Merge branch 'linus' into x86/cleanups
[deliverable/linux.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2 * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3 *
4 *
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/gcc_intrin.h>
37 #include <asm/pal.h>
38 #include <asm/cacheflush.h>
39 #include <asm/div64.h>
40 #include <asm/tlb.h>
41
42 #include "misc.h"
43 #include "vti.h"
44 #include "iodev.h"
45 #include "ioapic.h"
46 #include "lapic.h"
47
48 static unsigned long kvm_vmm_base;
49 static unsigned long kvm_vsa_base;
50 static unsigned long kvm_vm_buffer;
51 static unsigned long kvm_vm_buffer_size;
52 unsigned long kvm_vmm_gp;
53
54 static long vp_env_info;
55
56 static struct kvm_vmm_info *kvm_vmm_info;
57
58 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
59
60 struct kvm_stats_debugfs_item debugfs_entries[] = {
61 { NULL }
62 };
63
64
65 struct fdesc{
66 unsigned long ip;
67 unsigned long gp;
68 };
69
70 static void kvm_flush_icache(unsigned long start, unsigned long len)
71 {
72 int l;
73
74 for (l = 0; l < (len + 32); l += 32)
75 ia64_fc(start + l);
76
77 ia64_sync_i();
78 ia64_srlz_i();
79 }
80
81 static void kvm_flush_tlb_all(void)
82 {
83 unsigned long i, j, count0, count1, stride0, stride1, addr;
84 long flags;
85
86 addr = local_cpu_data->ptce_base;
87 count0 = local_cpu_data->ptce_count[0];
88 count1 = local_cpu_data->ptce_count[1];
89 stride0 = local_cpu_data->ptce_stride[0];
90 stride1 = local_cpu_data->ptce_stride[1];
91
92 local_irq_save(flags);
93 for (i = 0; i < count0; ++i) {
94 for (j = 0; j < count1; ++j) {
95 ia64_ptce(addr);
96 addr += stride1;
97 }
98 addr += stride0;
99 }
100 local_irq_restore(flags);
101 ia64_srlz_i(); /* srlz.i implies srlz.d */
102 }
103
104 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
105 {
106 struct ia64_pal_retval iprv;
107
108 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
109 (u64)opt_handler);
110
111 return iprv.status;
112 }
113
114 static DEFINE_SPINLOCK(vp_lock);
115
116 void kvm_arch_hardware_enable(void *garbage)
117 {
118 long status;
119 long tmp_base;
120 unsigned long pte;
121 unsigned long saved_psr;
122 int slot;
123
124 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
125 PAGE_KERNEL));
126 local_irq_save(saved_psr);
127 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
128 local_irq_restore(saved_psr);
129 if (slot < 0)
130 return;
131
132 spin_lock(&vp_lock);
133 status = ia64_pal_vp_init_env(kvm_vsa_base ?
134 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
135 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
136 if (status != 0) {
137 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
138 return ;
139 }
140
141 if (!kvm_vsa_base) {
142 kvm_vsa_base = tmp_base;
143 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
144 }
145 spin_unlock(&vp_lock);
146 ia64_ptr_entry(0x3, slot);
147 }
148
149 void kvm_arch_hardware_disable(void *garbage)
150 {
151
152 long status;
153 int slot;
154 unsigned long pte;
155 unsigned long saved_psr;
156 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
157
158 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
159 PAGE_KERNEL));
160
161 local_irq_save(saved_psr);
162 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
163 local_irq_restore(saved_psr);
164 if (slot < 0)
165 return;
166
167 status = ia64_pal_vp_exit_env(host_iva);
168 if (status)
169 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
170 status);
171 ia64_ptr_entry(0x3, slot);
172 }
173
174 void kvm_arch_check_processor_compat(void *rtn)
175 {
176 *(int *)rtn = 0;
177 }
178
179 int kvm_dev_ioctl_check_extension(long ext)
180 {
181
182 int r;
183
184 switch (ext) {
185 case KVM_CAP_IRQCHIP:
186 case KVM_CAP_USER_MEMORY:
187
188 r = 1;
189 break;
190 case KVM_CAP_COALESCED_MMIO:
191 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
192 break;
193 default:
194 r = 0;
195 }
196 return r;
197
198 }
199
200 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
201 gpa_t addr, int len, int is_write)
202 {
203 struct kvm_io_device *dev;
204
205 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
206
207 return dev;
208 }
209
210 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
211 {
212 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
213 kvm_run->hw.hardware_exit_reason = 1;
214 return 0;
215 }
216
217 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
218 {
219 struct kvm_mmio_req *p;
220 struct kvm_io_device *mmio_dev;
221
222 p = kvm_get_vcpu_ioreq(vcpu);
223
224 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
225 goto mmio;
226 vcpu->mmio_needed = 1;
227 vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
228 vcpu->mmio_size = kvm_run->mmio.len = p->size;
229 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
230
231 if (vcpu->mmio_is_write)
232 memcpy(vcpu->mmio_data, &p->data, p->size);
233 memcpy(kvm_run->mmio.data, &p->data, p->size);
234 kvm_run->exit_reason = KVM_EXIT_MMIO;
235 return 0;
236 mmio:
237 mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
238 if (mmio_dev) {
239 if (!p->dir)
240 kvm_iodevice_write(mmio_dev, p->addr, p->size,
241 &p->data);
242 else
243 kvm_iodevice_read(mmio_dev, p->addr, p->size,
244 &p->data);
245
246 } else
247 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
248 p->state = STATE_IORESP_READY;
249
250 return 1;
251 }
252
253 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
254 {
255 struct exit_ctl_data *p;
256
257 p = kvm_get_exit_data(vcpu);
258
259 if (p->exit_reason == EXIT_REASON_PAL_CALL)
260 return kvm_pal_emul(vcpu, kvm_run);
261 else {
262 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
263 kvm_run->hw.hardware_exit_reason = 2;
264 return 0;
265 }
266 }
267
268 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
269 {
270 struct exit_ctl_data *p;
271
272 p = kvm_get_exit_data(vcpu);
273
274 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
275 kvm_sal_emul(vcpu);
276 return 1;
277 } else {
278 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
279 kvm_run->hw.hardware_exit_reason = 3;
280 return 0;
281 }
282
283 }
284
285 /*
286 * offset: address offset to IPI space.
