[PATCH] ieee80211: Fix debug comments ipw->ieee80211
[deliverable/linux.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13 #include <linux/config.h>
14
15 #include <linux/acpi.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/spinlock.h>
24
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/segment.h>
28 #include <asm/system.h>
29 #include <asm/io.h>
30 #include <asm/sal.h>
31 #include <asm/smp.h>
32 #include <asm/irq.h>
33 #include <asm/hw_irq.h>
34
35
36 /*
37 * Low-level SAL-based PCI configuration access functions. Note that SAL
38 * calls are already serialized (via sal_lock), so we don't need another
39 * synchronization mechanism here.
40 */
41
42 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
43 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
44
45 /* SAL 3.2 adds support for extended config space. */
46
47 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
48 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
49
50 static int
51 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
52 int reg, int len, u32 *value)
53 {
54 u64 addr, data = 0;
55 int mode, result;
56
57 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
58 return -EINVAL;
59
60 if ((seg | reg) <= 255) {
61 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
62 mode = 0;
63 } else {
64 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
65 mode = 1;
66 }
67 result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 if (result != 0)
69 return -EINVAL;
70
71 *value = (u32) data;
72 return 0;
73 }
74
75 static int
76 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
77 int reg, int len, u32 value)
78 {
79 u64 addr;
80 int mode, result;
81
82 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
83 return -EINVAL;
84
85 if ((seg | reg) <= 255) {
86 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
87 mode = 0;
88 } else {
89 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
90 mode = 1;
91 }
92 result = ia64_sal_pci_config_write(addr, mode, len, value);
93 if (result != 0)
94 return -EINVAL;
95 return 0;
96 }
97
98 static struct pci_raw_ops pci_sal_ops = {
99 .read = pci_sal_read,
100 .write = pci_sal_write
101 };
102
103 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
104
105 static int
106 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
107 {
108 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
109 devfn, where, size, value);
110 }
111
112 static int
113 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
114 {
115 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
116 devfn, where, size, value);
117 }
118
119 struct pci_ops pci_root_ops = {
120 .read = pci_read,
121 .write = pci_write,
122 };
123
124 #ifdef CONFIG_NUMA
125 extern acpi_status acpi_map_iosapic(acpi_handle, u32, void *, void **);
126 static void acpi_map_iosapics(void)
127 {
128 acpi_get_devices(NULL, acpi_map_iosapic, NULL, NULL);
129 }
130 #else
131 static void acpi_map_iosapics(void)
132 {
133 return;
134 }
135 #endif /* CONFIG_NUMA */
136
137 static int __init
138 pci_acpi_init (void)
139 {
140 acpi_map_iosapics();
141
142 return 0;
143 }
144
145 subsys_initcall(pci_acpi_init);
146
147 /* Called by ACPI when it finds a new root bus. */
148
149 static struct pci_controller * __devinit
150 alloc_pci_controller (int seg)
151 {
152 struct pci_controller *controller;
153
154 controller = kmalloc(sizeof(*controller), GFP_KERNEL);
155 if (!controller)
156 return NULL;
157
158 memset(controller, 0, sizeof(*controller));
159 controller->segment = seg;
160 controller->node = -1;
161 return controller;
162 }
163
164 static u64 __devinit
165 add_io_space (struct acpi_resource_address64 *addr)
166 {
167 u64 offset;
168 int sparse = 0;
169 int i;
170
171 if (addr->address_translation_offset == 0)
172 return IO_SPACE_BASE(0); /* part of legacy IO space */
173
174 if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
175 sparse = 1;
176
177 offset = (u64) ioremap(addr->address_translation_offset, 0);
178 for (i = 0; i < num_io_spaces; i++)
179 if (io_space[i].mmio_base == offset &&
180 io_space[i].sparse == sparse)
181 return IO_SPACE_BASE(i);
182
183 if (num_io_spaces == MAX_IO_SPACES) {
184 printk("Too many IO port spaces\n");
185 return ~0;
186 }
187
188 i = num_io_spaces++;
189 io_space[i].mmio_base = offset;
190 io_space[i].sparse = sparse;
191
192 return IO_SPACE_BASE(i);
193 }
194
195 static acpi_status __devinit
196 count_window (struct acpi_resource *resource, void *data)
197 {
198 unsigned int *windows = (unsigned int *) data;
199 struct acpi_resource_address64 addr;
200 acpi_status status;
201
202 status = acpi_resource_to_address64(resource, &addr);
203 if (ACPI_SUCCESS(status))
204 if (addr.resource_type == ACPI_MEMORY_RANGE ||
205 addr.resource_type == ACPI_IO_RANGE)
206 (*windows)++;
207
208 return AE_OK;
209 }
210
211 struct pci_root_info {
212 struct pci_controller *controller;
213 char *name;
214 };
215
216 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
217 {
218 struct pci_root_info *info = data;
219 struct pci_window *window;
220 struct acpi_resource_address64 addr;
221 acpi_status status;
222 unsigned long flags, offset = 0;
223 struct resource *root;
224
225 status = acpi_resource_to_address64(res, &addr);
226 if (!ACPI_SUCCESS(status))
227 return AE_OK;
228
229 if (!addr.address_length)
230 return AE_OK;
231
