d929858cfb3ec97f35cda37369a3a782269e21cd
[deliverable/linux.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13 #include <linux/config.h>
14
15 #include <linux/acpi.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/spinlock.h>
24
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/segment.h>
28 #include <asm/system.h>
29 #include <asm/io.h>
30 #include <asm/sal.h>
31 #include <asm/smp.h>
32 #include <asm/irq.h>
33 #include <asm/hw_irq.h>
34
35
36 /*
37 * Low-level SAL-based PCI configuration access functions. Note that SAL
38 * calls are already serialized (via sal_lock), so we don't need another
39 * synchronization mechanism here.
40 */
41
42 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
43 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
44
45 /* SAL 3.2 adds support for extended config space. */
46
47 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
48 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
49
50 static int
51 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
52 int reg, int len, u32 *value)
53 {
54 u64 addr, data = 0;
55 int mode, result;
56
57 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
58 return -EINVAL;
59
60 if ((seg | reg) <= 255) {
61 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
62 mode = 0;
63 } else {
64 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
65 mode = 1;
66 }
67 result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 if (result != 0)
69 return -EINVAL;
70
71 *value = (u32) data;
72 return 0;
73 }
74
75 static int
76 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
77 int reg, int len, u32 value)
78 {
79 u64 addr;
80 int mode, result;
81
82 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
83 return -EINVAL;
84
85 if ((seg | reg) <= 255) {
86 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
87 mode = 0;
88 } else {
89 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
90 mode = 1;
91 }
92 result = ia64_sal_pci_config_write(addr, mode, len, value);
93 if (result != 0)
94 return -EINVAL;
95 return 0;
96 }
97
98 static struct pci_raw_ops pci_sal_ops = {
99 .read = pci_sal_read,
100 .write = pci_sal_write
101 };
102
103 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
104
105 static int
106 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
107 {
108 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
109 devfn, where, size, value);
110 }
111
112 static int
113 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
114 {
115 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
116 devfn, where, size, value);
117 }
118
119 struct pci_ops pci_root_ops = {
120 .read = pci_read,
121 .write = pci_write,
122 };
123
124 #ifdef CONFIG_NUMA
125 extern acpi_status acpi_map_iosapic(acpi_handle, u32, void *, void **);
126 static void acpi_map_iosapics(void)
127 {
128 acpi_get_devices(NULL, acpi_map_iosapic, NULL, NULL);
129 }
130 #else
131 static void acpi_map_iosapics(void)
132 {
133 return;
134 }
135 #endif /* CONFIG_NUMA */
136
137 static int __init
138 pci_acpi_init (void)
139 {
140 acpi_map_iosapics();
141
142 return 0;
143 }
144
145 subsys_initcall(pci_acpi_init);
146
147 /* Called by ACPI when it finds a new root bus. */
148
149 static struct pci_controller * __devinit
150 alloc_pci_controller (int seg)
151 {
152 struct pci_controller *controller;
153
154 controller = kmalloc(sizeof(*controller), GFP_KERNEL);
155 if (!controller)
156 return NULL;
157
158 memset(controller, 0, sizeof(*controller));
159 controller->segment = seg;
160 return controller;
161 }
162
163 static u64 __devinit
164 add_io_space (struct acpi_resource_address64 *addr)
165 {
166 u64 offset;
167 int sparse = 0;
168 int i;
169
170 if (addr->address_translation_offset == 0)
171 return IO_SPACE_BASE(0); /* part of legacy IO space */
172
173 if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
174 sparse = 1;
175
176 offset = (u64) ioremap(addr->address_translation_offset, 0);
177 for (i = 0; i < num_io_spaces; i++)
178 if (io_space[i].mmio_base == offset &&
179 io_space[i].sparse == sparse)
180 return IO_SPACE_BASE(i);
181
182 if (num_io_spaces == MAX_IO_SPACES) {
183 printk("Too many IO port spaces\n");
184 return ~0;
185 }
186
187 i = num_io_spaces++;
188 io_space[i].mmio_base = offset;
189 io_space[i].sparse = sparse;
190
191 return IO_SPACE_BASE(i);
192 }
193
194 static acpi_status __devinit
195 count_window (struct acpi_resource *resource, void *data)
196 {
197 unsigned int *windows = (unsigned int *) data;
198 struct acpi_resource_address64 addr;
199 acpi_status status;
200
201 status = acpi_resource_to_address64(resource, &addr);
202 if (ACPI_SUCCESS(status))
203 if (addr.resource_type == ACPI_MEMORY_RANGE ||
204 addr.resource_type == ACPI_IO_RANGE)
205 (*windows)++;
206
207 return AE_OK;
208 }
209
210 struct pci_root_info {
211 struct pci_controller *controller;
212 char *name;
213 };
214
215 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
216 {
217 struct pci_root_info *info = data;
218 struct pci_window *window;
219 struct acpi_resource_address64 addr;
220 acpi_status status;
221 unsigned long flags, offset = 0;
222 struct resource *root;
223
224 status = acpi_resource_to_address64(res, &addr);
225 if (!ACPI_SUCCESS(status))