287 * value: deliver value.
288 */
289 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
290 uint64_t vector)
291 {
292 switch (dm) {
293 case SAPIC_FIXED:
294 kvm_apic_set_irq(vcpu, vector, 0);
295 break;
296 case SAPIC_NMI:
297 kvm_apic_set_irq(vcpu, 2, 0);
298 break;
299 case SAPIC_EXTINT:
300 kvm_apic_set_irq(vcpu, 0, 0);
301 break;
302 case SAPIC_INIT:
303 case SAPIC_PMI:
304 default:
305 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
306 break;
307 }
308 }
309
310 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
311 unsigned long eid)
312 {
313 union ia64_lid lid;
314 int i;
315
316 for (i = 0; i < KVM_MAX_VCPUS; i++) {
317 if (kvm->vcpus[i]) {
318 lid.val = VCPU_LID(kvm->vcpus[i]);
319 if (lid.id == id && lid.eid == eid)
320 return kvm->vcpus[i];
321 }
322 }
323
324 return NULL;
325 }
326
327 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
328 {
329 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
330 struct kvm_vcpu *target_vcpu;
331 struct kvm_pt_regs *regs;
332 union ia64_ipi_a addr = p->u.ipi_data.addr;
333 union ia64_ipi_d data = p->u.ipi_data.data;
334
335 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
336 if (!target_vcpu)
337 return handle_vm_error(vcpu, kvm_run);
338
339 if (!target_vcpu->arch.launched) {
340 regs = vcpu_regs(target_vcpu);
341
342 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
343 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
344
345 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
346 if (waitqueue_active(&target_vcpu->wq))
347 wake_up_interruptible(&target_vcpu->wq);
348 } else {
349 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
350 if (target_vcpu != vcpu)
351 kvm_vcpu_kick(target_vcpu);
352 }
353
354 return 1;
355 }
356
357 struct call_data {
358 struct kvm_ptc_g ptc_g_data;
359 struct kvm_vcpu *vcpu;
360 };
361
362 static void vcpu_global_purge(void *info)
363 {
364 struct call_data *p = (struct call_data *)info;
365 struct kvm_vcpu *vcpu = p->vcpu;
366
367 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
368 return;
369
370 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
371 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
372 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
373 p->ptc_g_data;
374 } else {
375 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
376 vcpu->arch.ptc_g_count = 0;
377 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
378 }
379 }
380
381 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
382 {
383 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
384 struct kvm *kvm = vcpu->kvm;
385 struct call_data call_data;
386 int i;
387 call_data.ptc_g_data = p->u.ptc_g_data;
388
389 for (i = 0; i < KVM_MAX_VCPUS; i++) {
390 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
391 KVM_MP_STATE_UNINITIALIZED ||
392 vcpu == kvm->vcpus[i])
393 continue;
394
395 if (waitqueue_active(&kvm->vcpus[i]->wq))
396 wake_up_interruptible(&kvm->vcpus[i]->wq);
397
398 if (kvm->vcpus[i]->cpu != -1) {
399 call_data.vcpu = kvm->vcpus[i];
400 smp_call_function_single(kvm->vcpus[i]->cpu,
401 vcpu_global_purge, &call_data, 1);
402 } else
403 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
404
405 }
406 return 1;
407 }
408
409 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
410 {
411 return 1;
412 }
413
414 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
415 {
416
417 ktime_t kt;
418 long itc_diff;
419 unsigned long vcpu_now_itc;
420
421 unsigned long expires;
422 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
423 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
424 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
425
426 vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
427
428 if (time_after(vcpu_now_itc, vpd->itm)) {
429 vcpu->arch.timer_check = 1;
430 return 1;
431 }
432 itc_diff = vpd->itm - vcpu_now_itc;
433 if (itc_diff < 0)
434 itc_diff = -itc_diff;
435
436 expires = div64_u64(itc_diff, cyc_per_usec);
437 kt = ktime_set(0, 1000 * expires);
438 vcpu->arch.ht_active = 1;
439 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
440
441 if (irqchip_in_kernel(vcpu->kvm)) {
442 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
443 kvm_vcpu_block(vcpu);
444 hrtimer_cancel(p_ht);
445 vcpu->arch.ht_active = 0;
446
447 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
448 return -EINTR;
449 return 1;
450 } else {
451 printk(KERN_ERR"kvm: Unsupported userspace halt!");
452 return 0;
453 }
454 }
455
456 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
457 struct kvm_run *kvm_run)
458 {
459 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
460 return 0;
461 }
462
463 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
464 struct kvm_run *kvm_run)
465 {
466 return 1;
467 }
468
469 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
470 struct kvm_run *kvm_run) = {
471 [EXIT_REASON_VM_PANIC] = handle_vm_error,
472 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
473 [EXIT_REASON_PAL_CALL] = handle_pal_call,
474 [EXIT_REASON_SAL_CALL] = handle_sal_call,
475 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
476 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
477 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
478 [EXIT_REASON_IPI] = handle_ipi,
479 [EXIT_REASON_PTC_G] = handle_global_purge,
480
481 };
482
483 static const int kvm_vti_max_exit_handlers =
484 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
485
486 static void kvm_prepare_guest_switch(struct kvm_vcpu *vcpu)
487 {
488 }
489
490 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
491 {
492 struct exit_ctl_data *p_exit_data;
493
494 p_exit_data = kvm_get_exit_data(vcpu);
495 return p_exit_data->exit_reason;
496 }
497
498 /*
499 * The guest has exited. See if we can fix it or if we need userspace
500 * assistance.
