Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / arch / ia64 / mm / init.c
1 /*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 #include <asm/paravirt.h>
38
39 extern void ia64_tlb_init (void);
40
41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END = VMALLOC_END_INIT;
45 EXPORT_SYMBOL(VMALLOC_END);
46 struct page *vmem_map;
47 EXPORT_SYMBOL(vmem_map);
48 #endif
49
50 struct page *zero_page_memmap_ptr; /* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr);
52
53 void
54 __ia64_sync_icache_dcache (pte_t pte)
55 {
56 unsigned long addr;
57 struct page *page;
58
59 page = pte_page(pte);
60 addr = (unsigned long) page_address(page);
61
62 if (test_bit(PG_arch_1, &page->flags))
63 return; /* i-cache is already coherent with d-cache */
64
65 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
67 }
68
69 /*
70 * Since DMA is i-cache coherent, any (complete) pages that were written via
71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72 * flush them when they get mapped into an executable vm-area.
73 */
74 void
75 dma_mark_clean(void *addr, size_t size)
76 {
77 unsigned long pg_addr, end;
78
79 pg_addr = PAGE_ALIGN((unsigned long) addr);
80 end = (unsigned long) addr + size;
81 while (pg_addr + PAGE_SIZE <= end) {
82 struct page *page = virt_to_page(pg_addr);
83 set_bit(PG_arch_1, &page->flags);
84 pg_addr += PAGE_SIZE;
85 }
86 }
87
88 inline void
89 ia64_set_rbs_bot (void)
90 {
91 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92
93 if (stack_size > MAX_USER_STACK_SIZE)
94 stack_size = MAX_USER_STACK_SIZE;
95 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96 }
97
98 /*
99 * This performs some platform-dependent address space initialization.
100 * On IA-64, we want to setup the VM area for the register backing
101 * store (which grows upwards) and install the gateway page which is
102 * used for signal trampolines, etc.
103 */
104 void
105 ia64_init_addr_space (void)
106 {
107 struct vm_area_struct *vma;
108
109 ia64_set_rbs_bot();
110
111 /*
112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113 * the problem. When the process attempts to write to the register backing store
114 * for the first time, it will get a SEGFAULT in this case.
115 */
116 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117 if (vma) {
118 INIT_LIST_HEAD(&vma->anon_vma_chain);
119 vma->vm_mm = current->mm;
120 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121 vma->vm_end = vma->vm_start + PAGE_SIZE;
122 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124 down_write(&current->mm->mmap_sem);
125 if (insert_vm_struct(current->mm, vma)) {
126 up_write(&current->mm->mmap_sem);
127 kmem_cache_free(vm_area_cachep, vma);
128 return;
129 }
130 up_write(&current->mm->mmap_sem);
131 }
132
133 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134 if (!(current->personality & MMAP_PAGE_ZERO)) {
135 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136 if (vma) {
137 INIT_LIST_HEAD(&vma->anon_vma_chain);
138 vma->vm_mm = current->mm;
139 vma->vm_end = PAGE_SIZE;
140 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142 VM_DONTEXPAND | VM_DONTDUMP;
143 down_write(&current->mm->mmap_sem);
144 if (insert_vm_struct(current->mm, vma)) {
145 up_write(&current->mm->mmap_sem);
146 kmem_cache_free(vm_area_cachep, vma);
147 return;
148 }
149 up_write(&current->mm->mmap_sem);
150 }
151 }
152 }
153
154 void
155 free_initmem (void)
156 {
157 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
158 -1, "unused kernel");
159 }
160
161 void __init
162 free_initrd_mem (unsigned long start, unsigned long end)
163 {
164 /*
165 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
166 * Thus EFI and the kernel may have different page sizes. It is
167 * therefore possible to have the initrd share the same page as
168 * the end of the kernel (given current setup).
169 *
170 * To avoid freeing/using the wrong page (kernel sized) we:
171 * - align up the beginning of initrd
172 * - align down the end of initrd
173 *
174 * | |
175 * |=============| a000
176 * | |
177 * | |
178 * | | 9000
179 * |/////////////|
180 * |/////////////|
181 * |=============| 8000
182 * |///INITRD////|
183 * |/////////////|
184 * |/////////////| 7000
185 * | |
186 * |KKKKKKKKKKKKK|
187 * |=============| 6000
188 * |KKKKKKKKKKKKK|
189 * |KKKKKKKKKKKKK|
190 * K=kernel using 8KB pages
191 *
192 * In this example, we must free page 8000 ONLY. So we must align up
193 * initrd_start and keep initrd_end as is.
