Merge master.kernel.org:/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[deliverable/linux.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22
23 #include <asm/machvec.h>
24 #include <asm/page.h>
25 #include <asm/system.h>
26 #include <asm/io.h>
27 #include <asm/sal.h>
28 #include <asm/smp.h>
29 #include <asm/irq.h>
30 #include <asm/hw_irq.h>
31
32 /*
33 * Low-level SAL-based PCI configuration access functions. Note that SAL
34 * calls are already serialized (via sal_lock), so we don't need another
35 * synchronization mechanism here.
36 */
37
38 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
39 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
40
41 /* SAL 3.2 adds support for extended config space. */
42
43 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
44 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
45
46 static int
47 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
48 int reg, int len, u32 *value)
49 {
50 u64 addr, data = 0;
51 int mode, result;
52
53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 return -EINVAL;
55
56 if ((seg | reg) <= 255) {
57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 mode = 0;
59 } else {
60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 mode = 1;
62 }
63 result = ia64_sal_pci_config_read(addr, mode, len, &data);
64 if (result != 0)
65 return -EINVAL;
66
67 *value = (u32) data;
68 return 0;
69 }
70
71 static int
72 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
73 int reg, int len, u32 value)
74 {
75 u64 addr;
76 int mode, result;
77
78 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
79 return -EINVAL;
80
81 if ((seg | reg) <= 255) {
82 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
83 mode = 0;
84 } else {
85 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
86 mode = 1;
87 }
88 result = ia64_sal_pci_config_write(addr, mode, len, value);
89 if (result != 0)
90 return -EINVAL;
91 return 0;
92 }
93
94 static struct pci_raw_ops pci_sal_ops = {
95 .read = pci_sal_read,
96 .write = pci_sal_write
97 };
98
99 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
100
101 static int
102 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
103 {
104 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
105 devfn, where, size, value);
106 }
107
108 static int
109 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
110 {
111 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
112 devfn, where, size, value);
113 }
114
115 struct pci_ops pci_root_ops = {
116 .read = pci_read,
117 .write = pci_write,
118 };
119
120 /* Called by ACPI when it finds a new root bus. */
121
122 static struct pci_controller * __devinit
123 alloc_pci_controller (int seg)
124 {
125 struct pci_controller *controller;
126
127 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
128 if (!controller)
129 return NULL;
130
131 controller->segment = seg;
132 controller->node = -1;
133 return controller;
134 }
135
136 struct pci_root_info {
137 struct pci_controller *controller;
138 char *name;
139 };
140
141 static unsigned int
142 new_space (u64 phys_base, int sparse)
143 {
144 u64 mmio_base;
145 int i;
146
147 if (phys_base == 0)
148 return 0; /* legacy I/O port space */
149
150 mmio_base = (u64) ioremap(phys_base, 0);
151 for (i = 0; i < num_io_spaces; i++)
152 if (io_space[i].mmio_base == mmio_base &&
153 io_space[i].sparse == sparse)
154 return i;
155
156 if (num_io_spaces == MAX_IO_SPACES) {
157 printk(KERN_ERR "PCI: Too many IO port spaces "
158 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
159 return ~0;
160 }
161
162 i = num_io_spaces++;
163 io_space[i].mmio_base = mmio_base;
164 io_space[i].sparse = sparse;
165
166 return i;
167 }
168
169 static u64 __devinit
170 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
171 {
172 struct resource *resource;
173 char *name;
174 u64 base, min, max, base_port;
175 unsigned int sparse = 0, space_nr, len;
176
177 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
178 if (!resource) {
179 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
180 info->name);
181 goto out;
182 }
183
184 len = strlen(info->name) + 32;
185 name = kzalloc(len, GFP_KERNEL);
186 if (!name) {
187 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
188 info->name);
189 goto free_resource;
190 }
191
192 min = addr->minimum;
193 max = min + addr->address_length - 1;
194 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
195 sparse = 1;
196
197 space_nr = new_space(addr->translation_offset, sparse);
198 if (space_nr == ~0)
199 goto free_name;
200
201 base = __pa(io_space[space_nr].mmio_base);
202 base_port = IO_SPACE_BASE(space_nr);
203 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
204 base_port + min, base_port + max);
205
206 /*
207 * The SDM guarantees the legacy 0-64K space is sparse, but if the
208 * mapping is done by the processor (not the bridge), ACPI may not
209 * mark it as sparse.