501 */
502 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
503 {
504 u32 exit_reason = kvm_get_exit_reason(vcpu);
505 vcpu->arch.last_exit = exit_reason;
506
507 if (exit_reason < kvm_vti_max_exit_handlers
508 && kvm_vti_exit_handlers[exit_reason])
509 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
510 else {
511 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
512 kvm_run->hw.hardware_exit_reason = exit_reason;
513 }
514 return 0;
515 }
516
517 static inline void vti_set_rr6(unsigned long rr6)
518 {
519 ia64_set_rr(RR6, rr6);
520 ia64_srlz_i();
521 }
522
523 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
524 {
525 unsigned long pte;
526 struct kvm *kvm = vcpu->kvm;
527 int r;
528
529 /*Insert a pair of tr to map vmm*/
530 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
531 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
532 if (r < 0)
533 goto out;
534 vcpu->arch.vmm_tr_slot = r;
535 /*Insert a pairt of tr to map data of vm*/
536 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
537 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
538 pte, KVM_VM_DATA_SHIFT);
539 if (r < 0)
540 goto out;
541 vcpu->arch.vm_tr_slot = r;
542 r = 0;
543 out:
544 return r;
545
546 }
547
548 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
549 {
550
551 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
552 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
553
554 }
555
556 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
557 {
558 int cpu = smp_processor_id();
559
560 if (vcpu->arch.last_run_cpu != cpu ||
561 per_cpu(last_vcpu, cpu) != vcpu) {
562 per_cpu(last_vcpu, cpu) = vcpu;
563 vcpu->arch.last_run_cpu = cpu;
564 kvm_flush_tlb_all();
565 }
566
567 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
568 vti_set_rr6(vcpu->arch.vmm_rr);
569 return kvm_insert_vmm_mapping(vcpu);
570 }
571 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
572 {
573 kvm_purge_vmm_mapping(vcpu);
574 vti_set_rr6(vcpu->arch.host_rr6);
575 }
576
577 static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
578 {
579 union context *host_ctx, *guest_ctx;
580 int r;
581
582 /*Get host and guest context with guest address space.*/
583 host_ctx = kvm_get_host_context(vcpu);
584 guest_ctx = kvm_get_guest_context(vcpu);
585
586 r = kvm_vcpu_pre_transition(vcpu);
587 if (r < 0)
588 goto out;
589 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
590 kvm_vcpu_post_transition(vcpu);
591 r = 0;
592 out:
593 return r;
594 }
595
596 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
597 {
598 int r;
599
600 again:
601 preempt_disable();
602
603 kvm_prepare_guest_switch(vcpu);
604 local_irq_disable();
605
606 if (signal_pending(current)) {
607 local_irq_enable();
608 preempt_enable();
609 r = -EINTR;
610 kvm_run->exit_reason = KVM_EXIT_INTR;
611 goto out;
612 }
613
614 vcpu->guest_mode = 1;
615 kvm_guest_enter();
616
617 r = vti_vcpu_run(vcpu, kvm_run);
618 if (r < 0) {
619 local_irq_enable();
620 preempt_enable();
621 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
622 goto out;
623 }
624
625 vcpu->arch.launched = 1;
626 vcpu->guest_mode = 0;
627 local_irq_enable();
628
629 /*
630 * We must have an instruction between local_irq_enable() and
631 * kvm_guest_exit(), so the timer interrupt isn't delayed by
632 * the interrupt shadow. The stat.exits increment will do nicely.
633 * But we need to prevent reordering, hence this barrier():
634 */
635 barrier();
636
637 kvm_guest_exit();
638
639 preempt_enable();
640
641 r = kvm_handle_exit(kvm_run, vcpu);
642
643 if (r > 0) {
644 if (!need_resched())
645 goto again;
646 }
647
648 out:
649 if (r > 0) {
650 kvm_resched(vcpu);
651 goto again;
652 }
653
654 return r;
655 }
656
657 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
658 {
659 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
660
661 if (!vcpu->mmio_is_write)
662 memcpy(&p->data, vcpu->mmio_data, 8);
663 p->state = STATE_IORESP_READY;
664 }
665
666 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
667 {
668 int r;
669 sigset_t sigsaved;
670
671 vcpu_load(vcpu);
672
673 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
674 kvm_vcpu_block(vcpu);
675 vcpu_put(vcpu);
676 return -EAGAIN;
677 }
678
679 if (vcpu->sigset_active)
680 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
681
682 if (vcpu->mmio_needed) {
683 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
684 kvm_set_mmio_data(vcpu);
685 vcpu->mmio_read_completed = 1;
686 vcpu->mmio_needed = 0;
687 }
688 r = __vcpu_run(vcpu, kvm_run);
689
690 if (vcpu->sigset_active)
691 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
692
693 vcpu_put(vcpu);
694 return r;
695 }
696
697 /*
698 * Allocate 16M memory for every vm to hold its specific data.
699 * Its memory map is defined in kvm_host.h.
