The guest has exited. See if we can fix it or if we need userspace
553 * assistance.
554 */
555 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
556 {
557 u32 exit_reason = kvm_get_exit_reason(vcpu);
558 vcpu->arch.last_exit = exit_reason;
559
560 if (exit_reason < kvm_vti_max_exit_handlers
561 && kvm_vti_exit_handlers[exit_reason])
562 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
563 else {
564 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
565 kvm_run->hw.hardware_exit_reason = exit_reason;
566 }
567 return 0;
568 }
569
570 static inline void vti_set_rr6(unsigned long rr6)
571 {
572 ia64_set_rr(RR6, rr6);
573 ia64_srlz_i();
574 }
575
576 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
577 {
578 unsigned long pte;
579 struct kvm *kvm = vcpu->kvm;
580 int r;
581
582 /*Insert a pair of tr to map vmm*/
583 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
584 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
585 if (r < 0)
586 goto out;
587 vcpu->arch.vmm_tr_slot = r;
588 /*Insert a pairt of tr to map data of vm*/
589 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
590 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
591 pte, KVM_VM_DATA_SHIFT);
592 if (r < 0)
593 goto out;
594 vcpu->arch.vm_tr_slot = r;
595
596 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
597 if (kvm->arch.is_sn2) {
598 r = kvm_sn2_setup_mappings(vcpu);
599 if (r < 0)
600 goto out;
601 }
602 #endif
603
604 r = 0;
605 out:
606 return r;
607 }
608
609 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
610 {
611 struct kvm *kvm = vcpu->kvm;
612 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
613 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
614 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
615 if (kvm->arch.is_sn2)
616 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
617 #endif
618 }
619
620 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
621 {
622 int cpu = smp_processor_id();
623
624 if (vcpu->arch.last_run_cpu != cpu ||
625 per_cpu(last_vcpu, cpu) != vcpu) {
626 per_cpu(last_vcpu, cpu) = vcpu;
627 vcpu->arch.last_run_cpu = cpu;
628 kvm_flush_tlb_all();
629 }
630
631 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
632 vti_set_rr6(vcpu->arch.vmm_rr);
633 return kvm_insert_vmm_mapping(vcpu);
634 }
635
636 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
637 {
638 kvm_purge_vmm_mapping(vcpu);
639 vti_set_rr6(vcpu->arch.host_rr6);
640 }
641
642 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
643 {
644 union context *host_ctx, *guest_ctx;
645 int r;
646
647 /*
648 * down_read() may sleep and return with interrupts enabled
649 */
650 down_read(&vcpu->kvm->slots_lock);
651
652 again:
653 if (signal_pending(current)) {
654 r = -EINTR;
655 kvm_run->exit_reason = KVM_EXIT_INTR;
656 goto out;
657 }
658
659 preempt_disable();
660 local_irq_disable();
661
662 /*Get host and guest context with guest address space.*/
663 host_ctx = kvm_get_host_context(vcpu);
664 guest_ctx = kvm_get_guest_context(vcpu);
665
666 vcpu->guest_mode = 1;
667
668 r = kvm_vcpu_pre_transition(vcpu);
669 if (r < 0)
670 goto vcpu_run_fail;
671
672 up_read(&vcpu->kvm->slots_lock);
673 kvm_guest_enter();
674
675 /*
676 * Transition to the guest
677 */
678 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
679
680 kvm_vcpu_post_transition(vcpu);
681
682 vcpu->arch.launched = 1;
683 vcpu->guest_mode = 0;
684 local_irq_enable();
685
686 /*
687 * We must have an instruction between local_irq_enable() and
688 * kvm_guest_exit(), so the timer interrupt isn't delayed by
689 * the interrupt shadow. The stat.exits increment will do nicely.