194 */
195 start = PAGE_ALIGN(start);
196 end = end & PAGE_MASK;
197
198 if (start < end)
199 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
200
201 for (; start < end; start += PAGE_SIZE) {
202 if (!virt_addr_valid(start))
203 continue;
204 free_reserved_page(virt_to_page(start));
205 }
206 }
207
208 /*
209 * This installs a clean page in the kernel's page table.
210 */
211 static struct page * __init
212 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
213 {
214 pgd_t *pgd;
215 pud_t *pud;
216 pmd_t *pmd;
217 pte_t *pte;
218
219 if (!PageReserved(page))
220 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
221 page_address(page));
222
223 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
224
225 {
226 pud = pud_alloc(&init_mm, pgd, address);
227 if (!pud)
228 goto out;
229 pmd = pmd_alloc(&init_mm, pud, address);
230 if (!pmd)
231 goto out;
232 pte = pte_alloc_kernel(pmd, address);
233 if (!pte)
234 goto out;
235 if (!pte_none(*pte))
236 goto out;
237 set_pte(pte, mk_pte(page, pgprot));
238 }
239 out:
240 /* no need for flush_tlb */
241 return page;
242 }
243
244 static void __init
245 setup_gate (void)
246 {
247 void *gate_section;
248 struct page *page;
249
250 /*
251 * Map the gate page twice: once read-only to export the ELF
252 * headers etc. and once execute-only page to enable
253 * privilege-promotion via "epc":
254 */
255 gate_section = paravirt_get_gate_section();
256 page = virt_to_page(ia64_imva(gate_section));
257 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
258 #ifdef HAVE_BUGGY_SEGREL
259 page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
260 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
261 #else
262 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
263 /* Fill in the holes (if any) with read-only zero pages: */
264 {
265 unsigned long addr;
266
267 for (addr = GATE_ADDR + PAGE_SIZE;
268 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
269 addr += PAGE_SIZE)
270 {
271 put_kernel_page(ZERO_PAGE(0), addr,
272 PAGE_READONLY);
273 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
274 PAGE_READONLY);
275 }
276 }
277 #endif
278 ia64_patch_gate();
279 }
280
281 static struct vm_area_struct gate_vma;
282
283 static int __init gate_vma_init(void)
284 {
285 gate_vma.vm_mm = NULL;
286 gate_vma.vm_start = FIXADDR_USER_START;
287 gate_vma.vm_end = FIXADDR_USER_END;
288 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
289 gate_vma.vm_page_prot = __P101;
290
291 return 0;
292 }
293 __initcall(gate_vma_init);
294
295 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
296 {
297 return &gate_vma;
298 }
299
300 int in_gate_area_no_mm(unsigned long addr)
301 {
302 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
303 return 1;
304 return 0;
305 }
306
307 int in_gate_area(struct mm_struct *mm, unsigned long addr)
308 {
309 return in_gate_area_no_mm(addr);
310 }
311
312 void ia64_mmu_init(void *my_cpu_data)
313 {
314 unsigned long pta, impl_va_bits;
315 extern void tlb_init(void);
316
317 #ifdef CONFIG_DISABLE_VHPT
318 # define VHPT_ENABLE_BIT 0
319 #else
320 # define VHPT_ENABLE_BIT 1
321 #endif
322
323 /*
324 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
325 * address space. The IA-64 architecture guarantees that at least 50 bits of
326 * virtual address space are implemented but if we pick a large enough page size
327 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
328 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
329 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
330 * problem in practice. Alternatively, we could truncate the top of the mapped
331 * address space to not permit mappings that would overlap with the VMLPT.
332 * --davidm 00/12/06
333 */
334 # define pte_bits 3
335 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
336 /*
337 * The virtual page table has to cover the entire implemented address space within
338 * a region even though not all of this space may be mappable. The reason for
339 * this is that the Access bit and Dirty bit fault handlers perform
340 * non-speculative accesses to the virtual page table, so the address range of the
341 * virtual page table itself needs to be covered by virtual page table.