700 */
701 static struct kvm *kvm_alloc_kvm(void)
702 {
703
704 struct kvm *kvm;
705 uint64_t vm_base;
706
707 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
708
709 if (!vm_base)
710 return ERR_PTR(-ENOMEM);
711 printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);
712
713 /* Zero all pages before use! */
714 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
715
716 kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
717 kvm->arch.vm_base = vm_base;
718
719 return kvm;
720 }
721
722 struct kvm_io_range {
723 unsigned long start;
724 unsigned long size;
725 unsigned long type;
726 };
727
728 static const struct kvm_io_range io_ranges[] = {
729 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
730 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
731 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
732 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
733 {PIB_START, PIB_SIZE, GPFN_PIB},
734 };
735
736 static void kvm_build_io_pmt(struct kvm *kvm)
737 {
738 unsigned long i, j;
739
740 /* Mark I/O ranges */
741 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
742 i++) {
743 for (j = io_ranges[i].start;
744 j < io_ranges[i].start + io_ranges[i].size;
745 j += PAGE_SIZE)
746 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
747 io_ranges[i].type, 0);
748 }
749
750 }
751
752 /*Use unused rids to virtualize guest rid.*/
753 #define GUEST_PHYSICAL_RR0 0x1739
754 #define GUEST_PHYSICAL_RR4 0x2739
755 #define VMM_INIT_RR 0x1660
756
757 static void kvm_init_vm(struct kvm *kvm)
758 {
759 long vm_base;
760
761 BUG_ON(!kvm);
762
763 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
764 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
765 kvm->arch.vmm_init_rr = VMM_INIT_RR;
766
767 vm_base = kvm->arch.vm_base;
768 if (vm_base) {
769 kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
770 kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
771 kvm->arch.vpd_base = vm_base + KVM_VPD_OFS;
772 }
773
774 /*
775 *Fill P2M entries for MMIO/IO ranges
776 */
777 kvm_build_io_pmt(kvm);
778
779 }
780
781 struct kvm *kvm_arch_create_vm(void)
782 {
783 struct kvm *kvm = kvm_alloc_kvm();
784
785 if (IS_ERR(kvm))
786 return ERR_PTR(-ENOMEM);
787 kvm_init_vm(kvm);
788
789 return kvm;
790
791 }
792
793 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
794 struct kvm_irqchip *chip)
795 {
796 int r;
797
798 r = 0;
799 switch (chip->chip_id) {
800 case KVM_IRQCHIP_IOAPIC:
801 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
802 sizeof(struct kvm_ioapic_state));
803 break;
804 default:
805 r = -EINVAL;
806 break;
807 }
808 return r;
809 }
810
811 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
812 {
813 int r;
814
815 r = 0;
816 switch (chip->chip_id) {
817 case KVM_IRQCHIP_IOAPIC:
818 memcpy(ioapic_irqchip(kvm),
819 &chip->chip.ioapic,
820 sizeof(struct kvm_ioapic_state));
821 break;
822 default:
823 r = -EINVAL;
824 break;
825 }
826 return r;
827 }
828
829 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
830
831 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
832 {
833 int i;
834 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
835 int r;
836
837 vcpu_load(vcpu);
838
839 for (i = 0; i < 16; i++) {
840 vpd->vgr[i] = regs->vpd.vgr[i];
841 vpd->vbgr[i] = regs->vpd.vbgr[i];
842 }
843 for (i = 0; i < 128; i++)
844 vpd->vcr[i] = regs->vpd.vcr[i];
845 vpd->vhpi = regs->vpd.vhpi;
846 vpd->vnat = regs->vpd.vnat;
847 vpd->vbnat = regs->vpd.vbnat;
848 vpd->vpsr = regs->vpd.vpsr;
849
850 vpd->vpr = regs->vpd.vpr;
851
852 r = -EFAULT;
853 r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
854 sizeof(union context));
855 if (r)
856 goto out;
857 r = copy_from_user(vcpu + 1, regs->saved_stack +
858 sizeof(struct kvm_vcpu),
859 IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
860 if (r)
861 goto out;
862 vcpu->arch.exit_data =
863 ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
864
865 RESTORE_REGS(mp_state);
866 RESTORE_REGS(vmm_rr);
867 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
868 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
869 RESTORE_REGS(itr_regions);
870 RESTORE_REGS(dtr_regions);
871 RESTORE_REGS(tc_regions);
872 RESTORE_REGS(irq_check);
873 RESTORE_REGS(itc_check);
874 RESTORE_REGS(timer_check);
875 RESTORE_REGS(timer_pending);
876 RESTORE_REGS(last_itc);
877 for (i = 0; i < 8; i++) {
878 vcpu->arch.vrr[i] = regs->vrr[i];
879 vcpu->arch.ibr[i] = regs->ibr[i];
880 vcpu->arch.dbr[i] = regs->dbr[i];
881 }
882 for (i = 0; i < 4; i++)
883 vcpu->arch.insvc[i] = regs->insvc[i];
884 RESTORE_REGS(xtp);
885 RESTORE_REGS(metaphysical_rr0);
886 RESTORE_REGS(metaphysical_rr4);
887 RESTORE_REGS(metaphysical_saved_rr0);
888 RESTORE_REGS(metaphysical_saved_rr4);
889 RESTORE_REGS(fp_psr);
890 RESTORE_REGS(saved_gp);
891
892 vcpu->arch.irq_new_pending = 1;
893 vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
894 set_bit(KVM_REQ_RESUME, &vcpu->requests);
895
896 vcpu_put(vcpu);
897 r = 0;
898 out:
899 return r;
900 }
901
902 long kvm_arch_vm_ioctl(struct file *filp,
903 unsigned int ioctl, unsigned long arg)
904 {
905 struct kvm *kvm = filp->private_data;
906 void __user *argp = (void __user *)arg;
907 int r = -EINVAL;
908
909 switch (ioctl) {
910 case KVM_SET_MEMORY_REGION: {
911 struct kvm_memory_region kvm_mem;
912 struct kvm_userspace_memory_region kvm_userspace_mem;
913
914 r = -EFAULT;
915 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
916 goto out;
917 kvm_userspace_mem.slot = kvm_mem.slot;
918 kvm_userspace_mem.flags = kvm_mem.flags;
919 kvm_userspace_mem.guest_phys_addr =
920 kvm_mem.guest_phys_addr;
