f9472c50ab4298a072fd25cfca6743ff69122b91
[deliverable/linux.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13 #include <linux/config.h>
14
15 #include <linux/acpi.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/spinlock.h>
24
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/segment.h>
28 #include <asm/system.h>
29 #include <asm/io.h>
30 #include <asm/sal.h>
31 #include <asm/smp.h>
32 #include <asm/irq.h>
33 #include <asm/hw_irq.h>
34
35
36 /*
37 * Low-level SAL-based PCI configuration access functions. Note that SAL
38 * calls are already serialized (via sal_lock), so we don't need another
39 * synchronization mechanism here.
40 */
41
42 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
43 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
44
45 /* SAL 3.2 adds support for extended config space. */
46
47 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
48 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
49
50 static int
51 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
52 int reg, int len, u32 *value)
53 {
54 u64 addr, data = 0;
55 int mode, result;
56
57 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
58 return -EINVAL;
59
60 if ((seg | reg) <= 255) {
61 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
62 mode = 0;
63 } else {
64 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
65 mode = 1;
66 }
67 result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 if (result != 0)
69 return -EINVAL;
70
71 *value = (u32) data;
72 return 0;
73 }
74
75 static int
76 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
77 int reg, int len, u32 value)
78 {
79 u64 addr;
80 int mode, result;
81
82 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
83 return -EINVAL;
84
85 if ((seg | reg) <= 255) {
86 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
87 mode = 0;
88 } else {
89 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
90 mode = 1;
91 }
92 result = ia64_sal_pci_config_write(addr, mode, len, value);
93 if (result != 0)
94 return -EINVAL;
95 return 0;
96 }
97
98 static struct pci_raw_ops pci_sal_ops = {
99 .read = pci_sal_read,
100 .write = pci_sal_write
101 };
102
103 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
104
105 static int
106 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
107 {
108 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
109 devfn, where, size, value);
110 }
111
112 static int
113 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
114 {
115 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
116 devfn, where, size, value);
117 }
118
119 struct pci_ops pci_root_ops = {
120 .read = pci_read,
121 .write = pci_write,
122 };
123
124 #ifdef CONFIG_NUMA
125 extern acpi_status acpi_map_iosapic(acpi_handle, u32, void *, void **);
126 static void acpi_map_iosapics(void)
127 {
128 acpi_get_devices(NULL, acpi_map_iosapic, NULL, NULL);
129 }
130 #else
131 static void acpi_map_iosapics(void)
132 {
133 return;
134 }
135 #endif /* CONFIG_NUMA */
136
137 static int __init
138 pci_acpi_init (void)
139 {
140 acpi_map_iosapics();
141
142 return 0;
143 }
144
145 subsys_initcall(pci_acpi_init);
146
147 /* Called by ACPI when it finds a new root bus. */
148
149 static struct pci_controller * __devinit
150 alloc_pci_controller (int seg)
151 {
152 struct pci_controller *controller;
153
154 controller = kmalloc(sizeof(*controller), GFP_KERNEL);
155 if (!controller)
156 return NULL;
157
158 memset(controller, 0, sizeof(*controller));
159 controller->segment = seg;
160 controller->node = -1;
161 return controller;
162 }
163
164 static u64 __devinit
165 add_io_space (struct acpi_resource_address64 *addr)
166 {
167 u64 offset;
168 int sparse = 0;
169 int i;
170
171 if (addr->address_translation_offset == 0)
172 return IO_SPACE_BASE(0); /* part of legacy IO space */
173
174 if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
175 sparse = 1;
176
177 offset = (u64) ioremap(addr->address_translation_offset, 0);
178 for (i = 0; i < num_io_spaces; i++)
179 if (io_space[i].mmio_base == offset &&
180 io_space[i].sparse == sparse)
181 return IO_SPACE_BASE(i);
182
183 if (num_io_spaces == MAX_IO_SPACES) {
184 printk("Too many IO port spaces\n");
185 return ~0;
186 }
187
188 i = num_io_spaces++;
189 io_space[i].mmio_base = offset;
190 io_space[i].sparse = sparse;
191
192 return IO_SPACE_BASE(i);
193 }
194
195 static acpi_status __devinit
196 count_window (struct acpi_resource *resource, void *data)
197 {
198 unsigned int *windows = (unsigned int *) data;
199 struct acpi_resource_address64 addr;
200 acpi_status status;
201
202 status = acpi_resource_to_address64(resource, &addr);
203 if (ACPI_SUCCESS(status))
204 if (addr.resource_type == ACPI_MEMORY_RANGE ||
205 addr.resource_type == ACPI_IO_RANGE)
206 (*windows)++;
207
208 return AE_OK;
209 }
210
211 struct pci_root_info {
212 struct pci_controller *controller;
213 char *name;
214 };
215
216 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
217 {
218 struct pci_root_info *info = data;
219 struct pci_window *window;
220 struct acpi_resource_address64 addr;
221 acpi_status status;
222 unsigned long flags, offset = 0;
223 struct resource *root;
224
225 status = acpi_resource_to_address64(res, &addr);
226 if (!ACPI_SUCCESS(status))
227 return AE_OK;
228
229 if (!addr.address_length)
230 return AE_OK;
231
232 if (addr.resource_type == ACPI_MEMORY_RANGE) {
