0b567398f38e0319568c43154f00e9fe2456a344
[deliverable/linux.git] / arch / ia64 / mm / discontig.c
1 /*
2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
11 */
12
13 /*
14 * Platform initialization for Discontig Memory
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/meminit.h>
28 #include <asm/numa.h>
29 #include <asm/sections.h>
30
31 /*
32 * Track per-node information needed to setup the boot memory allocator, the
33 * per-node areas, and the real VM.
34 */
35 struct early_node_data {
36 struct ia64_node_data *node_data;
37 unsigned long pernode_addr;
38 unsigned long pernode_size;
39 struct bootmem_data bootmem_data;
40 unsigned long num_physpages;
41 #ifdef CONFIG_ZONE_DMA
42 unsigned long num_dma_physpages;
43 #endif
44 unsigned long min_pfn;
45 unsigned long max_pfn;
46 };
47
48 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
49 static nodemask_t memory_less_mask __initdata;
50
51 pg_data_t *pgdat_list[MAX_NUMNODES];
52
53 /*
54 * To prevent cache aliasing effects, align per-node structures so that they
55 * start at addresses that are strided by node number.
56 */
57 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
58 #define NODEDATA_ALIGN(addr, node) \
59 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
60 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
61
62 /**
63 * build_node_maps - callback to setup bootmem structs for each node
64 * @start: physical start of range
65 * @len: length of range
66 * @node: node where this range resides
67 *
68 * We allocate a struct bootmem_data for each piece of memory that we wish to
69 * treat as a virtually contiguous block (i.e. each node). Each such block
70 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
71 * if necessary. Any non-existent pages will simply be part of the virtual
72 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
73 * memory ranges from the caller.
74 */
75 static int __init build_node_maps(unsigned long start, unsigned long len,
76 int node)
77 {
78 unsigned long cstart, epfn, end = start + len;
79 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
80
81 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
82 cstart = GRANULEROUNDDOWN(start);
83
84 if (!bdp->node_low_pfn) {
85 bdp->node_boot_start = cstart;
86 bdp->node_low_pfn = epfn;
87 } else {
88 bdp->node_boot_start = min(cstart, bdp->node_boot_start);
89 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
90 }
91
92 return 0;
93 }
94
95 /**
96 * early_nr_cpus_node - return number of cpus on a given node
97 * @node: node to check
98 *
99 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
100 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101 * called yet. Note that node 0 will also count all non-existent cpus.
102 */
103 static int __meminit early_nr_cpus_node(int node)
104 {
105 int cpu, n = 0;
106
107 for (cpu = 0; cpu < NR_CPUS; cpu++)
108 if (node == node_cpuid[cpu].nid)
109 n++;
110
111 return n;
112 }
113
114 /**
115 * compute_pernodesize - compute size of pernode data
116 * @node: the node id.
117 */
118 static unsigned long __meminit compute_pernodesize(int node)
119 {
120 unsigned long pernodesize = 0, cpus;
121
122 cpus = early_nr_cpus_node(node);
123 pernodesize += PERCPU_PAGE_SIZE * cpus;
124 pernodesize += node * L1_CACHE_BYTES;
125 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
126 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
127 pernodesize = PAGE_ALIGN(pernodesize);
128 return pernodesize;
129 }
130
131 /**
132 * per_cpu_node_setup - setup per-cpu areas on each node
133 * @cpu_data: per-cpu area on this node
134 * @node: node to setup
135 *
136 * Copy the static per-cpu data into the region we just set aside and then
137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
138 * the end of the area.
139 */
140 static void *per_cpu_node_setup(void *cpu_data, int node)
141 {
142 #ifdef CONFIG_SMP
143 int cpu;
144
145 for (cpu = 0; cpu < NR_CPUS; cpu++) {
146 if (node == node_cpuid[cpu].nid) {
147 memcpy(__va(cpu_data), __phys_per_cpu_start,
148 __per_cpu_end - __per_cpu_start);
149 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
150 __per_cpu_start;
151 cpu_data += PERCPU_PAGE_SIZE;
152 }
153 }
154 #endif
155 return cpu_data;
156 }
157
158 /**
159 * fill_pernode - initialize pernode data.
160 * @node: the node id.