690 * But we need to prevent reordering, hence this barrier():
691 */
692 barrier();
693 kvm_guest_exit();
694 preempt_enable();
695
696 down_read(&vcpu->kvm->slots_lock);
697
698 r = kvm_handle_exit(kvm_run, vcpu);
699
700 if (r > 0) {
701 if (!need_resched())
702 goto again;
703 }
704
705 out:
706 up_read(&vcpu->kvm->slots_lock);
707 if (r > 0) {
708 kvm_resched(vcpu);
709 down_read(&vcpu->kvm->slots_lock);
710 goto again;
711 }
712
713 return r;
714
715 vcpu_run_fail:
716 local_irq_enable();
717 preempt_enable();
718 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
719 goto out;
720 }
721
722 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
723 {
724 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
725
726 if (!vcpu->mmio_is_write)
727 memcpy(&p->data, vcpu->mmio_data, 8);
728 p->state = STATE_IORESP_READY;
729 }
730
731 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
732 {
733 int r;
734 sigset_t sigsaved;
735
736 vcpu_load(vcpu);
737
738 if (vcpu->sigset_active)
739 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
740
741 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
742 kvm_vcpu_block(vcpu);
743 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
744 r = -EAGAIN;
745 goto out;
746 }
747
748 if (vcpu->mmio_needed) {
749 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
750 kvm_set_mmio_data(vcpu);
751 vcpu->mmio_read_completed = 1;
752 vcpu->mmio_needed = 0;
753 }
754 r = __vcpu_run(vcpu, kvm_run);
755 out:
756 if (vcpu->sigset_active)
757 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
758
759 vcpu_put(vcpu);
760 return r;
761 }
762
763 static struct kvm *kvm_alloc_kvm(void)
764 {
765
766 struct kvm *kvm;
767 uint64_t vm_base;
768
769 BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
770
771 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
772
773 if (!vm_base)
774 return ERR_PTR(-ENOMEM);
775
776 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
777 kvm = (struct kvm *)(vm_base +
778 offsetof(struct kvm_vm_data, kvm_vm_struct));
779 kvm->arch.vm_base = vm_base;
780 printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
781
782 return kvm;
783 }
784
785 struct kvm_io_range {
786 unsigned long start;
787 unsigned long size;
788 unsigned long type;
789 };
790
791 static const struct kvm_io_range io_ranges[] = {
792 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
793 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
794 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
795 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
796 {PIB_START, PIB_SIZE, GPFN_PIB},
797 };
798
799 static void kvm_build_io_pmt(struct kvm *kvm)
800 {
801 unsigned long i, j;
802
803 /* Mark I/O ranges */
804 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
805 i++) {
806 for (j = io_ranges[i].start;
807 j < io_ranges[i].start + io_ranges[i].size;
808 j += PAGE_SIZE)
809 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
810 io_ranges[i].type, 0);
811 }
812
813 }
814
815 /*Use unused rids to virtualize guest rid.*/
816 #define GUEST_PHYSICAL_RR0 0x1739
817 #define GUEST_PHYSICAL_RR4 0x2739
818 #define VMM_INIT_RR 0x1660
819
820 static void kvm_init_vm(struct kvm *kvm)
821 {
822 BUG_ON(!kvm);
823
824 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
825 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
826 kvm->arch.vmm_init_rr = VMM_INIT_RR;
827
828 /*
829 *Fill P2M entries for MMIO/IO ranges
830 */
831 kvm_build_io_pmt(kvm);
832
833 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
834
835 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
836 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
837 }
838
839 struct kvm *kvm_arch_create_vm(void)
840 {
841 struct kvm *kvm = kvm_alloc_kvm();
842
843 if (IS_ERR(kvm))
844 return ERR_PTR(-ENOMEM);
845
846 kvm->arch.is_sn2 = ia64_platform_is("sn2");
847
848 kvm_init_vm(kvm);
849
850 kvm->arch.online_vcpus = 0;
851
852 return kvm;
853
854 }
855
856 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
857 struct kvm_irqchip *chip)
858 {
859 int r;
860
861 r = 0;
862 switch (chip->chip_id) {
863 case KVM_IRQCHIP_IOAPIC:
864 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
865 sizeof(struct kvm_ioapic_state));
866 break;
867 default:
868 r = -EINVAL;
869 break;
870 }
871 return r;
872 }
873
874 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
875 {
876 int r;
877
878 r = 0;
879 switch (chip->chip_id) {
880 case KVM_IRQCHIP_IOAPIC:
881 memcpy(ioapic_irqchip(kvm),
882 &chip->chip.ioapic,
883 sizeof(struct kvm_ioapic_state));
884 break;
885 default:
886 r = -EINVAL;
887 break;
888 }
889 return r;
890 }
891
892 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
893
894 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
895 {
896 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
897 int i;
898
899 vcpu_load(vcpu);
900
901 for (i = 0; i < 16; i++) {
902 vpd->vgr[i] = regs->vpd.vgr[i];
903 vpd->vbgr[i] = regs->vpd.vbgr[i];
904 }
905 for (i = 0; i < 128; i++)