233 flags = IORESOURCE_MEM;
234 root = &iomem_resource;
235 offset = addr.address_translation_offset;
236 } else if (addr.resource_type == ACPI_IO_RANGE) {
237 flags = IORESOURCE_IO;
238 root = &ioport_resource;
239 offset = add_io_space(&addr);
240 if (offset == ~0)
241 return AE_OK;
242 } else
243 return AE_OK;
244
245 window = &info->controller->window[info->controller->windows++];
246 window->resource.name = info->name;
247 window->resource.flags = flags;
248 window->resource.start = addr.min_address_range + offset;
249 window->resource.end = addr.max_address_range + offset;
250 window->resource.child = NULL;
251 window->offset = offset;
252
253 if (insert_resource(root, &window->resource)) {
254 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
255 window->resource.start, window->resource.end,
256 root->name, info->name);
257 }
258
259 return AE_OK;
260 }
261
262 static void __devinit
263 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
264 {
265 int i, j;
266
267 j = 0;
268 for (i = 0; i < ctrl->windows; i++) {
269 struct resource *res = &ctrl->window[i].resource;
270 /* HP's firmware has a hack to work around a Windows bug.
271 * Ignore these tiny memory ranges */
272 if ((res->flags & IORESOURCE_MEM) &&
273 (res->end - res->start < 16))
274 continue;
275 if (j >= PCI_BUS_NUM_RESOURCES) {
276 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
277 res->end, res->flags);
278 continue;
279 }
280 bus->resource[j++] = res;
281 }
282 }
283
284 struct pci_bus * __devinit
285 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
286 {
287 struct pci_root_info info;
288 struct pci_controller *controller;
289 unsigned int windows = 0;
290 struct pci_bus *pbus;
291 char *name;
292 int pxm;
293
294 controller = alloc_pci_controller(domain);
295 if (!controller)
296 goto out1;
297
298 controller->acpi_handle = device->handle;
299
300 pxm = acpi_get_pxm(controller->acpi_handle);
301 #ifdef CONFIG_NUMA
302 if (pxm >= 0)
303 controller->node = pxm_to_nid_map[pxm];
304 #endif
305
306 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
307 &windows);
308 controller->window = kmalloc_node(sizeof(*controller->window) * windows,
309 GFP_KERNEL, controller->node);
310 if (!controller->window)
311 goto out2;
312
313 name = kmalloc(16, GFP_KERNEL);
314 if (!name)
315 goto out3;
316
317 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
318 info.controller = controller;
319 info.name = name;
320 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
321 &info);
322
323 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
324 if (pbus)
325 pcibios_setup_root_windows(pbus, controller);
326
327 return pbus;
328
329 out3:
330 kfree(controller->window);
331 out2:
332 kfree(controller);
333 out1:
334 return NULL;
335 }
336
337 void pcibios_resource_to_bus(struct pci_dev *dev,
338 struct pci_bus_region *region, struct resource *res)
339 {
340 struct pci_controller *controller = PCI_CONTROLLER(dev);
341 unsigned long offset = 0;
342 int i;
343
344 for (i = 0; i < controller->windows; i++) {
345 struct pci_window *window = &controller->window[i];
346 if (!(window->resource.flags & res->flags))
347 continue;
348 if (window->resource.start > res->start)
349 continue;
350 if (window->resource.end < res->end)
351 continue;
352 offset = window->offset;
353 break;
354 }
355
356 region->start = res->start - offset;
357 region->end = res->end - offset;
358 }
359 EXPORT_SYMBOL(pcibios_resource_to_bus);
360
361 void pcibios_bus_to_resource(struct pci_dev *dev,
362 struct resource *res, struct pci_bus_region *region)
363 {
364 struct pci_controller *controller = PCI_CONTROLLER(dev);
365 unsigned long offset = 0;
366 int i;
367
368 for (i = 0; i < controller->windows; i++) {
369 struct pci_window *window = &controller->window[i];
370 if (!(window->resource.flags & res->flags))
371 continue;
372 if (window->resource.start - window->offset > region->start)
373 continue;
374 if (window->resource.end - window->offset < region->end)
375 continue;
376 offset = window->offset;
377 break;
378 }
379
380 res->start = region->start + offset;
381 res->end = region->end + offset;
382 }
383 EXPORT_SYMBOL(pcibios_bus_to_resource);
384
385 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
386 {
387 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
388 struct resource *devr = &dev->resource[idx];
389
390 if (!dev->bus)
391 return 0;
392 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
393 struct resource *busr = dev->bus->resource[i];
394
395 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
396 continue;
397 if ((devr->start) && (devr->start >= busr->start) &&
398 (devr->end <= busr->end))
399 return 1;
400 }
401 return 0;
402 }
403
404 static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
405 {
406 struct pci_bus_region region;
407 int i;
408 int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
409 PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
410
411 for (i = 0; i < limit; i++) {
412 if (!dev->resource[i].flags)
413 continue;
414 region.start = dev->resource[i].start;
415 region.end = dev->resource[i].end;
416 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
417 if ((is_valid_resource(dev, i)))
418 pci_claim_resource(dev, i);
419 }
420 }
421
422 /*
423 * Called after each bus is probed, but before its children are examined.