161 * @pernode: physical address of pernode data
162 * @pernodesize: size of the pernode data
163 */
164 static void __init fill_pernode(int node, unsigned long pernode,
165 unsigned long pernodesize)
166 {
167 void *cpu_data;
168 int cpus = early_nr_cpus_node(node);
169 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
170
171 mem_data[node].pernode_addr = pernode;
172 mem_data[node].pernode_size = pernodesize;
173 memset(__va(pernode), 0, pernodesize);
174
175 cpu_data = (void *)pernode;
176 pernode += PERCPU_PAGE_SIZE * cpus;
177 pernode += node * L1_CACHE_BYTES;
178
179 pgdat_list[node] = __va(pernode);
180 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
181
182 mem_data[node].node_data = __va(pernode);
183 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
184
185 pgdat_list[node]->bdata = bdp;
186 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
187
188 cpu_data = per_cpu_node_setup(cpu_data, node);
189
190 return;
191 }
192
193 /**
194 * find_pernode_space - allocate memory for memory map and per-node structures
195 * @start: physical start of range
196 * @len: length of range
197 * @node: node where this range resides
198 *
199 * This routine reserves space for the per-cpu data struct, the list of
200 * pg_data_ts and the per-node data struct. Each node will have something like
201 * the following in the first chunk of addr. space large enough to hold it.
202 *
203 * ________________________
204 * | |
205 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
206 * | PERCPU_PAGE_SIZE * | start and length big enough
207 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
208 * |------------------------|
209 * | local pg_data_t * |
210 * |------------------------|
211 * | local ia64_node_data |
212 * |------------------------|
213 * | ??? |
214 * |________________________|
215 *
216 * Once this space has been set aside, the bootmem maps are initialized. We
217 * could probably move the allocation of the per-cpu and ia64_node_data space
218 * outside of this function and use alloc_bootmem_node(), but doing it here
219 * is straightforward and we get the alignments we want so...
220 */
221 static int __init find_pernode_space(unsigned long start, unsigned long len,
222 int node)
223 {
224 unsigned long epfn;
225 unsigned long pernodesize = 0, pernode, pages, mapsize;
226 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
227
228 epfn = (start + len) >> PAGE_SHIFT;
229
230 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
231 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
232
233 /*
234 * Make sure this memory falls within this node's usable memory
235 * since we may have thrown some away in build_maps().
236 */
237 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
238 return 0;
239
240 /* Don't setup this node's local space twice... */
241 if (mem_data[node].pernode_addr)
242 return 0;
243
244 /*
245 * Calculate total size needed, incl. what's necessary
246 * for good alignment and alias prevention.
247 */
248 pernodesize = compute_pernodesize(node);
249 pernode = NODEDATA_ALIGN(start, node);
250
251 /* Is this range big enough for what we want to store here? */
252 if (start + len > (pernode + pernodesize + mapsize))
253 fill_pernode(node, pernode, pernodesize);
254
255 return 0;
256 }
257
258 /**
259 * free_node_bootmem - free bootmem allocator memory for use
260 * @start: physical start of range
261 * @len: length of range
262 * @node: node where this range resides
263 *
264 * Simply calls the bootmem allocator to free the specified ranged from
265 * the given pg_data_t's bdata struct. After this function has been called
266 * for all the entries in the EFI memory map, the bootmem allocator will
267 * be ready to service allocation requests.
268 */
269 static int __init free_node_bootmem(unsigned long start, unsigned long len,
270 int node)
271 {
272 free_bootmem_node(pgdat_list[node], start, len);
273
274 return 0;
275 }
276
277 /**
278 * reserve_pernode_space - reserve memory for per-node space
279 *
280 * Reserve the space used by the bootmem maps & per-node space in the boot
281 * allocator so that when we actually create the real mem maps we don't
282 * use their memory.
283 */
284 static void __init reserve_pernode_space(void)
285 {
286 unsigned long base, size, pages;
287 struct bootmem_data *bdp;
288 int node;
289
290 for_each_online_node(node) {
291 pg_data_t *pdp = pgdat_list[node];
292
293 if (node_isset(node, memory_less_mask))
294 continue;
295
296 bdp = pdp->bdata;
297
298 /* First the bootmem_map itself */
299 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
300 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
301 base = __pa(bdp->node_bootmem_map);
302 reserve_bootmem_node(pdp, base, size);
303
304 /* Now the per-node space */
305 size = mem_data[node].pernode_size;
306 base = __pa(mem_data[node].pernode_addr);
307 reserve_bootmem_node(pdp, base, size);
308 }
309 }
310
311 static void __meminit scatter_node_data(void)
312 {
313 pg_data_t **dst;
314 int node;
315
316 /*
317 * for_each_online_node() can't be used at here.