921 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
922 r = kvm_vm_ioctl_set_memory_region(kvm,
923 &kvm_userspace_mem, 0);
924 if (r)
925 goto out;
926 break;
927 }
928 case KVM_CREATE_IRQCHIP:
929 r = -EFAULT;
930 r = kvm_ioapic_init(kvm);
931 if (r)
932 goto out;
933 break;
934 case KVM_IRQ_LINE: {
935 struct kvm_irq_level irq_event;
936
937 r = -EFAULT;
938 if (copy_from_user(&irq_event, argp, sizeof irq_event))
939 goto out;
940 if (irqchip_in_kernel(kvm)) {
941 mutex_lock(&kvm->lock);
942 kvm_ioapic_set_irq(kvm->arch.vioapic,
943 irq_event.irq,
944 irq_event.level);
945 mutex_unlock(&kvm->lock);
946 r = 0;
947 }
948 break;
949 }
950 case KVM_GET_IRQCHIP: {
951 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
952 struct kvm_irqchip chip;
953
954 r = -EFAULT;
955 if (copy_from_user(&chip, argp, sizeof chip))
956 goto out;
957 r = -ENXIO;
958 if (!irqchip_in_kernel(kvm))
959 goto out;
960 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
961 if (r)
962 goto out;
963 r = -EFAULT;
964 if (copy_to_user(argp, &chip, sizeof chip))
965 goto out;
966 r = 0;
967 break;
968 }
969 case KVM_SET_IRQCHIP: {
970 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
971 struct kvm_irqchip chip;
972
973 r = -EFAULT;
974 if (copy_from_user(&chip, argp, sizeof chip))
975 goto out;
976 r = -ENXIO;
977 if (!irqchip_in_kernel(kvm))
978 goto out;
979 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
980 if (r)
981 goto out;
982 r = 0;
983 break;
984 }
985 default:
986 ;
987 }
988 out:
989 return r;
990 }
991
992 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
993 struct kvm_sregs *sregs)
994 {
995 return -EINVAL;
996 }
997
998 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
999 struct kvm_sregs *sregs)
1000 {
1001 return -EINVAL;
1002
1003 }
1004 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1005 struct kvm_translation *tr)
1006 {
1007
1008 return -EINVAL;
1009 }
1010
1011 static int kvm_alloc_vmm_area(void)
1012 {
1013 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1014 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1015 get_order(KVM_VMM_SIZE));
1016 if (!kvm_vmm_base)
1017 return -ENOMEM;
1018
1019 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1020 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1021
1022 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1023 kvm_vmm_base, kvm_vm_buffer);
1024 }
1025
1026 return 0;
1027 }
1028
1029 static void kvm_free_vmm_area(void)
1030 {
1031 if (kvm_vmm_base) {
1032 /*Zero this area before free to avoid bits leak!!*/
1033 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1034 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1035 kvm_vmm_base = 0;
1036 kvm_vm_buffer = 0;
1037 kvm_vsa_base = 0;
1038 }
1039 }
1040
1041 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1042 {
1043 }
1044
1045 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1046 {
1047 int i;
1048 union cpuid3_t cpuid3;
1049 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1050
1051 if (IS_ERR(vpd))
1052 return PTR_ERR(vpd);
1053
1054 /* CPUID init */
1055 for (i = 0; i < 5; i++)
1056 vpd->vcpuid[i] = ia64_get_cpuid(i);
1057
1058 /* Limit the CPUID number to 5 */
1059 cpuid3.value = vpd->vcpuid[3];
1060 cpuid3.number = 4; /* 5 - 1 */
1061 vpd->vcpuid[3] = cpuid3.value;
1062
1063 /*Set vac and vdc fields*/
1064 vpd->vac.a_from_int_cr = 1;
1065 vpd->vac.a_to_int_cr = 1;
1066 vpd->vac.a_from_psr = 1;
1067 vpd->vac.a_from_cpuid = 1;
1068 vpd->vac.a_cover = 1;
1069 vpd->vac.a_bsw = 1;
1070 vpd->vac.a_int = 1;
1071 vpd->vdc.d_vmsw = 1;
1072
1073 /*Set virtual buffer*/
1074 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1075
1076 return 0;
1077 }
1078
1079 static int vti_create_vp(struct kvm_vcpu *vcpu)
1080 {
1081 long ret;
1082 struct vpd *vpd = vcpu->arch.vpd;
1083 unsigned long vmm_ivt;
1084
1085 vmm_ivt = kvm_vmm_info->vmm_ivt;
1086
1087 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1088
1089 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1090
1091 if (ret) {
1092 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1093 return -EINVAL;
1094 }
1095 return 0;
1096 }
1097
1098 static void init_ptce_info(struct kvm_vcpu *vcpu)
1099 {
1100 ia64_ptce_info_t ptce = {0};
1101
1102 ia64_get_ptce(&ptce);
1103 vcpu->arch.ptce_base = ptce.base;
1104 vcpu->arch.ptce_count[0] = ptce.count[0];
1105 vcpu->arch.ptce_count[1] = ptce.count[1];
1106 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1107 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1108 }
1109
1110 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1111 {
1112 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1113
1114 if (hrtimer_cancel(p_ht))
1115 hrtimer_start(p_ht, p_ht->expires, HRTIMER_MODE_ABS);
1116 }
1117
1118 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1119 {
1120 struct kvm_vcpu *vcpu;
1121 wait_queue_head_t *q;
1122
1123 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1124 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1125 goto out;
1126
1127 q = &vcpu->wq;
1128 if (waitqueue_active(q)) {
1129 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1130 wake_up_interruptible(q);
1131 }
1132 out:
1133 vcpu->arch.timer_check = 1;
1134 return HRTIMER_NORESTART;
1135 }
1136
1137 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1138
1139 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1140 {
1141 struct kvm_vcpu *v;
1142 int r;
1143 int i;
1144 long itc_offset;
1145 struct kvm *kvm = vcpu->kvm;
1146 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1147
1148 union context *p_ctx = &vcpu->arch.guest;
1149 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1150