232 if (addr.resource_type == ACPI_MEMORY_RANGE) {
233 flags = IORESOURCE_MEM;
234 root = &iomem_resource;
235 offset = addr.address_translation_offset;
236 } else if (addr.resource_type == ACPI_IO_RANGE) {
237 flags = IORESOURCE_IO;
238 root = &ioport_resource;
239 offset = add_io_space(&addr);
240 if (offset == ~0)
241 return AE_OK;
242 } else
243 return AE_OK;
244
245 window = &info->controller->window[info->controller->windows++];
246 window->resource.name = info->name;
247 window->resource.flags = flags;
248 window->resource.start = addr.min_address_range + offset;
249 window->resource.end = addr.max_address_range + offset;
250 window->resource.child = NULL;
251 window->offset = offset;
252
253 if (insert_resource(root, &window->resource)) {
254 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
255 window->resource.start, window->resource.end,
256 root->name, info->name);
257 }
258
259 return AE_OK;
260 }
261
262 static void __devinit
263 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
264 {
265 int i, j;
266
267 j = 0;
268 for (i = 0; i < ctrl->windows; i++) {
269 struct resource *res = &ctrl->window[i].resource;
270 /* HP's firmware has a hack to work around a Windows bug.
271 * Ignore these tiny memory ranges */
272 if ((res->flags & IORESOURCE_MEM) &&
273 (res->end - res->start < 16))
274 continue;
275 if (j >= PCI_BUS_NUM_RESOURCES) {
276 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
277 res->end, res->flags);
278 continue;
279 }
280 bus->resource[j++] = res;
281 }
282 }
283
284 struct pci_bus * __devinit
285 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
286 {
287 struct pci_root_info info;
288 struct pci_controller *controller;
289 unsigned int windows = 0;
290 struct pci_bus *pbus;
291 char *name;
292 int pxm;
293
294 controller = alloc_pci_controller(domain);
295 if (!controller)
296 goto out1;
297
298 controller->acpi_handle = device->handle;
299
300 pxm = acpi_get_pxm(controller->acpi_handle);
301 #ifdef CONFIG_NUMA
302 if (pxm >= 0)
303 controller->node = pxm_to_nid_map[pxm];
304 #endif
305
306 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
307 &windows);
308 controller->window = kmalloc_node(sizeof(*controller->window) * windows,
309 GFP_KERNEL, controller->node);
310 if (!controller->window)
311 goto out2;
312
313 name = kmalloc(16, GFP_KERNEL);
314 if (!name)
315 goto out3;
316
317 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
318 info.controller = controller;
319 info.name = name;
320 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
321 &info);
322
323 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
324 if (pbus)
325 pcibios_setup_root_windows(pbus, controller);
326
327 return pbus;
328
329 out3:
330 kfree(controller->window);
331 out2:
332 kfree(controller);
333 out1:
334 return NULL;
335 }
336
337 void pcibios_resource_to_bus(struct pci_dev *dev,
338 struct pci_bus_region *region, struct resource *res)
339 {
340 struct pci_controller *controller = PCI_CONTROLLER(dev);
341 unsigned long offset = 0;
342 int i;
343
344 for (i = 0; i < controller->windows; i++) {
345 struct pci_window *window = &controller->window[i];
346 if (!(window->resource.flags & res->flags))
347 continue;
348 if (window->resource.start > res->start)
349 continue;
350 if (window->resource.end < res->end)
351 continue;
352 offset = window->offset;
353 break;
354 }
355
356 region->start = res->start - offset;
357 region->end = res->end - offset;
358 }
359 EXPORT_SYMBOL(pcibios_resource_to_bus);
360
361 void pcibios_bus_to_resource(struct pci_dev *dev,
362 struct resource *res, struct pci_bus_region *region)
363 {
364 struct pci_controller *controller = PCI_CONTROLLER(dev);
365 unsigned long offset = 0;
366 int i;
367
368 for (i = 0; i < controller->windows; i++) {
369 struct pci_window *window = &controller->window[i];
370 if (!(window->resource.flags & res->flags))
371 continue;
372 if (window->resource.start - window->offset > region->start)
373 continue;
374 if (window->resource.end - window->offset < region->end)
375 continue;
376 offset = window->offset;
377 break;
378 }
379
380 res->start = region->start + offset;
381 res->end = region->end + offset;
382 }
383
384 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
385 {
386 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
387 struct resource *devr = &dev->resource[idx];
388
389 if (!dev->bus)
390 return 0;
391 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
392 struct resource *busr = dev->bus->resource[i];
393
394 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
395 continue;
396 if ((devr->start) && (devr->start >= busr->start) &&
397 (devr->end <= busr->end))
398 return 1;
399 }
400 return 0;
401 }
402
403 static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
404 {
405 struct pci_bus_region region;
406 int i;
407 int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
408 PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
409
410 for (i = 0; i < limit; i++) {
411 if (!dev->resource[i].flags)
412 continue;
413 region.start = dev->resource[i].start;
414 region.end = dev->resource[i].end;
415 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
416 if ((is_valid_resource(dev, i)))
417 pci_claim_resource(dev, i);
418 }
419 }
420
421 /*
422 * Called after each bus is probed, but before its children are examined.