318 * node_online_map is not set for hot-added nodes at this time,
319 * because we are halfway through initialization of the new node's
320 * structures. If for_each_online_node() is used, a new node's
321 * pg_data_ptrs will be not initialized. Instead of using it,
322 * pgdat_list[] is checked.
323 */
324 for_each_node(node) {
325 if (pgdat_list[node]) {
326 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
327 memcpy(dst, pgdat_list, sizeof(pgdat_list));
328 }
329 }
330 }
331
332 /**
333 * initialize_pernode_data - fixup per-cpu & per-node pointers
334 *
335 * Each node's per-node area has a copy of the global pg_data_t list, so
336 * we copy that to each node here, as well as setting the per-cpu pointer
337 * to the local node data structure. The active_cpus field of the per-node
338 * structure gets setup by the platform_cpu_init() function later.
339 */
340 static void __init initialize_pernode_data(void)
341 {
342 int cpu, node;
343
344 scatter_node_data();
345
346 #ifdef CONFIG_SMP
347 /* Set the node_data pointer for each per-cpu struct */
348 for (cpu = 0; cpu < NR_CPUS; cpu++) {
349 node = node_cpuid[cpu].nid;
350 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
351 }
352 #else
353 {
354 struct cpuinfo_ia64 *cpu0_cpu_info;
355 cpu = 0;
356 node = node_cpuid[cpu].nid;
357 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
358 ((char *)&per_cpu__cpu_info - __per_cpu_start));
359 cpu0_cpu_info->node_data = mem_data[node].node_data;
360 }
361 #endif /* CONFIG_SMP */
362 }
363
364 /**
365 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
366 * node but fall back to any other node when __alloc_bootmem_node fails
367 * for best.
368 * @nid: node id
369 * @pernodesize: size of this node's pernode data
370 */
371 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
372 {
373 void *ptr = NULL;
374 u8 best = 0xff;
375 int bestnode = -1, node, anynode = 0;
376
377 for_each_online_node(node) {
378 if (node_isset(node, memory_less_mask))
379 continue;
380 else if (node_distance(nid, node) < best) {
381 best = node_distance(nid, node);
382 bestnode = node;
383 }
384 anynode = node;
385 }
386
387 if (bestnode == -1)
388 bestnode = anynode;
389
390 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
391 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
392
393 return ptr;
394 }
395
396 /**
397 * memory_less_nodes - allocate and initialize CPU only nodes pernode
398 * information.
399 */
400 static void __init memory_less_nodes(void)
401 {
402 unsigned long pernodesize;
403 void *pernode;
404 int node;
405
406 for_each_node_mask(node, memory_less_mask) {
407 pernodesize = compute_pernodesize(node);
408 pernode = memory_less_node_alloc(node, pernodesize);
409 fill_pernode(node, __pa(pernode), pernodesize);
410 }
411
412 return;
413 }
414
415 /**
416 * find_memory - walk the EFI memory map and setup the bootmem allocator
417 *
418 * Called early in boot to setup the bootmem allocator, and to
419 * allocate the per-cpu and per-node structures.