1151 /*Init vcpu context for first run.*/
1152 if (IS_ERR(vmm_vcpu))
1153 return PTR_ERR(vmm_vcpu);
1154
1155 if (vcpu->vcpu_id == 0) {
1156 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1157
1158 /*Set entry address for first run.*/
1159 regs->cr_iip = PALE_RESET_ENTRY;
1160
1161 /*Initilize itc offset for vcpus*/
1162 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1163 for (i = 0; i < MAX_VCPU_NUM; i++) {
1164 v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
1165 v->arch.itc_offset = itc_offset;
1166 v->arch.last_itc = 0;
1167 }
1168 } else
1169 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1170
1171 r = -ENOMEM;
1172 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1173 if (!vcpu->arch.apic)
1174 goto out;
1175 vcpu->arch.apic->vcpu = vcpu;
1176
1177 p_ctx->gr[1] = 0;
1178 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
1179 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1180 p_ctx->psr = 0x1008522000UL;
1181 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1182 p_ctx->caller_unat = 0;
1183 p_ctx->pr = 0x0;
1184 p_ctx->ar[36] = 0x0; /*unat*/
1185 p_ctx->ar[19] = 0x0; /*rnat*/
1186 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1187 ((sizeof(struct kvm_vcpu)+15) & ~15);
1188 p_ctx->ar[64] = 0x0; /*pfs*/
1189 p_ctx->cr[0] = 0x7e04UL;
1190 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1191 p_ctx->cr[8] = 0x3c;
1192
1193 /*Initilize region register*/
1194 p_ctx->rr[0] = 0x30;
1195 p_ctx->rr[1] = 0x30;
1196 p_ctx->rr[2] = 0x30;
1197 p_ctx->rr[3] = 0x30;
1198 p_ctx->rr[4] = 0x30;
1199 p_ctx->rr[5] = 0x30;
1200 p_ctx->rr[7] = 0x30;
1201
1202 /*Initilize branch register 0*/
1203 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1204
1205 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1206 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1207 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1208
1209 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1210 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1211
1212 vcpu->arch.last_run_cpu = -1;
1213 vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
1214 vcpu->arch.vsa_base = kvm_vsa_base;
1215 vcpu->arch.__gp = kvm_vmm_gp;
1216 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1217 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
1218 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
1219 init_ptce_info(vcpu);
1220
1221 r = 0;
1222 out:
1223 return r;
1224 }
1225
1226 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1227 {
1228 unsigned long psr;
1229 int r;
1230
1231 local_irq_save(psr);
1232 r = kvm_insert_vmm_mapping(vcpu);
1233 if (r)
1234 goto fail;
1235 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1236 if (r)
1237 goto fail;
1238
1239 r = vti_init_vpd(vcpu);
1240 if (r) {
1241 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1242 goto uninit;
1243 }
1244
1245 r = vti_create_vp(vcpu);
1246 if (r)
1247 goto uninit;
1248
1249 kvm_purge_vmm_mapping(vcpu);
1250 local_irq_restore(psr);
1251
1252 return 0;
1253 uninit:
1254 kvm_vcpu_uninit(vcpu);
1255 fail:
1256 local_irq_restore(psr);
1257 return r;
1258 }
1259
1260 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1261 unsigned int id)
1262 {
1263 struct kvm_vcpu *vcpu;
1264 unsigned long vm_base = kvm->arch.vm_base;
1265 int r;
1266 int cpu;
1267
1268 r = -ENOMEM;
1269 if (!vm_base) {
1270 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1271 goto fail;
1272 }
1273 vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
1274 vcpu->kvm = kvm;
1275
1276 cpu = get_cpu();
1277 vti_vcpu_load(vcpu, cpu);
1278 r = vti_vcpu_setup(vcpu, id);
1279 put_cpu();
1280
1281 if (r) {
1282 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1283 goto fail;
1284 }
1285
1286 return vcpu;
1287 fail:
1288 return ERR_PTR(r);
1289 }
1290
1291 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1292 {
1293 return 0;
1294 }
1295
1296 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1297 {
1298 return -EINVAL;
1299 }
1300
1301 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1302 {
1303 return -EINVAL;
1304 }
1305
1306 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1307 struct kvm_debug_guest *dbg)
1308 {
1309 return -EINVAL;
1310 }
1311
1312 static void free_kvm(struct kvm *kvm)
1313 {
1314 unsigned long vm_base = kvm->arch.vm_base;
1315
1316 if (vm_base) {
1317 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1318 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1319 }
1320
1321 }
1322
1323 static void kvm_release_vm_pages(struct kvm *kvm)
1324 {
1325 struct kvm_memory_slot *memslot;
1326 int i, j;
1327 unsigned long base_gfn;
1328
1329 for (i = 0; i < kvm->nmemslots; i++) {
1330 memslot = &kvm->memslots[i];
1331 base_gfn = memslot->base_gfn;
1332
1333 for (j = 0; j < memslot->npages; j++) {
1334 if (memslot->rmap[j])
1335 put_page((struct page *)memslot->rmap[j]);
1336 }
1337 }
1338 }
1339
1340 void kvm_arch_destroy_vm(struct kvm *kvm)
1341 {
1342 kfree(kvm->arch.vioapic);
1343 kvm_release_vm_pages(kvm);
1344 kvm_free_physmem(kvm);
1345 free_kvm(kvm);
1346 }
1347
1348 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1349 {
1350 }
1351
1352 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1353 {
1354 if (cpu != vcpu->cpu) {
1355 vcpu->cpu = cpu;
1356 if (vcpu->arch.ht_active)
1357 kvm_migrate_hlt_timer(vcpu);
1358 }
1359 }
1360
1361 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1362
1363 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1364 {
1365 int i;
1366 int r;
1367 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1368 vcpu_load(vcpu);
1369