226 return AE_OK;
227
228 if (!addr.address_length)
229 return AE_OK;
230
231 if (addr.resource_type == ACPI_MEMORY_RANGE) {
232 flags = IORESOURCE_MEM;
233 root = &iomem_resource;
234 offset = addr.address_translation_offset;
235 } else if (addr.resource_type == ACPI_IO_RANGE) {
236 flags = IORESOURCE_IO;
237 root = &ioport_resource;
238 offset = add_io_space(&addr);
239 if (offset == ~0)
240 return AE_OK;
241 } else
242 return AE_OK;
243
244 window = &info->controller->window[info->controller->windows++];
245 window->resource.name = info->name;
246 window->resource.flags = flags;
247 window->resource.start = addr.min_address_range + offset;
248 window->resource.end = addr.max_address_range + offset;
249 window->resource.child = NULL;
250 window->offset = offset;
251
252 if (insert_resource(root, &window->resource)) {
253 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
254 window->resource.start, window->resource.end,
255 root->name, info->name);
256 }
257
258 return AE_OK;
259 }
260
261 static void __devinit
262 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
263 {
264 int i, j;
265
266 j = 0;
267 for (i = 0; i < ctrl->windows; i++) {
268 struct resource *res = &ctrl->window[i].resource;
269 /* HP's firmware has a hack to work around a Windows bug.
270 * Ignore these tiny memory ranges */
271 if ((res->flags & IORESOURCE_MEM) &&
272 (res->end - res->start < 16))
273 continue;
274 if (j >= PCI_BUS_NUM_RESOURCES) {
275 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
276 res->end, res->flags);
277 continue;
278 }
279 bus->resource[j++] = res;
280 }
281 }
282
283 struct pci_bus * __devinit
284 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
285 {
286 struct pci_root_info info;
287 struct pci_controller *controller;
288 unsigned int windows = 0;
289 struct pci_bus *pbus;
290 char *name;
291
292 controller = alloc_pci_controller(domain);
293 if (!controller)
294 goto out1;
295
296 controller->acpi_handle = device->handle;
297
298 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
299 &windows);
300 controller->window = kmalloc(sizeof(*controller->window) * windows,
301 GFP_KERNEL);
302 if (!controller->window)
303 goto out2;
304
305 name = kmalloc(16, GFP_KERNEL);
306 if (!name)
307 goto out3;
308
309 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
310 info.controller = controller;
311 info.name = name;
312 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
313 &info);
314
315 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
316 if (pbus)
317 pcibios_setup_root_windows(pbus, controller);
318
319 return pbus;
320
321 out3:
322 kfree(controller->window);
323 out2:
324 kfree(controller);
325 out1:
326 return NULL;
327 }
328
329 void pcibios_resource_to_bus(struct pci_dev *dev,
330 struct pci_bus_region *region, struct resource *res)
331 {
332 struct pci_controller *controller = PCI_CONTROLLER(dev);
333 unsigned long offset = 0;
334 int i;
335
336 for (i = 0; i < controller->windows; i++) {
337 struct pci_window *window = &controller->window[i];
338 if (!(window->resource.flags & res->flags))
339 continue;
340 if (window->resource.start > res->start)
341 continue;
342 if (window->resource.end < res->end)
343 continue;
344 offset = window->offset;
345 break;
346 }
347
348 region->start = res->start - offset;
349 region->end = res->end - offset;
350 }
351 EXPORT_SYMBOL(pcibios_resource_to_bus);
352
353 void pcibios_bus_to_resource(struct pci_dev *dev,
354 struct resource *res, struct pci_bus_region *region)
355 {
356 struct pci_controller *controller = PCI_CONTROLLER(dev);
357 unsigned long offset = 0;
358 int i;
359
360 for (i = 0; i < controller->windows; i++) {
361 struct pci_window *window = &controller->window[i];
362 if (!(window->resource.flags & res->flags))
363 continue;
364 if (window->resource.start - window->offset > region->start)
365 continue;
366 if (window->resource.end - window->offset < region->end)
367 continue;
368 offset = window->offset;
369 break;
370 }
371
372 res->start = region->start + offset;
373 res->end = region->end + offset;
374 }
375
376 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
377 {
378 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
379 struct resource *devr = &dev->resource[idx];
380
381 if (!dev->bus)
382 return 0;
383 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
384 struct resource *busr = dev->bus->resource[i];
385
386 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
387 continue;
388 if ((devr->start) && (devr->start >= busr->start) &&
389 (devr->end <= busr->end))
390 return 1;
391 }
392 return 0;
393 }
394
395 static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
396 {
397 struct pci_bus_region region;
398 int i;
399 int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
400 PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
401
402 for (i = 0; i < limit; i++) {
403 if (!dev->resource[i].flags)
404 continue;
405 region.start = dev->resource[i].start;
406 region.end = dev->resource[i].end;
407 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
408 if ((is_valid_resource(dev, i)))
409 pci_claim_resource(dev, i);
410 }
411 }
412
413 /*
414 * Called after each bus is probed, but before its children are examined.