906 vpd->vcr[i] = regs->vpd.vcr[i];
907 vpd->vhpi = regs->vpd.vhpi;
908 vpd->vnat = regs->vpd.vnat;
909 vpd->vbnat = regs->vpd.vbnat;
910 vpd->vpsr = regs->vpd.vpsr;
911
912 vpd->vpr = regs->vpd.vpr;
913
914 memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
915
916 RESTORE_REGS(mp_state);
917 RESTORE_REGS(vmm_rr);
918 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
919 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
920 RESTORE_REGS(itr_regions);
921 RESTORE_REGS(dtr_regions);
922 RESTORE_REGS(tc_regions);
923 RESTORE_REGS(irq_check);
924 RESTORE_REGS(itc_check);
925 RESTORE_REGS(timer_check);
926 RESTORE_REGS(timer_pending);
927 RESTORE_REGS(last_itc);
928 for (i = 0; i < 8; i++) {
929 vcpu->arch.vrr[i] = regs->vrr[i];
930 vcpu->arch.ibr[i] = regs->ibr[i];
931 vcpu->arch.dbr[i] = regs->dbr[i];
932 }
933 for (i = 0; i < 4; i++)
934 vcpu->arch.insvc[i] = regs->insvc[i];
935 RESTORE_REGS(xtp);
936 RESTORE_REGS(metaphysical_rr0);
937 RESTORE_REGS(metaphysical_rr4);
938 RESTORE_REGS(metaphysical_saved_rr0);
939 RESTORE_REGS(metaphysical_saved_rr4);
940 RESTORE_REGS(fp_psr);
941 RESTORE_REGS(saved_gp);
942
943 vcpu->arch.irq_new_pending = 1;
944 vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
945 set_bit(KVM_REQ_RESUME, &vcpu->requests);
946
947 vcpu_put(vcpu);
948
949 return 0;
950 }
951
952 long kvm_arch_vm_ioctl(struct file *filp,
953 unsigned int ioctl, unsigned long arg)
954 {
955 struct kvm *kvm = filp->private_data;
956 void __user *argp = (void __user *)arg;
957 int r = -EINVAL;
958
959 switch (ioctl) {
960 case KVM_SET_MEMORY_REGION: {
961 struct kvm_memory_region kvm_mem;
962 struct kvm_userspace_memory_region kvm_userspace_mem;
963
964 r = -EFAULT;
965 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
966 goto out;
967 kvm_userspace_mem.slot = kvm_mem.slot;
968 kvm_userspace_mem.flags = kvm_mem.flags;
969 kvm_userspace_mem.guest_phys_addr =
970 kvm_mem.guest_phys_addr;
971 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
972 r = kvm_vm_ioctl_set_memory_region(kvm,
973 &kvm_userspace_mem, 0);
974 if (r)
975 goto out;
976 break;
977 }
978 case KVM_CREATE_IRQCHIP:
979 r = -EFAULT;
980 r = kvm_ioapic_init(kvm);
981 if (r)
982 goto out;
983 r = kvm_setup_default_irq_routing(kvm);
984 if (r) {
985 kfree(kvm->arch.vioapic);
986 goto out;
987 }
988 break;
989 case KVM_IRQ_LINE_STATUS:
990 case KVM_IRQ_LINE: {
991 struct kvm_irq_level irq_event;
992
993 r = -EFAULT;
994 if (copy_from_user(&irq_event, argp, sizeof irq_event))
995 goto out;
996 if (irqchip_in_kernel(kvm)) {
997 __s32 status;
998 mutex_lock(&kvm->lock);
999 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1000 irq_event.irq, irq_event.level);
1001 mutex_unlock(&kvm->lock);
1002 if (ioctl == KVM_IRQ_LINE_STATUS) {
1003 irq_event.status = status;
1004 if (copy_to_user(argp, &irq_event,
1005 sizeof irq_event))
1006 goto out;
1007 }
1008 r = 0;
1009 }
1010 break;
1011 }
1012 case KVM_GET_IRQCHIP: {
1013 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1014 struct kvm_irqchip chip;
1015
1016 r = -EFAULT;
1017 if (copy_from_user(&chip, argp, sizeof chip))
1018 goto out;
1019 r = -ENXIO;
1020 if (!irqchip_in_kernel(kvm))
1021 goto out;
1022 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1023 if (r)
1024 goto out;
1025 r = -EFAULT;
1026 if (copy_to_user(argp, &chip, sizeof chip))
1027 goto out;
1028 r = 0;
1029 break;
1030 }
1031 case KVM_SET_IRQCHIP: {
1032 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1033 struct kvm_irqchip chip;
1034
1035 r = -EFAULT;
1036 if (copy_from_user(&chip, argp, sizeof chip))
1037 goto out;
1038 r = -ENXIO;
1039 if (!irqchip_in_kernel(kvm))
1040 goto out;
1041 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1042 if (r)
1043 goto out;
1044 r = 0;
1045 break;
1046 }
1047 default:
1048 ;
1049 }
1050 out:
1051 return r;
1052 }
1053
1054 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1055 struct kvm_sregs *sregs)
1056 {
1057 return -EINVAL;
1058 }
1059
1060 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1061 struct kvm_sregs *sregs)
1062 {
1063 return -EINVAL;
1064
1065 }
1066 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1067 struct kvm_translation *tr)
1068 {
1069
1070 return -EINVAL;
1071 }
1072
1073 static int kvm_alloc_vmm_area(void)
1074 {
1075 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1076 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1077 get_order(KVM_VMM_SIZE));
1078 if (!kvm_vmm_base)
1079 return -ENOMEM;
1080
1081 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1082 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1083
1084 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1085 kvm_vmm_base, kvm_vm_buffer);
1086 }
1087
1088 return 0;
1089 }
1090
1091 static void kvm_free_vmm_area(void)
1092 {
1093 if (kvm_vmm_base) {
1094 /*Zero this area before free to avoid bits leak!!*/
1095 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1096 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1097 kvm_vmm_base = 0;