1370 for (i = 0; i < 16; i++) {
1371 regs->vpd.vgr[i] = vpd->vgr[i];
1372 regs->vpd.vbgr[i] = vpd->vbgr[i];
1373 }
1374 for (i = 0; i < 128; i++)
1375 regs->vpd.vcr[i] = vpd->vcr[i];
1376 regs->vpd.vhpi = vpd->vhpi;
1377 regs->vpd.vnat = vpd->vnat;
1378 regs->vpd.vbnat = vpd->vbnat;
1379 regs->vpd.vpsr = vpd->vpsr;
1380 regs->vpd.vpr = vpd->vpr;
1381
1382 r = -EFAULT;
1383 r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
1384 sizeof(union context));
1385 if (r)
1386 goto out;
1387 r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
1388 if (r)
1389 goto out;
1390 SAVE_REGS(mp_state);
1391 SAVE_REGS(vmm_rr);
1392 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1393 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1394 SAVE_REGS(itr_regions);
1395 SAVE_REGS(dtr_regions);
1396 SAVE_REGS(tc_regions);
1397 SAVE_REGS(irq_check);
1398 SAVE_REGS(itc_check);
1399 SAVE_REGS(timer_check);
1400 SAVE_REGS(timer_pending);
1401 SAVE_REGS(last_itc);
1402 for (i = 0; i < 8; i++) {
1403 regs->vrr[i] = vcpu->arch.vrr[i];
1404 regs->ibr[i] = vcpu->arch.ibr[i];
1405 regs->dbr[i] = vcpu->arch.dbr[i];
1406 }
1407 for (i = 0; i < 4; i++)
1408 regs->insvc[i] = vcpu->arch.insvc[i];
1409 regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1410 SAVE_REGS(xtp);
1411 SAVE_REGS(metaphysical_rr0);
1412 SAVE_REGS(metaphysical_rr4);
1413 SAVE_REGS(metaphysical_saved_rr0);
1414 SAVE_REGS(metaphysical_saved_rr4);
1415 SAVE_REGS(fp_psr);
1416 SAVE_REGS(saved_gp);
1417 vcpu_put(vcpu);
1418 r = 0;
1419 out:
1420 return r;
1421 }
1422
1423 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1424 {
1425
1426 hrtimer_cancel(&vcpu->arch.hlt_timer);
1427 kfree(vcpu->arch.apic);
1428 }
1429
1430
1431 long kvm_arch_vcpu_ioctl(struct file *filp,
1432 unsigned int ioctl, unsigned long arg)
1433 {
1434 return -EINVAL;
1435 }
1436
1437 int kvm_arch_set_memory_region(struct kvm *kvm,
1438 struct kvm_userspace_memory_region *mem,
1439 struct kvm_memory_slot old,
1440 int user_alloc)
1441 {
1442 unsigned long i;
1443 struct page *page;
1444 int npages = mem->memory_size >> PAGE_SHIFT;
1445 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1446 unsigned long base_gfn = memslot->base_gfn;
1447
1448 for (i = 0; i < npages; i++) {
1449 page = gfn_to_page(kvm, base_gfn + i);
1450 kvm_set_pmt_entry(kvm, base_gfn + i,
1451 page_to_pfn(page) << PAGE_SHIFT,
1452 _PAGE_AR_RWX|_PAGE_MA_WB);
1453 memslot->rmap[i] = (unsigned long)page;
1454 }
1455
1456 return 0;
1457 }
1458
1459 void kvm_arch_flush_shadow(struct kvm *kvm)
1460 {
1461 }
1462
1463 long kvm_arch_dev_ioctl(struct file *filp,
1464 unsigned int ioctl, unsigned long arg)
1465 {
1466 return -EINVAL;
1467 }
1468
1469 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1470 {
1471 kvm_vcpu_uninit(vcpu);
1472 }
1473
1474 static int vti_cpu_has_kvm_support(void)
1475 {
1476 long avail = 1, status = 1, control = 1;
1477 long ret;
1478
1479 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1480 if (ret)
1481 goto out;
1482
1483 if (!(avail & PAL_PROC_VM_BIT))
1484 goto out;
1485
1486 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1487
1488 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1489 if (ret)
1490 goto out;
1491 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1492
1493 if (!(vp_env_info & VP_OPCODE)) {
1494 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1495 "vm_env_info:0x%lx\n", vp_env_info);
1496 }
1497
1498 return 1;
1499 out:
1500 return 0;
1501 }
1502
1503 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1504 struct module *module)
1505 {
1506 unsigned long module_base;
1507 unsigned long vmm_size;
1508
1509 unsigned long vmm_offset, func_offset, fdesc_offset;
1510 struct fdesc *p_fdesc;
1511
1512 BUG_ON(!module);
1513
1514 if (!kvm_vmm_base) {
1515 printk("kvm: kvm area hasn't been initilized yet!!\n");
1516 return -EFAULT;
1517 }
1518
1519 /*Calculate new position of relocated vmm module.*/
1520 module_base = (unsigned long)module->module_core;
1521 vmm_size = module->core_size;
1522 if (unlikely(vmm_size > KVM_VMM_SIZE))
1523 return -EFAULT;
1524
1525 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1526 kvm_flush_icache(kvm_vmm_base, vmm_size);
1527
1528 /*Recalculate kvm_vmm_info based on new VMM*/
1529 vmm_offset = vmm_info->vmm_ivt - module_base;
1530 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1531 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1532 kvm_vmm_info->vmm_ivt);
1533
1534 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1535 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1536 fdesc_offset);
1537 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1538 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1539 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1540 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1541
1542 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1543 KVM_VMM_BASE+func_offset);
1544
1545 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1546 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1547 fdesc_offset);
1548 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1549 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1550 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1551 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1552
1553 kvm_vmm_gp = p_fdesc->gp;
1554
1555 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1556 kvm_vmm_info->vmm_entry);
1557 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1558 KVM_VMM_BASE + func_offset);
1559
1560 return 0;
1561 }
1562
1563 int kvm_arch_init(void *opaque)
1564 {
1565 int r;