423 */
424 void __devinit
425 pcibios_fixup_bus (struct pci_bus *b)
426 {
427 struct pci_dev *dev;
428
429 if (b->self) {
430 pci_read_bridge_bases(b);
431 pcibios_fixup_device_resources(b->self);
432 }
433 list_for_each_entry(dev, &b->devices, bus_list)
434 pcibios_fixup_device_resources(dev);
435
436 return;
437 }
438
439 void __devinit
440 pcibios_update_irq (struct pci_dev *dev, int irq)
441 {
442 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
443
444 /* ??? FIXME -- record old value for shutdown. */
445 }
446
447 static inline int
448 pcibios_enable_resources (struct pci_dev *dev, int mask)
449 {
450 u16 cmd, old_cmd;
451 int idx;
452 struct resource *r;
453 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
454
455 if (!dev)
456 return -EINVAL;
457
458 pci_read_config_word(dev, PCI_COMMAND, &cmd);
459 old_cmd = cmd;
460 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
461 /* Only set up the desired resources. */
462 if (!(mask & (1 << idx)))
463 continue;
464
465 r = &dev->resource[idx];
466 if (!(r->flags & type_mask))
467 continue;
468 if ((idx == PCI_ROM_RESOURCE) &&
469 (!(r->flags & IORESOURCE_ROM_ENABLE)))
470 continue;
471 if (!r->start && r->end) {
472 printk(KERN_ERR
473 "PCI: Device %s not available because of resource collisions\n",
474 pci_name(dev));
475 return -EINVAL;
476 }
477 if (r->flags & IORESOURCE_IO)
478 cmd |= PCI_COMMAND_IO;
479 if (r->flags & IORESOURCE_MEM)
480 cmd |= PCI_COMMAND_MEMORY;
481 }
482 if (cmd != old_cmd) {
483 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
484 pci_write_config_word(dev, PCI_COMMAND, cmd);
485 }
486 return 0;
487 }
488
489 int
490 pcibios_enable_device (struct pci_dev *dev, int mask)
491 {
492 int ret;
493
494 ret = pcibios_enable_resources(dev, mask);
495 if (ret < 0)
496 return ret;
497
498 return acpi_pci_irq_enable(dev);
499 }
500
501 #ifdef CONFIG_ACPI_DEALLOCATE_IRQ
502 void
503 pcibios_disable_device (struct pci_dev *dev)
504 {
505 acpi_pci_irq_disable(dev);
506 }
507 #endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
508
509 void
510 pcibios_align_resource (void *data, struct resource *res,
511 unsigned long size, unsigned long align)
512 {
513 }
514
515 /*
516 * PCI BIOS setup, always defaults to SAL interface
517 */
518 char * __init
519 pcibios_setup (char *str)
520 {
521 return NULL;
522 }
523
524 int
525 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
526 enum pci_mmap_state mmap_state, int write_combine)
527 {
528 /*
529 * I/O space cannot be accessed via normal processor loads and
530 * stores on this platform.
531 */
532 if (mmap_state == pci_mmap_io)
533 /*
534 * XXX we could relax this for I/O spaces for which ACPI
535 * indicates that the space is 1-to-1 mapped. But at the
536 * moment, we don't support multiple PCI address spaces and
537 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
538 */
539 return -EINVAL;
540
541 /*
542 * Leave vm_pgoff as-is, the PCI space address is the physical
543 * address on this platform.
544 */
545 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
546
547 if (write_combine && efi_range_is_wc(vma->vm_start,
548 vma->vm_end - vma->vm_start))
549 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
550 else
551 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
552
553 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
554 vma->vm_end - vma->vm_start, vma->vm_page_prot))
555 return -EAGAIN;
556
557 return 0;
558 }
559
560 /**
561 * ia64_pci_get_legacy_mem - generic legacy mem routine
562 * @bus: bus to get legacy memory base address for
563 *
564 * Find the base of legacy memory for @bus. This is typically the first
565 * megabyte of bus address space for @bus or is simply 0 on platforms whose
566 * chipsets support legacy I/O and memory routing. Returns the base address
567 * or an error pointer if an error occurred.