1098 kvm_vm_buffer = 0;
1099 kvm_vsa_base = 0;
1100 }
1101 }
1102
1103 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1104 {
1105 int i;
1106 union cpuid3_t cpuid3;
1107 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1108
1109 if (IS_ERR(vpd))
1110 return PTR_ERR(vpd);
1111
1112 /* CPUID init */
1113 for (i = 0; i < 5; i++)
1114 vpd->vcpuid[i] = ia64_get_cpuid(i);
1115
1116 /* Limit the CPUID number to 5 */
1117 cpuid3.value = vpd->vcpuid[3];
1118 cpuid3.number = 4; /* 5 - 1 */
1119 vpd->vcpuid[3] = cpuid3.value;
1120
1121 /*Set vac and vdc fields*/
1122 vpd->vac.a_from_int_cr = 1;
1123 vpd->vac.a_to_int_cr = 1;
1124 vpd->vac.a_from_psr = 1;
1125 vpd->vac.a_from_cpuid = 1;
1126 vpd->vac.a_cover = 1;
1127 vpd->vac.a_bsw = 1;
1128 vpd->vac.a_int = 1;
1129 vpd->vdc.d_vmsw = 1;
1130
1131 /*Set virtual buffer*/
1132 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1133
1134 return 0;
1135 }
1136
1137 static int vti_create_vp(struct kvm_vcpu *vcpu)
1138 {
1139 long ret;
1140 struct vpd *vpd = vcpu->arch.vpd;
1141 unsigned long vmm_ivt;
1142
1143 vmm_ivt = kvm_vmm_info->vmm_ivt;
1144
1145 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1146
1147 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1148
1149 if (ret) {
1150 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1151 return -EINVAL;
1152 }
1153 return 0;
1154 }
1155
1156 static void init_ptce_info(struct kvm_vcpu *vcpu)
1157 {
1158 ia64_ptce_info_t ptce = {0};
1159
1160 ia64_get_ptce(&ptce);
1161 vcpu->arch.ptce_base = ptce.base;
1162 vcpu->arch.ptce_count[0] = ptce.count[0];
1163 vcpu->arch.ptce_count[1] = ptce.count[1];
1164 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1165 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1166 }
1167
1168 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1169 {
1170 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1171
1172 if (hrtimer_cancel(p_ht))
1173 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1174 }
1175
1176 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1177 {
1178 struct kvm_vcpu *vcpu;
1179 wait_queue_head_t *q;
1180
1181 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1182 q = &vcpu->wq;
1183
1184 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1185 goto out;
1186
1187 if (waitqueue_active(q))
1188 wake_up_interruptible(q);
1189
1190 out:
1191 vcpu->arch.timer_fired = 1;
1192 vcpu->arch.timer_check = 1;
1193 return HRTIMER_NORESTART;
1194 }
1195
1196 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1197
1198 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1199 {
1200 struct kvm_vcpu *v;
1201 int r;
1202 int i;
1203 long itc_offset;
1204 struct kvm *kvm = vcpu->kvm;
1205 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1206
1207 union context *p_ctx = &vcpu->arch.guest;
1208 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1209
1210 /*Init vcpu context for first run.*/
1211 if (IS_ERR(vmm_vcpu))
1212 return PTR_ERR(vmm_vcpu);
1213
1214 if (vcpu->vcpu_id == 0) {
1215 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1216
1217 /*Set entry address for first run.*/
1218 regs->cr_iip = PALE_RESET_ENTRY;
1219
1220 /*Initialize itc offset for vcpus*/
1221 itc_offset = 0UL - kvm_get_itc(vcpu);
1222 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1223 v = (struct kvm_vcpu *)((char *)vcpu +
1224 sizeof(struct kvm_vcpu_data) * i);
1225 v->arch.itc_offset = itc_offset;
1226 v->arch.last_itc = 0;
1227 }
1228 } else
1229 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1230
1231 r = -ENOMEM;
1232 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1233 if (!vcpu->arch.apic)
1234 goto out;
1235 vcpu->arch.apic->vcpu = vcpu;
1236
1237 p_ctx->gr[1] = 0;
1238 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1239 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1240 p_ctx->psr = 0x1008522000UL;
1241 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1242 p_ctx->caller_unat = 0;
1243 p_ctx->pr = 0x0;
1244 p_ctx->ar[36] = 0x0; /*unat*/
1245 p_ctx->ar[19] = 0x0; /*rnat*/
1246 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1247 ((sizeof(struct kvm_vcpu)+15) & ~15);
1248 p_ctx->ar[64] = 0x0; /*pfs*/
1249 p_ctx->cr[0] = 0x7e04UL;
1250 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1251 p_ctx->cr[8] = 0x3c;
1252
1253 /*Initilize region register*/
1254 p_ctx->rr[0] = 0x30;
1255 p_ctx->rr[1] = 0x30;
1256 p_ctx->rr[2] = 0x30;
1257 p_ctx->rr[3] = 0x30;
1258 p_ctx->rr[4] = 0x30;
1259 p_ctx->rr[5] = 0x30;
1260 p_ctx->rr[7] = 0x30;
1261
1262 /*Initilize branch register 0*/
1263 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1264
1265 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1266 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1267 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1268
1269 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1270 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1271
1272 vcpu->arch.last_run_cpu = -1;