210 */
211 if (space_nr == 0)
212 sparse = 1;
213
214 resource->name = name;
215 resource->flags = IORESOURCE_MEM;
216 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
217 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
218 insert_resource(&iomem_resource, resource);
219
220 return base_port;
221
222 free_name:
223 kfree(name);
224 free_resource:
225 kfree(resource);
226 out:
227 return ~0;
228 }
229
230 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
231 struct acpi_resource_address64 *addr)
232 {
233 acpi_status status;
234
235 /*
236 * We're only interested in _CRS descriptors that are
237 * - address space descriptors for memory or I/O space
238 * - non-zero size
239 * - producers, i.e., the address space is routed downstream,
240 * not consumed by the bridge itself
241 */
242 status = acpi_resource_to_address64(resource, addr);
243 if (ACPI_SUCCESS(status) &&
244 (addr->resource_type == ACPI_MEMORY_RANGE ||
245 addr->resource_type == ACPI_IO_RANGE) &&
246 addr->address_length &&
247 addr->producer_consumer == ACPI_PRODUCER)
248 return AE_OK;
249
250 return AE_ERROR;
251 }
252
253 static acpi_status __devinit
254 count_window (struct acpi_resource *resource, void *data)
255 {
256 unsigned int *windows = (unsigned int *) data;
257 struct acpi_resource_address64 addr;
258 acpi_status status;
259
260 status = resource_to_window(resource, &addr);
261 if (ACPI_SUCCESS(status))
262 (*windows)++;
263
264 return AE_OK;
265 }
266
267 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
268 {
269 struct pci_root_info *info = data;
270 struct pci_window *window;
271 struct acpi_resource_address64 addr;
272 acpi_status status;
273 unsigned long flags, offset = 0;
274 struct resource *root;
275
276 /* Return AE_OK for non-window resources to keep scanning for more */
277 status = resource_to_window(res, &addr);
278 if (!ACPI_SUCCESS(status))
279 return AE_OK;
280
281 if (addr.resource_type == ACPI_MEMORY_RANGE) {
282 flags = IORESOURCE_MEM;
283 root = &iomem_resource;
284 offset = addr.translation_offset;
285 } else if (addr.resource_type == ACPI_IO_RANGE) {
286 flags = IORESOURCE_IO;
287 root = &ioport_resource;
288 offset = add_io_space(info, &addr);
289 if (offset == ~0)
290 return AE_OK;
291 } else
292 return AE_OK;
293
294 window = &info->controller->window[info->controller->windows++];
295 window->resource.name = info->name;
296 window->resource.flags = flags;
297 window->resource.start = addr.minimum + offset;
298 window->resource.end = window->resource.start + addr.address_length - 1;
299 window->resource.child = NULL;
300 window->offset = offset;
301
302 if (insert_resource(root, &window->resource)) {
303 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
304 window->resource.start, window->resource.end,
305 root->name, info->name);
306 }
307
308 return AE_OK;
309 }
310
311 static void __devinit
312 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
313 {
314 int i, j;
315
316 j = 0;
317 for (i = 0; i < ctrl->windows; i++) {
318 struct resource *res = &ctrl->window[i].resource;
319 /* HP's firmware has a hack to work around a Windows bug.