568 *
569 * This is the ia64 generic version of this routine. Other platforms
570 * are free to override it with a machine vector.
571 */
572 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
573 {
574 return (char *)__IA64_UNCACHED_OFFSET;
575 }
576
577 /**
578 * pci_mmap_legacy_page_range - map legacy memory space to userland
579 * @bus: bus whose legacy space we're mapping
580 * @vma: vma passed in by mmap
581 *
582 * Map legacy memory space for this device back to userspace using a machine
583 * vector to get the base address.
584 */
585 int
586 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
587 {
588 char *addr;
589
590 addr = pci_get_legacy_mem(bus);
591 if (IS_ERR(addr))
592 return PTR_ERR(addr);
593
594 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
595 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
596 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
597
598 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
599 vma->vm_end - vma->vm_start, vma->vm_page_prot))
600 return -EAGAIN;
601
602 return 0;
603 }
604
605 /**
606 * ia64_pci_legacy_read - read from legacy I/O space
607 * @bus: bus to read
608 * @port: legacy port value
609 * @val: caller allocated storage for returned value
610 * @size: number of bytes to read
611 *
612 * Simply reads @size bytes from @port and puts the result in @val.
613 *
614 * Again, this (and the write routine) are generic versions that can be
615 * overridden by the platform. This is necessary on platforms that don't
616 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
617 */
618 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
619 {
620 int ret = size;
621
622 switch (size) {
623 case 1:
624 *val = inb(port);
625 break;
626 case 2:
627 *val = inw(port);
628 break;
629 case 4:
630 *val = inl(port);
631 break;
632 default:
633 ret = -EINVAL;
634 break;
635 }
636
637 return ret;
638 }
639
640 /**
641 * ia64_pci_legacy_write - perform a legacy I/O write
642 * @bus: bus pointer
643 * @port: port to write
644 * @val: value to write
645 * @size: number of bytes to write from @val
646 *
647 * Simply writes @size bytes of @val to @port.
648 */
649 int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
650 {
651 int ret = 0;
652
653 switch (size) {
654 case 1:
655 outb(val, port);
656 break;
657 case 2:
658 outw(val, port);
659 break;
660 case 4:
661 outl(val, port);
662 break;
663 default:
664 ret = -EINVAL;
665 break;
666 }
667
668 return ret;
669 }
670
671 /**
672 * pci_cacheline_size - determine cacheline size for PCI devices
673 * @dev: void
674 *
675 * We want to use the line-size of the outer-most cache. We assume
676 * that this line-size is the same for all CPUs.
677 *
678 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
679 *
680 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
681 */
682 static unsigned long
683 pci_cacheline_size (void)
684 {
685 u64 levels, unique_caches;
686 s64 status;
687 pal_cache_config_info_t cci;
688 static u8 cacheline_size;
689
690 if (cacheline_size)
691 return cacheline_size;
692
693 status = ia64_pal_cache_summary(&levels, &unique_caches);
694 if (status != 0) {
695 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
696 __FUNCTION__, status);
697 return SMP_CACHE_BYTES;
698 }
699
700 status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
701 &cci);
702 if (status != 0) {
703 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
704 __FUNCTION__, status);
705 return SMP_CACHE_BYTES;
706 }
707 cacheline_size = 1 << cci.pcci_line_size;
708 return cacheline_size;
709 }
710
711 /**
712 * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
713 * @dev: the PCI device for which MWI is enabled
714 *
715 * For ia64, we can get the cacheline sizes from PAL.
716 *
717 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
718 */
719 int
720 pcibios_prep_mwi (struct pci_dev *dev)
721 {
722 unsigned long desired_linesize, current_linesize;
723 int rc = 0;
724 u8 pci_linesize;
725
726 desired_linesize = pci_cacheline_size();
727
728 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
729 current_linesize = 4 * pci_linesize;
730 if (desired_linesize != current_linesize) {
731 printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
732 pci_name(dev), current_linesize);
733 if (current_linesize > desired_linesize) {
734 printk(" expected %lu bytes instead\n", desired_linesize);
735 rc = -EINVAL;
736 } else {
737 printk(" correcting to %lu\n", desired_linesize);
738 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
739 }
740 }
741 return rc;
742 }
743
744 int pci_vector_resources(int last, int nr_released)
745 {
746 int count = nr_released;
747
748 count += (IA64_LAST_DEVICE_VECTOR - last);
749
750 return count;
751 }
This page took 0.047067 seconds and 5 git commands to generate.