1273 vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1274 vcpu->arch.vsa_base = kvm_vsa_base;
1275 vcpu->arch.__gp = kvm_vmm_gp;
1276 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1277 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1278 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1279 init_ptce_info(vcpu);
1280
1281 r = 0;
1282 out:
1283 return r;
1284 }
1285
1286 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1287 {
1288 unsigned long psr;
1289 int r;
1290
1291 local_irq_save(psr);
1292 r = kvm_insert_vmm_mapping(vcpu);
1293 local_irq_restore(psr);
1294 if (r)
1295 goto fail;
1296 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1297 if (r)
1298 goto fail;
1299
1300 r = vti_init_vpd(vcpu);
1301 if (r) {
1302 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1303 goto uninit;
1304 }
1305
1306 r = vti_create_vp(vcpu);
1307 if (r)
1308 goto uninit;
1309
1310 kvm_purge_vmm_mapping(vcpu);
1311
1312 return 0;
1313 uninit:
1314 kvm_vcpu_uninit(vcpu);
1315 fail:
1316 return r;
1317 }
1318
1319 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1320 unsigned int id)
1321 {
1322 struct kvm_vcpu *vcpu;
1323 unsigned long vm_base = kvm->arch.vm_base;
1324 int r;
1325 int cpu;
1326
1327 BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1328
1329 r = -EINVAL;
1330 if (id >= KVM_MAX_VCPUS) {
1331 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1332 KVM_MAX_VCPUS);
1333 goto fail;
1334 }
1335
1336 r = -ENOMEM;
1337 if (!vm_base) {
1338 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1339 goto fail;
1340 }
1341 vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1342 vcpu_data[id].vcpu_struct));
1343 vcpu->kvm = kvm;
1344
1345 cpu = get_cpu();
1346 r = vti_vcpu_setup(vcpu, id);
1347 put_cpu();
1348
1349 if (r) {
1350 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1351 goto fail;
1352 }
1353
1354 kvm->arch.online_vcpus++;
1355
1356 return vcpu;
1357 fail:
1358 return ERR_PTR(r);
1359 }
1360
1361 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1362 {
1363 return 0;
1364 }
1365
1366 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1367 {
1368 return -EINVAL;
1369 }
1370
1371 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1372 {
1373 return -EINVAL;
1374 }
1375
1376 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1377 struct kvm_guest_debug *dbg)
1378 {
1379 return -EINVAL;
1380 }
1381
1382 static void free_kvm(struct kvm *kvm)
1383 {
1384 unsigned long vm_base = kvm->arch.vm_base;
1385
1386 if (vm_base) {
1387 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1388 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1389 }
1390
1391 }
1392
1393 static void kvm_release_vm_pages(struct kvm *kvm)
1394 {
1395 struct kvm_memory_slot *memslot;
1396 int i, j;
1397 unsigned long base_gfn;
1398
1399 for (i = 0; i < kvm->nmemslots; i++) {
1400 memslot = &kvm->memslots[i];
1401 base_gfn = memslot->base_gfn;
1402
1403 for (j = 0; j < memslot->npages; j++) {
1404 if (memslot->rmap[j])
1405 put_page((struct page *)memslot->rmap[j]);
1406 }
1407 }
1408 }
1409
1410 void kvm_arch_sync_events(struct kvm *kvm)
1411 {
1412 }
1413
1414 void kvm_arch_destroy_vm(struct kvm *kvm)
1415 {
1416 kvm_iommu_unmap_guest(kvm);
1417 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1418 kvm_free_all_assigned_devices(kvm);
1419 #endif
1420 kfree(kvm->arch.vioapic);
1421 kvm_release_vm_pages(kvm);
1422 kvm_free_physmem(kvm);
1423 free_kvm(kvm);
1424 }
1425
1426 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1427 {
1428 }
1429
1430 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1431 {
1432 if (cpu != vcpu->cpu) {
1433 vcpu->cpu = cpu;
1434 if (vcpu->arch.ht_active)
1435 kvm_migrate_hlt_timer(vcpu);
1436 }
1437 }
1438
1439 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1440
1441 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1442 {
1443 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1444 int i;
1445
1446 vcpu_load(vcpu);
1447
1448 for (i = 0; i < 16; i++) {
1449 regs->vpd.vgr[i] = vpd->vgr[i];
1450 regs->vpd.vbgr[i] = vpd->vbgr[i];
1451 }
1452 for (i = 0; i < 128; i++)
1453 regs->vpd.vcr[i] = vpd->vcr[i];
1454 regs->vpd.vhpi = vpd->vhpi;
1455 regs->vpd.vnat = vpd->vnat;
1456 regs->vpd.vbnat = vpd->vbnat;
1457 regs->vpd.vpsr = vpd->vpsr;
1458 regs->vpd.vpr = vpd->vpr;
1459
1460 memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1461
1462 SAVE_REGS(mp_state);
1463 SAVE_REGS(vmm_rr);
1464 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1465 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1466 SAVE_REGS(itr_regions);
1467 SAVE_REGS(dtr_regions);
1468 SAVE_REGS(tc_regions);
1469 SAVE_REGS(irq_check);
1470 SAVE_REGS(itc_check);
1471 SAVE_REGS(timer_check);
1472 SAVE_REGS(timer_pending);
1473 SAVE_REGS(last_itc);
1474 for (i = 0; i < 8; i++) {
1475 regs->vrr[i] = vcpu->arch.vrr[i];
1476 regs->ibr[i] = vcpu->arch.ibr[i];
1477 regs->dbr[i] = vcpu->arch.dbr[i];
1478 }
1479 for (i = 0; i < 4; i++)
1480 regs->insvc[i] = vcpu->arch.insvc[i];