424 */
425 void __devinit
426 pcibios_fixup_bus (struct pci_bus *b)
427 {
428 struct pci_dev *dev;
429
430 if (b->self) {
431 pci_read_bridge_bases(b);
432 pcibios_fixup_device_resources(b->self);
433 }
434 list_for_each_entry(dev, &b->devices, bus_list)
435 pcibios_fixup_device_resources(dev);
436
437 return;
438 }
439
440 void __devinit
441 pcibios_update_irq (struct pci_dev *dev, int irq)
442 {
443 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
444
445 /* ??? FIXME -- record old value for shutdown. */
446 }
447
448 static inline int
449 pcibios_enable_resources (struct pci_dev *dev, int mask)
450 {
451 u16 cmd, old_cmd;
452 int idx;
453 struct resource *r;
454 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
455
456 if (!dev)
457 return -EINVAL;
458
459 pci_read_config_word(dev, PCI_COMMAND, &cmd);
460 old_cmd = cmd;
461 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
462 /* Only set up the desired resources. */
463 if (!(mask & (1 << idx)))
464 continue;
465
466 r = &dev->resource[idx];
467 if (!(r->flags & type_mask))
468 continue;
469 if ((idx == PCI_ROM_RESOURCE) &&
470 (!(r->flags & IORESOURCE_ROM_ENABLE)))
471 continue;
472 if (!r->start && r->end) {
473 printk(KERN_ERR
474 "PCI: Device %s not available because of resource collisions\n",
475 pci_name(dev));
476 return -EINVAL;
477 }
478 if (r->flags & IORESOURCE_IO)
479 cmd |= PCI_COMMAND_IO;
480 if (r->flags & IORESOURCE_MEM)
481 cmd |= PCI_COMMAND_MEMORY;
482 }
483 if (cmd != old_cmd) {
484 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
485 pci_write_config_word(dev, PCI_COMMAND, cmd);
486 }
487 return 0;
488 }
489
490 int
491 pcibios_enable_device (struct pci_dev *dev, int mask)
492 {
493 int ret;
494
495 ret = pcibios_enable_resources(dev, mask);
496 if (ret < 0)
497 return ret;
498
499 return acpi_pci_irq_enable(dev);
500 }
501
502 #ifdef CONFIG_ACPI_DEALLOCATE_IRQ
503 void
504 pcibios_disable_device (struct pci_dev *dev)
505 {
506 acpi_pci_irq_disable(dev);
507 }
508 #endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
509
510 void
511 pcibios_align_resource (void *data, struct resource *res,
512 unsigned long size, unsigned long align)
513 {
514 }
515
516 /*
517 * PCI BIOS setup, always defaults to SAL interface
518 */
519 char * __init
520 pcibios_setup (char *str)
521 {
522 return NULL;
523 }
524
525 int
526 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
527 enum pci_mmap_state mmap_state, int write_combine)
528 {
529 /*
530 * I/O space cannot be accessed via normal processor loads and
531 * stores on this platform.
532 */
533 if (mmap_state == pci_mmap_io)
534 /*
535 * XXX we could relax this for I/O spaces for which ACPI
536 * indicates that the space is 1-to-1 mapped. But at the
537 * moment, we don't support multiple PCI address spaces and
538 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
539 */
540 return -EINVAL;
541
542 /*
543 * Leave vm_pgoff as-is, the PCI space address is the physical
544 * address on this platform.
545 */
546 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
547
548 if (write_combine && efi_range_is_wc(vma->vm_start,
549 vma->vm_end - vma->vm_start))
550 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
551 else
552 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
553
554 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
555 vma->vm_end - vma->vm_start, vma->vm_page_prot))
556 return -EAGAIN;
557
558 return 0;
559 }
560
561 /**
562 * ia64_pci_get_legacy_mem - generic legacy mem routine
563 * @bus: bus to get legacy memory base address for
564 *
565 * Find the base of legacy memory for @bus. This is typically the first
566 * megabyte of bus address space for @bus or is simply 0 on platforms whose
567 * chipsets support legacy I/O and memory routing. Returns the base address
568 * or an error pointer if an error occurred.