342 */
343 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
344 # define POW2(n) (1ULL << (n))
345
346 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
347
348 if (impl_va_bits < 51 || impl_va_bits > 61)
349 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
350 /*
351 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
352 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
353 * the test makes sure that our mapped space doesn't overlap the
354 * unimplemented hole in the middle of the region.
355 */
356 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
357 (mapped_space_bits > impl_va_bits - 1))
358 panic("Cannot build a big enough virtual-linear page table"
359 " to cover mapped address space.\n"
360 " Try using a smaller page size.\n");
361
362
363 /* place the VMLPT at the end of each page-table mapped region: */
364 pta = POW2(61) - POW2(vmlpt_bits);
365
366 /*
367 * Set the (virtually mapped linear) page table address. Bit
368 * 8 selects between the short and long format, bits 2-7 the
369 * size of the table, and bit 0 whether the VHPT walker is
370 * enabled.
371 */
372 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
373
374 ia64_tlb_init();
375
376 #ifdef CONFIG_HUGETLB_PAGE
377 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
378 ia64_srlz_d();
379 #endif
380 }
381
382 #ifdef CONFIG_VIRTUAL_MEM_MAP
383 int vmemmap_find_next_valid_pfn(int node, int i)
384 {
385 unsigned long end_address, hole_next_pfn;
386 unsigned long stop_address;
387 pg_data_t *pgdat = NODE_DATA(node);
388
389 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
390 end_address = PAGE_ALIGN(end_address);
391 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
392
393 do {
394 pgd_t *pgd;
395 pud_t *pud;
396 pmd_t *pmd;
397 pte_t *pte;
398
399 pgd = pgd_offset_k(end_address);
400 if (pgd_none(*pgd)) {
401 end_address += PGDIR_SIZE;
402 continue;
403 }
404
405 pud = pud_offset(pgd, end_address);
406 if (pud_none(*pud)) {
407 end_address += PUD_SIZE;
408 continue;
409 }
410
411 pmd = pmd_offset(pud, end_address);
412 if (pmd_none(*pmd)) {
413 end_address += PMD_SIZE;
414 continue;
415 }
416
417 pte = pte_offset_kernel(pmd, end_address);
418 retry_pte:
419 if (pte_none(*pte)) {
420 end_address += PAGE_SIZE;
421 pte++;
422 if ((end_address < stop_address) &&
423 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
424 goto retry_pte;
425 continue;
426 }
427 /* Found next valid vmem_map page */
428 break;
429 } while (end_address < stop_address);
430
431 end_address = min(end_address, stop_address);
432 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
433 hole_next_pfn = end_address / sizeof(struct page);
434 return hole_next_pfn - pgdat->node_start_pfn;
435 }
436
437 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
438 {
439 unsigned long address, start_page, end_page;
440 struct page *map_start, *map_end;
441 int node;
442 pgd_t *pgd;
443 pud_t *pud;
444 pmd_t *pmd;
445 pte_t *pte;
446
447 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
448 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
449
450 start_page = (unsigned long) map_start & PAGE_MASK;
451 end_page = PAGE_ALIGN((unsigned long) map_end);
452 node = paddr_to_nid(__pa(start));
453
454 for (address = start_page; address < end_page; address += PAGE_SIZE) {
455 pgd = pgd_offset_k(address);
456 if (pgd_none(*pgd))
457 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
458 pud = pud_offset(pgd, address);
459
460 if (pud_none(*pud))
461 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
462 pmd = pmd_offset(pud, address);
463
464 if (pmd_none(*pmd))
465 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
466 pte = pte_offset_kernel(pmd, address);
467
468 if (pte_none(*pte))
469 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
470 PAGE_KERNEL));
471 }
472 return 0;
473 }
474
475 struct memmap_init_callback_data {
476 struct page *start;
477 struct page *end;
478 int nid;
479 unsigned long zone;
480 };
481
482 static int __meminit
483 virtual_memmap_init(u64 start, u64 end, void *arg)
484 {
485 struct memmap_init_callback_data *args;
486 struct page *map_start, *map_end;
487
488 args = (struct memmap_init_callback_data *) arg;
489 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
490 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
491
492 if (map_start < args->start)
493 map_start = args->start;
494 if (map_end > args->end)
495 map_end = args->end;
496
497 /*
498 * We have to initialize "out of bounds" struct page elements that fit completely
499 * on the same pages that were allocated for the "in bounds" elements because they
500 * may be referenced later (and found to be "reserved").