1481 regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1482 SAVE_REGS(xtp);
1483 SAVE_REGS(metaphysical_rr0);
1484 SAVE_REGS(metaphysical_rr4);
1485 SAVE_REGS(metaphysical_saved_rr0);
1486 SAVE_REGS(metaphysical_saved_rr4);
1487 SAVE_REGS(fp_psr);
1488 SAVE_REGS(saved_gp);
1489
1490 vcpu_put(vcpu);
1491 return 0;
1492 }
1493
1494 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1495 struct kvm_ia64_vcpu_stack *stack)
1496 {
1497 memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1498 return 0;
1499 }
1500
1501 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1502 struct kvm_ia64_vcpu_stack *stack)
1503 {
1504 memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1505 sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1506
1507 vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1508 return 0;
1509 }
1510
1511 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1512 {
1513
1514 hrtimer_cancel(&vcpu->arch.hlt_timer);
1515 kfree(vcpu->arch.apic);
1516 }
1517
1518
1519 long kvm_arch_vcpu_ioctl(struct file *filp,
1520 unsigned int ioctl, unsigned long arg)
1521 {
1522 struct kvm_vcpu *vcpu = filp->private_data;
1523 void __user *argp = (void __user *)arg;
1524 struct kvm_ia64_vcpu_stack *stack = NULL;
1525 long r;
1526
1527 switch (ioctl) {
1528 case KVM_IA64_VCPU_GET_STACK: {
1529 struct kvm_ia64_vcpu_stack __user *user_stack;
1530 void __user *first_p = argp;
1531
1532 r = -EFAULT;
1533 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1534 goto out;
1535
1536 if (!access_ok(VERIFY_WRITE, user_stack,
1537 sizeof(struct kvm_ia64_vcpu_stack))) {
1538 printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1539 "Illegal user destination address for stack\n");
1540 goto out;
1541 }
1542 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1543 if (!stack) {
1544 r = -ENOMEM;
1545 goto out;
1546 }
1547
1548 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1549 if (r)
1550 goto out;
1551
1552 if (copy_to_user(user_stack, stack,
1553 sizeof(struct kvm_ia64_vcpu_stack)))
1554 goto out;
1555
1556 break;
1557 }
1558 case KVM_IA64_VCPU_SET_STACK: {
1559 struct kvm_ia64_vcpu_stack __user *user_stack;
1560 void __user *first_p = argp;
1561
1562 r = -EFAULT;
1563 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1564 goto out;
1565
1566 if (!access_ok(VERIFY_READ, user_stack,
1567 sizeof(struct kvm_ia64_vcpu_stack))) {
1568 printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1569 "Illegal user address for stack\n");
1570 goto out;
1571 }
1572 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1573 if (!stack) {
1574 r = -ENOMEM;
1575 goto out;
1576 }
1577 if (copy_from_user(stack, user_stack,
1578 sizeof(struct kvm_ia64_vcpu_stack)))
1579 goto out;
1580
1581 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1582 break;
1583 }
1584
1585 default:
1586 r = -EINVAL;
1587 }
1588
1589 out:
1590 kfree(stack);
1591 return r;
1592 }
1593
1594 int kvm_arch_set_memory_region(struct kvm *kvm,
1595 struct kvm_userspace_memory_region *mem,
1596 struct kvm_memory_slot old,
1597 int user_alloc)
1598 {
1599 unsigned long i;
1600 unsigned long pfn;
1601 int npages = mem->memory_size >> PAGE_SHIFT;
1602 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1603 unsigned long base_gfn = memslot->base_gfn;
1604
1605 if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1606 return -ENOMEM;
1607
1608 for (i = 0; i < npages; i++) {
1609 pfn = gfn_to_pfn(kvm, base_gfn + i);
1610 if (!kvm_is_mmio_pfn(pfn)) {
1611 kvm_set_pmt_entry(kvm, base_gfn + i,
1612 pfn << PAGE_SHIFT,
1613 _PAGE_AR_RWX | _PAGE_MA_WB);
1614 memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1615 } else {
1616 kvm_set_pmt_entry(kvm, base_gfn + i,
1617 GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1618 _PAGE_MA_UC);
1619 memslot->rmap[i] = 0;
1620 }
1621 }
1622
1623 return 0;
1624 }
1625
1626 void kvm_arch_flush_shadow(struct kvm *kvm)
1627 {
1628 kvm_flush_remote_tlbs(kvm);
1629 }
1630
1631 long kvm_arch_dev_ioctl(struct file *filp,
1632 unsigned int ioctl, unsigned long arg)
1633 {
1634 return -EINVAL;
1635 }
1636
1637 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1638 {
1639 kvm_vcpu_uninit(vcpu);
1640 }
1641
1642 static int vti_cpu_has_kvm_support(void)
1643 {
1644 long avail = 1, status = 1, control = 1;
1645 long ret;
1646
1647 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1648 if (ret)
1649 goto out;
1650
1651 if (!(avail & PAL_PROC_VM_BIT))
1652 goto out;
1653
1654 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1655
1656 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1657 if (ret)
1658 goto out;
1659 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1660
1661 if (!(vp_env_info & VP_OPCODE)) {
1662 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1663 "vm_env_info:0x%lx\n", vp_env_info);
1664 }
1665
1666 return 1;
1667 out:
1668 return 0;
1669 }
1670
1671
1672 /*
1673 * On SN2, the ITC isn't stable, so copy in fast path code to use the
1674 * SN2 RTC, replacing the ITC based default verion.