320 * Ignore these tiny memory ranges */
321 if ((res->flags & IORESOURCE_MEM) &&
322 (res->end - res->start < 16))
323 continue;
324 if (j >= PCI_BUS_NUM_RESOURCES) {
325 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
326 res->end, res->flags);
327 continue;
328 }
329 bus->resource[j++] = res;
330 }
331 }
332
333 struct pci_bus * __devinit
334 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
335 {
336 struct pci_root_info info;
337 struct pci_controller *controller;
338 unsigned int windows = 0;
339 struct pci_bus *pbus;
340 char *name;
341 int pxm;
342
343 controller = alloc_pci_controller(domain);
344 if (!controller)
345 goto out1;
346
347 controller->acpi_handle = device->handle;
348
349 pxm = acpi_get_pxm(controller->acpi_handle);
350 #ifdef CONFIG_NUMA
351 if (pxm >= 0)
352 controller->node = pxm_to_node(pxm);
353 #endif
354
355 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
356 &windows);
357 controller->window = kmalloc_node(sizeof(*controller->window) * windows,
358 GFP_KERNEL, controller->node);
359 if (!controller->window)
360 goto out2;
361
362 name = kmalloc(16, GFP_KERNEL);
363 if (!name)
364 goto out3;
365
366 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
367 info.controller = controller;
368 info.name = name;
369 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
370 &info);
371
372 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
373 if (pbus)
374 pcibios_setup_root_windows(pbus, controller);
375
376 return pbus;
377
378 out3:
379 kfree(controller->window);
380 out2:
381 kfree(controller);
382 out1:
383 return NULL;
384 }
385
386 void pcibios_resource_to_bus(struct pci_dev *dev,
387 struct pci_bus_region *region, struct resource *res)
388 {
389 struct pci_controller *controller = PCI_CONTROLLER(dev);
390 unsigned long offset = 0;
391 int i;
392
393 for (i = 0; i < controller->windows; i++) {
394 struct pci_window *window = &controller->window[i];
395 if (!(window->resource.flags & res->flags))
396 continue;
397 if (window->resource.start > res->start)
398 continue;
399 if (window->resource.end < res->end)
400 continue;
401 offset = window->offset;
402 break;
403 }
404
405 region->start = res->start - offset;
406 region->end = res->end - offset;
407 }
408 EXPORT_SYMBOL(pcibios_resource_to_bus);
409
410 void pcibios_bus_to_resource(struct pci_dev *dev,
411 struct resource *res, struct pci_bus_region *region)
412 {
413 struct pci_controller *controller = PCI_CONTROLLER(dev);
414 unsigned long offset = 0;
415 int i;
416
417 for (i = 0; i < controller->windows; i++) {
418 struct pci_window *window = &controller->window[i];
419 if (!(window->resource.flags & res->flags))
420 continue;
421 if (window->resource.start - window->offset > region->start)
422 continue;
423 if (window->resource.end - window->offset < region->end)
424 continue;
425 offset = window->offset;
426 break;
427 }
428
429 res->start = region->start + offset;
430 res->end = region->end + offset;
431 }
432 EXPORT_SYMBOL(pcibios_bus_to_resource);
433
434 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
435 {
436 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
437 struct resource *devr = &dev->resource[idx];
438
439 if (!dev->bus)
440 return 0;
441 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
442 struct resource *busr = dev->bus->resource[i];
443
444 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
445 continue;
446 if ((devr->start) && (devr->start >= busr->start) &&
447 (devr->end <= busr->end))
448 return 1;
449 }
450 return 0;
451 }
452
453 static void __devinit
454 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
455 {
456 struct pci_bus_region region;
457 int i;
458
459 for (i = start; i < limit; i++) {
460 if (!dev->resource[i].flags)
461 continue;
462 region.start = dev->resource[i].start;
463 region.end = dev->resource[i].end;
464 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
465 if ((is_valid_resource(dev, i)))
466 pci_claim_resource(dev, i);
467 }
468 }
469
470 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
471 {
472 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
473 }
474 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
475
476 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
477 {
478 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
479 }
480
481 /*
482 * Called after each bus is probed, but before its children are examined.