501 */
502 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
503 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
504 / sizeof(struct page));
505
506 if (map_start < map_end)
507 memmap_init_zone((unsigned long)(map_end - map_start),
508 args->nid, args->zone, page_to_pfn(map_start),
509 MEMMAP_EARLY);
510 return 0;
511 }
512
513 void __meminit
514 memmap_init (unsigned long size, int nid, unsigned long zone,
515 unsigned long start_pfn)
516 {
517 if (!vmem_map)
518 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
519 else {
520 struct page *start;
521 struct memmap_init_callback_data args;
522
523 start = pfn_to_page(start_pfn);
524 args.start = start;
525 args.end = start + size;
526 args.nid = nid;
527 args.zone = zone;
528
529 efi_memmap_walk(virtual_memmap_init, &args);
530 }
531 }
532
533 int
534 ia64_pfn_valid (unsigned long pfn)
535 {
536 char byte;
537 struct page *pg = pfn_to_page(pfn);
538
539 return (__get_user(byte, (char __user *) pg) == 0)
540 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
541 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
542 }
543 EXPORT_SYMBOL(ia64_pfn_valid);
544
545 int __init find_largest_hole(u64 start, u64 end, void *arg)
546 {
547 u64 *max_gap = arg;
548
549 static u64 last_end = PAGE_OFFSET;
550
551 /* NOTE: this algorithm assumes efi memmap table is ordered */
552
553 if (*max_gap < (start - last_end))
554 *max_gap = start - last_end;
555 last_end = end;
556 return 0;
557 }
558
559 #endif /* CONFIG_VIRTUAL_MEM_MAP */
560
561 int __init register_active_ranges(u64 start, u64 len, int nid)
562 {
563 u64 end = start + len;
564
565 #ifdef CONFIG_KEXEC
566 if (start > crashk_res.start && start < crashk_res.end)
567 start = crashk_res.end;
568 if (end > crashk_res.start && end < crashk_res.end)
569 end = crashk_res.start;
570 #endif
571
572 if (start < end)
573 memblock_add_node(__pa(start), end - start, nid);
574 return 0;
575 }
576
577 int
578 find_max_min_low_pfn (u64 start, u64 end, void *arg)
579 {
580 unsigned long pfn_start, pfn_end;
581 #ifdef CONFIG_FLATMEM
582 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
583 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
584 #else
585 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
586 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
587 #endif
588 min_low_pfn = min(min_low_pfn, pfn_start);
589 max_low_pfn = max(max_low_pfn, pfn_end);
590 return 0;
591 }
592
593 /*
594 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
595 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
596 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
597 * useful for performance testing, but conceivably could also come in handy for debugging
598 * purposes.
599 */
600
601 static int nolwsys __initdata;
602
603 static int __init
604 nolwsys_setup (char *s)
605 {
606 nolwsys = 1;
607 return 1;
608 }
609
610 __setup("nolwsys", nolwsys_setup);
611
612 void __init
613 mem_init (void)
614 {
615 int i;
616
617 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
618 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
619 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
620
621 #ifdef CONFIG_PCI
622 /*
623 * This needs to be called _after_ the command line has been parsed but _before_
624 * any drivers that may need the PCI DMA interface are initialized or bootmem has
625 * been freed.
626 */
627 platform_dma_init();
628 #endif
629
630 #ifdef CONFIG_FLATMEM
631 BUG_ON(!mem_map);
632 #endif
633
634 set_max_mapnr(max_low_pfn);
635 high_memory = __va(max_low_pfn * PAGE_SIZE);
636 free_all_bootmem();
637 mem_init_print_info(NULL);
638
639 /*
640 * For fsyscall entrpoints with no light-weight handler, use the ordinary
641 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
642 * code can tell them apart.