415 */
416 void __devinit
417 pcibios_fixup_bus (struct pci_bus *b)
418 {
419 struct pci_dev *dev;
420
421 list_for_each_entry(dev, &b->devices, bus_list)
422 pcibios_fixup_device_resources(dev);
423
424 return;
425 }
426
427 void __devinit
428 pcibios_update_irq (struct pci_dev *dev, int irq)
429 {
430 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
431
432 /* ??? FIXME -- record old value for shutdown. */
433 }
434
435 static inline int
436 pcibios_enable_resources (struct pci_dev *dev, int mask)
437 {
438 u16 cmd, old_cmd;
439 int idx;
440 struct resource *r;
441 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
442
443 if (!dev)
444 return -EINVAL;
445
446 pci_read_config_word(dev, PCI_COMMAND, &cmd);
447 old_cmd = cmd;
448 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
449 /* Only set up the desired resources. */
450 if (!(mask & (1 << idx)))
451 continue;
452
453 r = &dev->resource[idx];
454 if (!(r->flags & type_mask))
455 continue;
456 if ((idx == PCI_ROM_RESOURCE) &&
457 (!(r->flags & IORESOURCE_ROM_ENABLE)))
458 continue;
459 if (!r->start && r->end) {
460 printk(KERN_ERR
461 "PCI: Device %s not available because of resource collisions\n",
462 pci_name(dev));
463 return -EINVAL;
464 }
465 if (r->flags & IORESOURCE_IO)
466 cmd |= PCI_COMMAND_IO;
467 if (r->flags & IORESOURCE_MEM)
468 cmd |= PCI_COMMAND_MEMORY;
469 }
470 if (cmd != old_cmd) {
471 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
472 pci_write_config_word(dev, PCI_COMMAND, cmd);
473 }
474 return 0;
475 }
476
477 int
478 pcibios_enable_device (struct pci_dev *dev, int mask)
479 {
480 int ret;
481
482 ret = pcibios_enable_resources(dev, mask);
483 if (ret < 0)
484 return ret;
485
486 return acpi_pci_irq_enable(dev);
487 }
488
489 #ifdef CONFIG_ACPI_DEALLOCATE_IRQ
490 void
491 pcibios_disable_device (struct pci_dev *dev)
492 {
493 acpi_pci_irq_disable(dev);
494 }
495 #endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
496
497 void
498 pcibios_align_resource (void *data, struct resource *res,
499 unsigned long size, unsigned long align)
500 {
501 }
502
503 /*
504 * PCI BIOS setup, always defaults to SAL interface
505 */
506 char * __init
507 pcibios_setup (char *str)
508 {
509 return NULL;
510 }
511
512 int
513 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
514 enum pci_mmap_state mmap_state, int write_combine)
515 {
516 /*
517 * I/O space cannot be accessed via normal processor loads and
518 * stores on this platform.
519 */
520 if (mmap_state == pci_mmap_io)
521 /*
522 * XXX we could relax this for I/O spaces for which ACPI
523 * indicates that the space is 1-to-1 mapped. But at the
524 * moment, we don't support multiple PCI address spaces and
525 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
526 */
527 return -EINVAL;
528
529 /*
530 * Leave vm_pgoff as-is, the PCI space address is the physical
531 * address on this platform.
532 */
533 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
534
535 if (write_combine && efi_range_is_wc(vma->vm_start,
536 vma->vm_end - vma->vm_start))
537 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
538 else
539 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
540
541 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
542 vma->vm_end - vma->vm_start, vma->vm_page_prot))
543 return -EAGAIN;
544
545 return 0;
546 }
547
548 /**
549 * ia64_pci_get_legacy_mem - generic legacy mem routine
550 * @bus: bus to get legacy memory base address for
551 *
552 * Find the base of legacy memory for @bus. This is typically the first
553 * megabyte of bus address space for @bus or is simply 0 on platforms whose
554 * chipsets support legacy I/O and memory routing. Returns the base address
555 * or an error pointer if an error occurred.