1675 */
1676 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1677 struct module *module)
1678 {
1679 unsigned long new_ar, new_ar_sn2;
1680 unsigned long module_base;
1681
1682 if (!ia64_platform_is("sn2"))
1683 return;
1684
1685 module_base = (unsigned long)module->module_core;
1686
1687 new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1688 new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1689
1690 printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1691 "as source\n");
1692
1693 /*
1694 * Copy the SN2 version of mov_ar into place. They are both
1695 * the same size, so 6 bundles is sufficient (6 * 0x10).
1696 */
1697 memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1698 }
1699
1700 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1701 struct module *module)
1702 {
1703 unsigned long module_base;
1704 unsigned long vmm_size;
1705
1706 unsigned long vmm_offset, func_offset, fdesc_offset;
1707 struct fdesc *p_fdesc;
1708
1709 BUG_ON(!module);
1710
1711 if (!kvm_vmm_base) {
1712 printk("kvm: kvm area hasn't been initilized yet!!\n");
1713 return -EFAULT;
1714 }
1715
1716 /*Calculate new position of relocated vmm module.*/
1717 module_base = (unsigned long)module->module_core;
1718 vmm_size = module->core_size;
1719 if (unlikely(vmm_size > KVM_VMM_SIZE))
1720 return -EFAULT;
1721
1722 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1723 kvm_patch_vmm(vmm_info, module);
1724 kvm_flush_icache(kvm_vmm_base, vmm_size);
1725
1726 /*Recalculate kvm_vmm_info based on new VMM*/
1727 vmm_offset = vmm_info->vmm_ivt - module_base;
1728 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1729 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1730 kvm_vmm_info->vmm_ivt);
1731
1732 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1733 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1734 fdesc_offset);
1735 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1736 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1737 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1738 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1739
1740 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1741 KVM_VMM_BASE+func_offset);
1742
1743 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1744 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1745 fdesc_offset);
1746 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1747 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1748 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1749 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1750
1751 kvm_vmm_gp = p_fdesc->gp;
1752
1753 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1754 kvm_vmm_info->vmm_entry);
1755 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1756 KVM_VMM_BASE + func_offset);
1757
1758 return 0;
1759 }
1760
1761 int kvm_arch_init(void *opaque)
1762 {
1763 int r;
1764 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1765
1766 if (!vti_cpu_has_kvm_support()) {
1767 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1768 r = -EOPNOTSUPP;
1769 goto out;
1770 }
1771
1772 if (kvm_vmm_info) {
1773 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1774 r = -EEXIST;
1775 goto out;
1776 }
1777
1778 r = -ENOMEM;
1779 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1780 if (!kvm_vmm_info)
1781 goto out;
1782
1783 if (kvm_alloc_vmm_area())
1784 goto out_free0;
1785
1786 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1787 if (r)
1788 goto out_free1;
1789
1790 return 0;
1791
1792 out_free1:
1793 kvm_free_vmm_area();
1794 out_free0:
1795 kfree(kvm_vmm_info);
1796 out:
1797 return r;
1798 }
1799
1800 void kvm_arch_exit(void)
1801 {
1802 kvm_free_vmm_area();
1803 kfree(kvm_vmm_info);
1804 kvm_vmm_info = NULL;
1805 }
1806
1807 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1808 struct kvm_dirty_log *log)
1809 {
1810 struct kvm_memory_slot *memslot;
1811 int r, i;
1812 long n, base;
1813 unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1814 offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1815
1816 r = -EINVAL;
1817 if (log->slot >= KVM_MEMORY_SLOTS)
1818 goto out;
1819
1820 memslot = &kvm->memslots[log->slot];
1821 r = -ENOENT;
1822 if (!memslot->dirty_bitmap)
1823 goto out;
1824
1825 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1826 base = memslot->base_gfn / BITS_PER_LONG;
1827
1828 for (i = 0; i < n/sizeof(long); ++i) {
1829 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1830 dirty_bitmap[base + i] = 0;
1831 }
1832 r = 0;
1833 out:
1834 return r;
1835 }