420 */
421 void __init find_memory(void)
422 {
423 int node;
424
425 reserve_memory();
426
427 if (num_online_nodes() == 0) {
428 printk(KERN_ERR "node info missing!\n");
429 node_set_online(0);
430 }
431
432 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
433 min_low_pfn = -1;
434 max_low_pfn = 0;
435
436 /* These actually end up getting called by call_pernode_memory() */
437 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
438 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
439 efi_memmap_walk(find_max_min_low_pfn, NULL);
440
441 for_each_online_node(node)
442 if (mem_data[node].bootmem_data.node_low_pfn) {
443 node_clear(node, memory_less_mask);
444 mem_data[node].min_pfn = ~0UL;
445 }
446
447 efi_memmap_walk(register_active_ranges, NULL);
448
449 /*
450 * Initialize the boot memory maps in reverse order since that's
451 * what the bootmem allocator expects
452 */
453 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
454 unsigned long pernode, pernodesize, map;
455 struct bootmem_data *bdp;
456
457 if (!node_online(node))
458 continue;
459 else if (node_isset(node, memory_less_mask))
460 continue;
461
462 bdp = &mem_data[node].bootmem_data;
463 pernode = mem_data[node].pernode_addr;
464 pernodesize = mem_data[node].pernode_size;
465 map = pernode + pernodesize;
466
467 init_bootmem_node(pgdat_list[node],
468 map>>PAGE_SHIFT,
469 bdp->node_boot_start>>PAGE_SHIFT,
470 bdp->node_low_pfn);
471 }
472
473 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
474
475 reserve_pernode_space();
476 memory_less_nodes();
477 initialize_pernode_data();
478
479 max_pfn = max_low_pfn;
480
481 find_initrd();
482 }
483
484 #ifdef CONFIG_SMP
485 /**
486 * per_cpu_init - setup per-cpu variables
487 *
488 * find_pernode_space() does most of this already, we just need to set
489 * local_per_cpu_offset
490 */
491 void __cpuinit *per_cpu_init(void)
492 {
493 int cpu;
494 static int first_time = 1;
495
496
497 if (smp_processor_id() != 0)
498 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
499
500 if (first_time) {
501 first_time = 0;
502 for (cpu = 0; cpu < NR_CPUS; cpu++)
503 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
504 }
505
506 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
507 }
508 #endif /* CONFIG_SMP */
509
510 /**
511 * show_mem - give short summary of memory stats
512 *
513 * Shows a simple page count of reserved and used pages in the system.
514 * For discontig machines, it does this on a per-pgdat basis.
515 */
516 void show_mem(void)
517 {
518 int i, total_reserved = 0;
519 int total_shared = 0, total_cached = 0;
520 unsigned long total_present = 0;
521 pg_data_t *pgdat;
522
523 printk(KERN_INFO "Mem-info:\n");
524 show_free_areas();
525 printk(KERN_INFO "Free swap: %6ldkB\n",
526 nr_swap_pages<<(PAGE_SHIFT-10));
527 printk(KERN_INFO "Node memory in pages:\n");
528 for_each_online_pgdat(pgdat) {
529 unsigned long present;
530 unsigned long flags;
531 int shared = 0, cached = 0, reserved = 0;
532
533 pgdat_resize_lock(pgdat, &flags);
534 present = pgdat->node_present_pages;
535 for(i = 0; i < pgdat->node_spanned_pages; i++) {
536 struct page *page;
537 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
538 touch_nmi_watchdog();
539 if (pfn_valid(pgdat->node_start_pfn + i))
540 page = pfn_to_page(pgdat->node_start_pfn + i);
541 else {
542 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
543 i) - 1;
544 continue;
545 }
546 if (PageReserved(page))
547 reserved++;
548 else if (PageSwapCache(page))
549 cached++;
550 else if (page_count(page))
551 shared += page_count(page)-1;
552 }
553 pgdat_resize_unlock(pgdat, &flags);
554 total_present += present;
555 total_reserved += reserved;
556 total_cached += cached;
557 total_shared += shared;
558 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
559 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
560 present, reserved, shared, cached);
561 }
562 printk(KERN_INFO "%ld pages of RAM\n", total_present);
563 printk(KERN_INFO "%d reserved pages\n", total_reserved);
564 printk(KERN_INFO "%d pages shared\n", total_shared);
565 printk(KERN_INFO "%d pages swap cached\n", total_cached);
566 printk(KERN_INFO "Total of %ld pages in page table cache\n",
567 quicklist_total_size());
568 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
569 }
570
571 /**
572 * call_pernode_memory - use SRAT to call callback functions with node info
573 * @start: physical start of range
574 * @len: length of range
575 * @arg: function to call for each range
576 *
577 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
578 * out to which node a block of memory belongs. Ignore memory that we cannot
579 * identify, and split blocks that run across multiple nodes.
580 *
581 * Take this opportunity to round the start address up and the end address
582 * down to page boundaries.