569 *
570 * This is the ia64 generic version of this routine. Other platforms
571 * are free to override it with a machine vector.
572 */
573 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
574 {
575 return (char *)__IA64_UNCACHED_OFFSET;
576 }
577
578 /**
579 * pci_mmap_legacy_page_range - map legacy memory space to userland
580 * @bus: bus whose legacy space we're mapping
581 * @vma: vma passed in by mmap
582 *
583 * Map legacy memory space for this device back to userspace using a machine
584 * vector to get the base address.
585 */
586 int
587 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
588 {
589 char *addr;
590
591 addr = pci_get_legacy_mem(bus);
592 if (IS_ERR(addr))
593 return PTR_ERR(addr);
594
595 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
596 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
597 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
598
599 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
600 vma->vm_end - vma->vm_start, vma->vm_page_prot))
601 return -EAGAIN;
602
603 return 0;
604 }
605
606 /**
607 * ia64_pci_legacy_read - read from legacy I/O space
608 * @bus: bus to read
609 * @port: legacy port value
610 * @val: caller allocated storage for returned value
611 * @size: number of bytes to read
612 *
613 * Simply reads @size bytes from @port and puts the result in @val.
614 *
615 * Again, this (and the write routine) are generic versions that can be
616 * overridden by the platform. This is necessary on platforms that don't
617 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
618 */
619 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
620 {
621 int ret = size;
622
623 switch (size) {
624 case 1:
625 *val = inb(port);
626 break;
627 case 2:
628 *val = inw(port);
629 break;
630 case 4:
631 *val = inl(port);
632 break;
633 default:
634 ret = -EINVAL;
635 break;
636 }
637
638 return ret;
639 }
640
641 /**
642 * ia64_pci_legacy_write - perform a legacy I/O write
643 * @bus: bus pointer
644 * @port: port to write
645 * @val: value to write
646 * @size: number of bytes to write from @val
647 *
648 * Simply writes @size bytes of @val to @port.
649 */
650 int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
651 {
652 int ret = 0;
653
654 switch (size) {
655 case 1:
656 outb(val, port);
657 break;
658 case 2:
659 outw(val, port);
660 break;
661 case 4:
662 outl(val, port);
663 break;
664 default:
665 ret = -EINVAL;
666 break;
667 }
668
669 return ret;
670 }
671
672 /**
673 * pci_cacheline_size - determine cacheline size for PCI devices
674 * @dev: void
675 *
676 * We want to use the line-size of the outer-most cache. We assume
677 * that this line-size is the same for all CPUs.
678 *
679 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
680 *
681 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
682 */
683 static unsigned long
684 pci_cacheline_size (void)
685 {
686 u64 levels, unique_caches;
687 s64 status;
688 pal_cache_config_info_t cci;
689 static u8 cacheline_size;
690
691 if (cacheline_size)
692 return cacheline_size;
693
694 status = ia64_pal_cache_summary(&levels, &unique_caches);
695 if (status != 0) {
696 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
697 __FUNCTION__, status);
698 return SMP_CACHE_BYTES;
699 }
700
701 status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
702 &cci);
703 if (status != 0) {
704 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
705 __FUNCTION__, status);
706 return SMP_CACHE_BYTES;
707 }
708 cacheline_size = 1 << cci.pcci_line_size;
709 return cacheline_size;
710 }
711
712 /**
713 * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
714 * @dev: the PCI device for which MWI is enabled
715 *
716 * For ia64, we can get the cacheline sizes from PAL.
717 *
718 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
719 */
720 int
721 pcibios_prep_mwi (struct pci_dev *dev)
722 {
723 unsigned long desired_linesize, current_linesize;
724 int rc = 0;
725 u8 pci_linesize;
726
727 desired_linesize = pci_cacheline_size();
728
729 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
730 current_linesize = 4 * pci_linesize;
731 if (desired_linesize != current_linesize) {
732 printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
733 pci_name(dev), current_linesize);
734 if (current_linesize > desired_linesize) {
735 printk(" expected %lu bytes instead\n", desired_linesize);
736 rc = -EINVAL;
737 } else {
738 printk(" correcting to %lu\n", desired_linesize);
739 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
740 }
741 }
742 return rc;
743 }
744
745 int pci_vector_resources(int last, int nr_released)
746 {
747 int count = nr_released;
748
749 count += (IA64_LAST_DEVICE_VECTOR - last);
750
751 return count;
752 }
This page took 0.070085 seconds and 5 git commands to generate.