1836
1837 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1838 struct kvm_dirty_log *log)
1839 {
1840 int r;
1841 int n;
1842 struct kvm_memory_slot *memslot;
1843 int is_dirty = 0;
1844
1845 spin_lock(&kvm->arch.dirty_log_lock);
1846
1847 r = kvm_ia64_sync_dirty_log(kvm, log);
1848 if (r)
1849 goto out;
1850
1851 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1852 if (r)
1853 goto out;
1854
1855 /* If nothing is dirty, don't bother messing with page tables. */
1856 if (is_dirty) {
1857 kvm_flush_remote_tlbs(kvm);
1858 memslot = &kvm->memslots[log->slot];
1859 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1860 memset(memslot->dirty_bitmap, 0, n);
1861 }
1862 r = 0;
1863 out:
1864 spin_unlock(&kvm->arch.dirty_log_lock);
1865 return r;
1866 }
1867
1868 int kvm_arch_hardware_setup(void)
1869 {
1870 return 0;
1871 }
1872
1873 void kvm_arch_hardware_unsetup(void)
1874 {
1875 }
1876
1877 static void vcpu_kick_intr(void *info)
1878 {
1879 #ifdef DEBUG
1880 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1881 printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1882 #endif
1883 }
1884
1885 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1886 {
1887 int ipi_pcpu = vcpu->cpu;
1888 int cpu = get_cpu();
1889
1890 if (waitqueue_active(&vcpu->wq))
1891 wake_up_interruptible(&vcpu->wq);
1892
1893 if (vcpu->guest_mode && cpu != ipi_pcpu)
1894 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1895 put_cpu();
1896 }
1897
1898 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1899 {
1900 return __apic_accept_irq(vcpu, irq->vector);
1901 }
1902
1903 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1904 {
1905 return apic->vcpu->vcpu_id == dest;
1906 }
1907
1908 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1909 {
1910 return 0;
1911 }
1912
1913 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1914 {
1915 return vcpu1->arch.xtp - vcpu2->arch.xtp;
1916 }
1917
1918 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1919 int short_hand, int dest, int dest_mode)
1920 {
1921 struct kvm_lapic *target = vcpu->arch.apic;
1922 return (dest_mode == 0) ?
1923 kvm_apic_match_physical_addr(target, dest) :
1924 kvm_apic_match_logical_addr(target, dest);
1925 }
1926
1927 static int find_highest_bits(int *dat)
1928 {
1929 u32 bits, bitnum;
1930 int i;
1931
1932 /* loop for all 256 bits */
1933 for (i = 7; i >= 0 ; i--) {
1934 bits = dat[i];
1935 if (bits) {
1936 bitnum = fls(bits);
1937 return i * 32 + bitnum - 1;
1938 }
1939 }
1940
1941 return -1;
1942 }
1943
1944 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1945 {
1946 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1947
1948 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1949 return NMI_VECTOR;
1950 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1951 return ExtINT_VECTOR;
1952
1953 return find_highest_bits((int *)&vpd->irr[0]);
1954 }
1955
1956 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1957 {
1958 if (kvm_highest_pending_irq(vcpu) != -1)
1959 return 1;
1960 return 0;
1961 }
1962
1963 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
1964 {
1965 /* do real check here */
1966 return 1;
1967 }
1968
1969 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1970 {
1971 return vcpu->arch.timer_fired;
1972 }
1973
1974 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1975 {
1976 return gfn;
1977 }
1978
1979 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1980 {
1981 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1982 }
1983
1984 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1985 struct kvm_mp_state *mp_state)
1986 {
1987 vcpu_load(vcpu);
1988 mp_state->mp_state = vcpu->arch.mp_state;
1989 vcpu_put(vcpu);
1990 return 0;
1991 }
1992
1993 static int vcpu_reset(struct kvm_vcpu *vcpu)
1994 {
1995 int r;
1996 long psr;
1997 local_irq_save(psr);
1998 r = kvm_insert_vmm_mapping(vcpu);
1999 if (r)
2000 goto fail;
2001
2002 vcpu->arch.launched = 0;
2003 kvm_arch_vcpu_uninit(vcpu);
2004 r = kvm_arch_vcpu_init(vcpu);
2005 if (r)
2006 goto fail;
2007
2008 kvm_purge_vmm_mapping(vcpu);
2009 r = 0;
2010 fail:
2011 local_irq_restore(psr);
2012 return r;
2013 }
2014
2015 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2016 struct kvm_mp_state *mp_state)
2017 {
2018 int r = 0;
2019
2020 vcpu_load(vcpu);
2021 vcpu->arch.mp_state = mp_state->mp_state;
2022 if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
2023 r = vcpu_reset(vcpu);
2024 vcpu_put(vcpu);
2025 return r;
2026 }
This page took 0.107706 seconds and 6 git commands to generate.