1566 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1567
1568 if (!vti_cpu_has_kvm_support()) {
1569 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1570 r = -EOPNOTSUPP;
1571 goto out;
1572 }
1573
1574 if (kvm_vmm_info) {
1575 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1576 r = -EEXIST;
1577 goto out;
1578 }
1579
1580 r = -ENOMEM;
1581 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1582 if (!kvm_vmm_info)
1583 goto out;
1584
1585 if (kvm_alloc_vmm_area())
1586 goto out_free0;
1587
1588 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1589 if (r)
1590 goto out_free1;
1591
1592 return 0;
1593
1594 out_free1:
1595 kvm_free_vmm_area();
1596 out_free0:
1597 kfree(kvm_vmm_info);
1598 out:
1599 return r;
1600 }
1601
1602 void kvm_arch_exit(void)
1603 {
1604 kvm_free_vmm_area();
1605 kfree(kvm_vmm_info);
1606 kvm_vmm_info = NULL;
1607 }
1608
1609 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1610 struct kvm_dirty_log *log)
1611 {
1612 struct kvm_memory_slot *memslot;
1613 int r, i;
1614 long n, base;
1615 unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
1616 + KVM_MEM_DIRTY_LOG_OFS);
1617
1618 r = -EINVAL;
1619 if (log->slot >= KVM_MEMORY_SLOTS)
1620 goto out;
1621
1622 memslot = &kvm->memslots[log->slot];
1623 r = -ENOENT;
1624 if (!memslot->dirty_bitmap)
1625 goto out;
1626
1627 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1628 base = memslot->base_gfn / BITS_PER_LONG;
1629
1630 for (i = 0; i < n/sizeof(long); ++i) {
1631 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1632 dirty_bitmap[base + i] = 0;
1633 }
1634 r = 0;
1635 out:
1636 return r;
1637 }
1638
1639 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1640 struct kvm_dirty_log *log)
1641 {
1642 int r;
1643 int n;
1644 struct kvm_memory_slot *memslot;
1645 int is_dirty = 0;
1646
1647 spin_lock(&kvm->arch.dirty_log_lock);
1648
1649 r = kvm_ia64_sync_dirty_log(kvm, log);
1650 if (r)
1651 goto out;
1652
1653 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1654 if (r)
1655 goto out;
1656
1657 /* If nothing is dirty, don't bother messing with page tables. */
1658 if (is_dirty) {
1659 kvm_flush_remote_tlbs(kvm);
1660 memslot = &kvm->memslots[log->slot];
1661 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1662 memset(memslot->dirty_bitmap, 0, n);
1663 }
1664 r = 0;
1665 out:
1666 spin_unlock(&kvm->arch.dirty_log_lock);
1667 return r;
1668 }
1669
1670 int kvm_arch_hardware_setup(void)
1671 {
1672 return 0;
1673 }
1674
1675 void kvm_arch_hardware_unsetup(void)
1676 {
1677 }
1678
1679 static void vcpu_kick_intr(void *info)
1680 {
1681 #ifdef DEBUG
1682 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1683 printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1684 #endif
1685 }
1686
1687 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1688 {
1689 int ipi_pcpu = vcpu->cpu;
1690
1691 if (waitqueue_active(&vcpu->wq))
1692 wake_up_interruptible(&vcpu->wq);
1693
1694 if (vcpu->guest_mode)
1695 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1696 }
1697
1698 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
1699 {
1700
1701 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1702
1703 if (!test_and_set_bit(vec, &vpd->irr[0])) {
1704 vcpu->arch.irq_new_pending = 1;
1705 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
1706 kvm_vcpu_kick(vcpu);
1707 else if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) {
1708 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1709 if (waitqueue_active(&vcpu->wq))
1710 wake_up_interruptible(&vcpu->wq);
1711 }
1712 return 1;
1713 }
1714 return 0;
1715 }
1716
1717 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1718 {
1719 return apic->vcpu->vcpu_id == dest;
1720 }
1721
1722 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1723 {
1724 return 0;
1725 }
1726
1727 struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
1728 unsigned long bitmap)
1729 {
1730 struct kvm_vcpu *lvcpu = kvm->vcpus[0];
1731 int i;
1732
1733 for (i = 1; i < KVM_MAX_VCPUS; i++) {
1734 if (!kvm->vcpus[i])
1735 continue;
1736 if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
1737 lvcpu = kvm->vcpus[i];
1738 }
1739
1740 return lvcpu;
1741 }
1742
1743 static int find_highest_bits(int *dat)
1744 {
1745 u32 bits, bitnum;
1746 int i;
1747
1748 /* loop for all 256 bits */
1749 for (i = 7; i >= 0 ; i--) {
1750 bits = dat[i];
1751 if (bits) {
1752 bitnum = fls(bits);
1753 return i * 32 + bitnum - 1;
1754 }
1755 }
1756
1757 return -1;
1758 }
1759
1760 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1761 {
1762 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1763
1764 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1765 return NMI_VECTOR;
1766 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1767 return ExtINT_VECTOR;
1768
1769 return find_highest_bits((int *)&vpd->irr[0]);
1770 }
1771
1772 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1773 {
1774 if (kvm_highest_pending_irq(vcpu) != -1)
1775 return 1;
1776 return 0;
1777 }
1778
1779 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1780 {
1781 return 0;
1782 }
1783
1784 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1785 {
1786 return gfn;
1787 }
1788
1789 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1790 {
1791 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1792 }
1793
1794 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1795 struct kvm_mp_state *mp_state)
1796 {
1797 return -EINVAL;
1798 }
1799
1800 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1801 struct kvm_mp_state *mp_state)
1802 {
1803 return -EINVAL;
1804 }
This page took 0.072022 seconds and 6 git commands to generate.