583 */
584 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
585 {
586 unsigned long rs, re, end = start + len;
587 void (*func)(unsigned long, unsigned long, int);
588 int i;
589
590 start = PAGE_ALIGN(start);
591 end &= PAGE_MASK;
592 if (start >= end)
593 return;
594
595 func = arg;
596
597 if (!num_node_memblks) {
598 /* No SRAT table, so assume one node (node 0) */
599 if (start < end)
600 (*func)(start, end - start, 0);
601 return;
602 }
603
604 for (i = 0; i < num_node_memblks; i++) {
605 rs = max(start, node_memblk[i].start_paddr);
606 re = min(end, node_memblk[i].start_paddr +
607 node_memblk[i].size);
608
609 if (rs < re)
610 (*func)(rs, re - rs, node_memblk[i].nid);
611
612 if (re == end)
613 break;
614 }
615 }
616
617 /**
618 * count_node_pages - callback to build per-node memory info structures
619 * @start: physical start of range
620 * @len: length of range
621 * @node: node where this range resides
622 *
623 * Each node has it's own number of physical pages, DMAable pages, start, and
624 * end page frame number. This routine will be called by call_pernode_memory()
625 * for each piece of usable memory and will setup these values for each node.
626 * Very similar to build_maps().
627 */
628 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
629 {
630 unsigned long end = start + len;
631
632 mem_data[node].num_physpages += len >> PAGE_SHIFT;
633 #ifdef CONFIG_ZONE_DMA
634 if (start <= __pa(MAX_DMA_ADDRESS))
635 mem_data[node].num_dma_physpages +=
636 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
637 #endif
638 start = GRANULEROUNDDOWN(start);
639 start = ORDERROUNDDOWN(start);
640 end = GRANULEROUNDUP(end);
641 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
642 end >> PAGE_SHIFT);
643 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
644 start >> PAGE_SHIFT);
645
646 return 0;
647 }
648
649 /**
650 * paging_init - setup page tables
651 *
652 * paging_init() sets up the page tables for each node of the system and frees
653 * the bootmem allocator memory for general use.
654 */
655 void __init paging_init(void)
656 {
657 unsigned long max_dma;
658 unsigned long pfn_offset = 0;
659 unsigned long max_pfn = 0;
660 int node;
661 unsigned long max_zone_pfns[MAX_NR_ZONES];
662
663 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
664
665 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
666
667 sparse_memory_present_with_active_regions(MAX_NUMNODES);
668 sparse_init();
669
670 #ifdef CONFIG_VIRTUAL_MEM_MAP
671 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
672 sizeof(struct page));
673 vmem_map = (struct page *) vmalloc_end;
674 efi_memmap_walk(create_mem_map_page_table, NULL);
675 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
676 #endif
677
678 for_each_online_node(node) {
679 num_physpages += mem_data[node].num_physpages;
680 pfn_offset = mem_data[node].min_pfn;
681
682 #ifdef CONFIG_VIRTUAL_MEM_MAP
683 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
684 #endif
685 if (mem_data[node].max_pfn > max_pfn)
686 max_pfn = mem_data[node].max_pfn;
687 }
688
689 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
690 #ifdef CONFIG_ZONE_DMA
691 max_zone_pfns[ZONE_DMA] = max_dma;
692 #endif
693 max_zone_pfns[ZONE_NORMAL] = max_pfn;
694 free_area_init_nodes(max_zone_pfns);
695
696 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
697 }
698
699 #ifdef CONFIG_MEMORY_HOTPLUG
700 pg_data_t *arch_alloc_nodedata(int nid)
701 {
702 unsigned long size = compute_pernodesize(nid);
703
704 return kzalloc(size, GFP_KERNEL);
705 }
706
707 void arch_free_nodedata(pg_data_t *pgdat)
708 {
709 kfree(pgdat);
710 }
711
712 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
713 {
714 pgdat_list[update_node] = update_pgdat;
715 scatter_node_data();
716 }
717 #endif
718
719 #ifdef CONFIG_SPARSEMEM_VMEMMAP
720 int __meminit vmemmap_populate(struct page *start_page,
721 unsigned long size, int node)
722 {
723 return vmemmap_populate_basepages(start_page, size, node);
724 }
725 #endif
This page took 0.046554 seconds and 4 git commands to generate.