643 */
644 for (i = 0; i < NR_syscalls; ++i) {
645 extern unsigned long sys_call_table[NR_syscalls];
646 unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
647
648 if (!fsyscall_table[i] || nolwsys)
649 fsyscall_table[i] = sys_call_table[i] | 1;
650 }
651 setup_gate();
652 }
653
654 #ifdef CONFIG_MEMORY_HOTPLUG
655 int arch_add_memory(int nid, u64 start, u64 size)
656 {
657 pg_data_t *pgdat;
658 struct zone *zone;
659 unsigned long start_pfn = start >> PAGE_SHIFT;
660 unsigned long nr_pages = size >> PAGE_SHIFT;
661 int ret;
662
663 pgdat = NODE_DATA(nid);
664
665 zone = pgdat->node_zones +
666 zone_for_memory(nid, start, size, ZONE_NORMAL);
667 ret = __add_pages(nid, zone, start_pfn, nr_pages);
668
669 if (ret)
670 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
671 __func__, ret);
672
673 return ret;
674 }
675
676 #ifdef CONFIG_MEMORY_HOTREMOVE
677 int arch_remove_memory(u64 start, u64 size)
678 {
679 unsigned long start_pfn = start >> PAGE_SHIFT;
680 unsigned long nr_pages = size >> PAGE_SHIFT;
681 struct zone *zone;
682 int ret;
683
684 zone = page_zone(pfn_to_page(start_pfn));
685 ret = __remove_pages(zone, start_pfn, nr_pages);
686 if (ret)
687 pr_warn("%s: Problem encountered in __remove_pages() as"
688 " ret=%d\n", __func__, ret);
689
690 return ret;
691 }
692 #endif
693 #endif
694
695 /*
696 * Even when CONFIG_IA32_SUPPORT is not enabled it is
697 * useful to have the Linux/x86 domain registered to
698 * avoid an attempted module load when emulators call
699 * personality(PER_LINUX32). This saves several milliseconds
700 * on each such call.
701 */
702 static struct exec_domain ia32_exec_domain;
703
704 static int __init
705 per_linux32_init(void)
706 {
707 ia32_exec_domain.name = "Linux/x86";
708 ia32_exec_domain.handler = NULL;
709 ia32_exec_domain.pers_low = PER_LINUX32;
710 ia32_exec_domain.pers_high = PER_LINUX32;
711 ia32_exec_domain.signal_map = default_exec_domain.signal_map;
712 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
713 register_exec_domain(&ia32_exec_domain);
714
715 return 0;
716 }
717
718 __initcall(per_linux32_init);
719
720 /**
721 * show_mem - give short summary of memory stats
722 *
723 * Shows a simple page count of reserved and used pages in the system.
724 * For discontig machines, it does this on a per-pgdat basis.
725 */
726 void show_mem(unsigned int filter)
727 {
728 int total_reserved = 0;
729 unsigned long total_present = 0;
730 pg_data_t *pgdat;
731
732 printk(KERN_INFO "Mem-info:\n");
733 show_free_areas(filter);
734 printk(KERN_INFO "Node memory in pages:\n");
735 for_each_online_pgdat(pgdat) {
736 unsigned long present;
737 unsigned long flags;
738 int reserved = 0;
739 int nid = pgdat->node_id;
740 int zoneid;
741
742 if (skip_free_areas_node(filter, nid))
743 continue;
744 pgdat_resize_lock(pgdat, &flags);
745
746 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
747 struct zone *zone = &pgdat->node_zones[zoneid];
748 if (!populated_zone(zone))
749 continue;
750
751 reserved += zone->present_pages - zone->managed_pages;
752 }
753 present = pgdat->node_present_pages;
754
755 pgdat_resize_unlock(pgdat, &flags);
756 total_present += present;
757 total_reserved += reserved;
758 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, ",
759 nid, present, reserved);
760 }
761 printk(KERN_INFO "%ld pages of RAM\n", total_present);
762 printk(KERN_INFO "%d reserved pages\n", total_reserved);
763 printk(KERN_INFO "Total of %ld pages in page table cache\n",
764 quicklist_total_size());
765 printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
766 }
This page took 0.046087 seconds and 5 git commands to generate.