483 */
484 void __devinit
485 pcibios_fixup_bus (struct pci_bus *b)
486 {
487 struct pci_dev *dev;
488
489 if (b->self) {
490 pci_read_bridge_bases(b);
491 pcibios_fixup_bridge_resources(b->self);
492 }
493 list_for_each_entry(dev, &b->devices, bus_list)
494 pcibios_fixup_device_resources(dev);
495 platform_pci_fixup_bus(b);
496
497 return;
498 }
499
500 void __devinit
501 pcibios_update_irq (struct pci_dev *dev, int irq)
502 {
503 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
504
505 /* ??? FIXME -- record old value for shutdown. */
506 }
507
508 static inline int
509 pcibios_enable_resources (struct pci_dev *dev, int mask)
510 {
511 u16 cmd, old_cmd;
512 int idx;
513 struct resource *r;
514 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
515
516 if (!dev)
517 return -EINVAL;
518
519 pci_read_config_word(dev, PCI_COMMAND, &cmd);
520 old_cmd = cmd;
521 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
522 /* Only set up the desired resources. */
523 if (!(mask & (1 << idx)))
524 continue;
525
526 r = &dev->resource[idx];
527 if (!(r->flags & type_mask))
528 continue;
529 if ((idx == PCI_ROM_RESOURCE) &&
530 (!(r->flags & IORESOURCE_ROM_ENABLE)))
531 continue;
532 if (!r->start && r->end) {
533 printk(KERN_ERR
534 "PCI: Device %s not available because of resource collisions\n",
535 pci_name(dev));
536 return -EINVAL;
537 }
538 if (r->flags & IORESOURCE_IO)
539 cmd |= PCI_COMMAND_IO;
540 if (r->flags & IORESOURCE_MEM)
541 cmd |= PCI_COMMAND_MEMORY;
542 }
543 if (cmd != old_cmd) {
544 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
545 pci_write_config_word(dev, PCI_COMMAND, cmd);
546 }
547 return 0;
548 }
549
550 int
551 pcibios_enable_device (struct pci_dev *dev, int mask)
552 {
553 int ret;
554
555 ret = pcibios_enable_resources(dev, mask);
556 if (ret < 0)
557 return ret;
558
559 if (!dev->msi_enabled)
560 return acpi_pci_irq_enable(dev);
561 return 0;
562 }
563
564 void
565 pcibios_disable_device (struct pci_dev *dev)
566 {
567 BUG_ON(atomic_read(&dev->enable_cnt));
568 if (!dev->msi_enabled)
569 acpi_pci_irq_disable(dev);
570 }
571
572 void
573 pcibios_align_resource (void *data, struct resource *res,
574 resource_size_t size, resource_size_t align)
575 {
576 }
577
578 /*
579 * PCI BIOS setup, always defaults to SAL interface
580 */
581 char * __init
582 pcibios_setup (char *str)
583 {
584 return str;
585 }
586
587 int
588 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
589 enum pci_mmap_state mmap_state, int write_combine)
590 {
591 /*
592 * I/O space cannot be accessed via normal processor loads and
593 * stores on this platform.
594 */
595 if (mmap_state == pci_mmap_io)
596 /*
597 * XXX we could relax this for I/O spaces for which ACPI
598 * indicates that the space is 1-to-1 mapped. But at the
599 * moment, we don't support multiple PCI address spaces and
600 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
601 */
602 return -EINVAL;
603
604 /*
605 * Leave vm_pgoff as-is, the PCI space address is the physical
606 * address on this platform.
607 */
608 if (write_combine && efi_range_is_wc(vma->vm_start,
609 vma->vm_end - vma->vm_start))
610 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
611 else
612 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
613
614 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
615 vma->vm_end - vma->vm_start, vma->vm_page_prot))
616 return -EAGAIN;
617
618 return 0;
619 }
620
621 /**
622 * ia64_pci_get_legacy_mem - generic legacy mem routine
623 * @bus: bus to get legacy memory base address for
624 *
625 * Find the base of legacy memory for @bus. This is typically the first
626 * megabyte of bus address space for @bus or is simply 0 on platforms whose
627 * chipsets support legacy I/O and memory routing. Returns the base address
628 * or an error pointer if an error occurred.