556 *
557 * This is the ia64 generic version of this routine. Other platforms
558 * are free to override it with a machine vector.
559 */
560 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
561 {
562 return (char *)__IA64_UNCACHED_OFFSET;
563 }
564
565 /**
566 * pci_mmap_legacy_page_range - map legacy memory space to userland
567 * @bus: bus whose legacy space we're mapping
568 * @vma: vma passed in by mmap
569 *
570 * Map legacy memory space for this device back to userspace using a machine
571 * vector to get the base address.
572 */
573 int
574 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
575 {
576 char *addr;
577
578 addr = pci_get_legacy_mem(bus);
579 if (IS_ERR(addr))
580 return PTR_ERR(addr);
581
582 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
583 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
584 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
585
586 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
587 vma->vm_end - vma->vm_start, vma->vm_page_prot))
588 return -EAGAIN;
589
590 return 0;
591 }
592
593 /**
594 * ia64_pci_legacy_read - read from legacy I/O space
595 * @bus: bus to read
596 * @port: legacy port value
597 * @val: caller allocated storage for returned value
598 * @size: number of bytes to read
599 *
600 * Simply reads @size bytes from @port and puts the result in @val.
601 *
602 * Again, this (and the write routine) are generic versions that can be
603 * overridden by the platform. This is necessary on platforms that don't
604 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
605 */
606 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
607 {
608 int ret = size;
609
610 switch (size) {
611 case 1:
612 *val = inb(port);
613 break;
614 case 2:
615 *val = inw(port);
616 break;
617 case 4:
618 *val = inl(port);
619 break;
620 default:
621 ret = -EINVAL;
622 break;
623 }
624
625 return ret;
626 }
627
628 /**
629 * ia64_pci_legacy_write - perform a legacy I/O write
630 * @bus: bus pointer
631 * @port: port to write
632 * @val: value to write
633 * @size: number of bytes to write from @val
634 *
635 * Simply writes @size bytes of @val to @port.
636 */
637 int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
638 {
639 int ret = 0;
640
641 switch (size) {
642 case 1:
643 outb(val, port);
644 break;
645 case 2:
646 outw(val, port);
647 break;
648 case 4:
649 outl(val, port);
650 break;
651 default:
652 ret = -EINVAL;
653 break;
654 }
655
656 return ret;
657 }
658
659 /**
660 * pci_cacheline_size - determine cacheline size for PCI devices
661 * @dev: void
662 *
663 * We want to use the line-size of the outer-most cache. We assume
664 * that this line-size is the same for all CPUs.
665 *
666 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
667 *
668 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
669 */
670 static unsigned long
671 pci_cacheline_size (void)
672 {
673 u64 levels, unique_caches;
674 s64 status;
675 pal_cache_config_info_t cci;
676 static u8 cacheline_size;
677
678 if (cacheline_size)
679 return cacheline_size;
680
681 status = ia64_pal_cache_summary(&levels, &unique_caches);
682 if (status != 0) {
683 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
684 __FUNCTION__, status);
685 return SMP_CACHE_BYTES;
686 }
687
688 status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
689 &cci);
690 if (status != 0) {
691 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
692 __FUNCTION__, status);
693 return SMP_CACHE_BYTES;
694 }
695 cacheline_size = 1 << cci.pcci_line_size;
696 return cacheline_size;
697 }
698
699 /**
700 * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
701 * @dev: the PCI device for which MWI is enabled
702 *
703 * For ia64, we can get the cacheline sizes from PAL.
704 *
705 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
706 */
707 int
708 pcibios_prep_mwi (struct pci_dev *dev)
709 {
710 unsigned long desired_linesize, current_linesize;
711 int rc = 0;
712 u8 pci_linesize;
713
714 desired_linesize = pci_cacheline_size();
715
716 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
717 current_linesize = 4 * pci_linesize;
718 if (desired_linesize != current_linesize) {
719 printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
720 pci_name(dev), current_linesize);
721 if (current_linesize > desired_linesize) {
722 printk(" expected %lu bytes instead\n", desired_linesize);
723 rc = -EINVAL;
724 } else {
725 printk(" correcting to %lu\n", desired_linesize);
726 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
727 }
728 }
729 return rc;
730 }
731
732 int pci_vector_resources(int last, int nr_released)
733 {
734 int count = nr_released;
735
736 count += (IA64_LAST_DEVICE_VECTOR - last);
737
738 return count;
739 }
This page took 0.043861 seconds and 4 git commands to generate.