629 *
630 * This is the ia64 generic version of this routine. Other platforms
631 * are free to override it with a machine vector.
632 */
633 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
634 {
635 return (char *)__IA64_UNCACHED_OFFSET;
636 }
637
638 /**
639 * pci_mmap_legacy_page_range - map legacy memory space to userland
640 * @bus: bus whose legacy space we're mapping
641 * @vma: vma passed in by mmap
642 *
643 * Map legacy memory space for this device back to userspace using a machine
644 * vector to get the base address.
645 */
646 int
647 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
648 {
649 unsigned long size = vma->vm_end - vma->vm_start;
650 pgprot_t prot;
651 char *addr;
652
653 /*
654 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
655 * for more details.
656 */
657 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
658 return -EINVAL;
659 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
660 vma->vm_page_prot);
661
662 addr = pci_get_legacy_mem(bus);
663 if (IS_ERR(addr))
664 return PTR_ERR(addr);
665
666 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
667 vma->vm_page_prot = prot;
668
669 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
670 size, vma->vm_page_prot))
671 return -EAGAIN;
672
673 return 0;
674 }
675
676 /**
677 * ia64_pci_legacy_read - read from legacy I/O space
678 * @bus: bus to read
679 * @port: legacy port value
680 * @val: caller allocated storage for returned value
681 * @size: number of bytes to read
682 *
683 * Simply reads @size bytes from @port and puts the result in @val.
684 *
685 * Again, this (and the write routine) are generic versions that can be
686 * overridden by the platform. This is necessary on platforms that don't
687 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
688 */
689 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
690 {
691 int ret = size;
692
693 switch (size) {
694 case 1:
695 *val = inb(port);
696 break;
697 case 2:
698 *val = inw(port);
699 break;
700 case 4:
701 *val = inl(port);
702 break;
703 default:
704 ret = -EINVAL;
705 break;
706 }
707
708 return ret;
709 }
710
711 /**
712 * ia64_pci_legacy_write - perform a legacy I/O write
713 * @bus: bus pointer
714 * @port: port to write
715 * @val: value to write
716 * @size: number of bytes to write from @val
717 *
718 * Simply writes @size bytes of @val to @port.
719 */
720 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
721 {
722 int ret = size;
723
724 switch (size) {
725 case 1:
726 outb(val, port);
727 break;
728 case 2:
729 outw(val, port);
730 break;
731 case 4:
732 outl(val, port);
733 break;
734 default:
735 ret = -EINVAL;
736 break;
737 }
738
739 return ret;
740 }
741
742 /* It's defined in drivers/pci/pci.c */
743 extern u8 pci_cache_line_size;
744
745 /**
746 * set_pci_cacheline_size - determine cacheline size for PCI devices
747 *
748 * We want to use the line-size of the outer-most cache. We assume
749 * that this line-size is the same for all CPUs.
750 *
751 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
752 */
753 static void __init set_pci_cacheline_size(void)
754 {
755 u64 levels, unique_caches;
756 s64 status;
757 pal_cache_config_info_t cci;
758
759 status = ia64_pal_cache_summary(&levels, &unique_caches);
760 if (status != 0) {
761 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
762 "(status=%ld)\n", __FUNCTION__, status);
763 return;
764 }
765
766 status = ia64_pal_cache_config_info(levels - 1,
767 /* cache_type (data_or_unified)= */ 2, &cci);
768 if (status != 0) {
769 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
770 "(status=%ld)\n", __FUNCTION__, status);
771 return;
772 }
773 pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
774 }
775
776 static int __init pcibios_init(void)
777 {
778 set_pci_cacheline_size();
779 return 0;
780 }
781
782 subsys_initcall(pcibios_init);
This page took 0.052716 seconds and 6 git commands to generate.