[PATCH] unify sys_ptrace prototype
[deliverable/linux.git] / arch / m32r / kernel / ptrace.c
1 /*
2 * linux/arch/m32r/kernel/ptrace.c
3 *
4 * Copyright (C) 2002 Hirokazu Takata, Takeo Takahashi
5 * Copyright (C) 2004 Hirokazu Takata, Kei Sakamoto
6 *
7 * Original x86 implementation:
8 * By Ross Biro 1/23/92
9 * edited by Linus Torvalds
10 *
11 * Some code taken from sh version:
12 * Copyright (C) 1999, 2000 Kaz Kojima & Niibe Yutaka
13 * Some code taken from arm version:
14 * Copyright (C) 2000 Russell King
15 */
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/errno.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/string.h>
27 #include <linux/signal.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/io.h>
31 #include <asm/uaccess.h>
32 #include <asm/pgtable.h>
33 #include <asm/system.h>
34 #include <asm/processor.h>
35 #include <asm/mmu_context.h>
36
37 /*
38 * Get the address of the live pt_regs for the specified task.
39 * These are saved onto the top kernel stack when the process
40 * is not running.
41 *
42 * Note: if a user thread is execve'd from kernel space, the
43 * kernel stack will not be empty on entry to the kernel, so
44 * ptracing these tasks will fail.
45 */
46 static inline struct pt_regs *
47 get_user_regs(struct task_struct *task)
48 {
49 return (struct pt_regs *)
50 ((unsigned long)task->thread_info + THREAD_SIZE
51 - sizeof(struct pt_regs));
52 }
53
54 /*
55 * This routine will get a word off of the process kernel stack.
56 */
57 static inline unsigned long int
58 get_stack_long(struct task_struct *task, int offset)
59 {
60 unsigned long *stack;
61
62 stack = (unsigned long *)get_user_regs(task);
63
64 return stack[offset];
65 }
66
67 /*
68 * This routine will put a word on the process kernel stack.
69 */
70 static inline int
71 put_stack_long(struct task_struct *task, int offset, unsigned long data)
72 {
73 unsigned long *stack;
74
75 stack = (unsigned long *)get_user_regs(task);
76 stack[offset] = data;
77
78 return 0;
79 }
80
81 static int reg_offset[] = {
82 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
83 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU,
84 };
85
86 /*
87 * Read the word at offset "off" into the "struct user". We
88 * actually access the pt_regs stored on the kernel stack.
89 */
90 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
91 unsigned long __user *data)
92 {
93 unsigned long tmp;
94 #ifndef NO_FPU
95 struct user * dummy = NULL;
96 #endif
97
98 if ((off & 3) || (off < 0) || (off > sizeof(struct user) - 3))
99 return -EIO;
100
101 off >>= 2;
102 switch (off) {
103 case PT_EVB:
104 __asm__ __volatile__ (
105 "mvfc %0, cr5 \n\t"
106 : "=r" (tmp)
107 );
108 break;
109 case PT_CBR: {
110 unsigned long psw;
111 psw = get_stack_long(tsk, PT_PSW);
112 tmp = ((psw >> 8) & 1);
113 }
114 break;
115 case PT_PSW: {
116 unsigned long psw, bbpsw;
117 psw = get_stack_long(tsk, PT_PSW);
118 bbpsw = get_stack_long(tsk, PT_BBPSW);
119 tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8);
120 }
121 break;
122 case PT_PC:
123 tmp = get_stack_long(tsk, PT_BPC);
124 break;
125 case PT_BPC:
126 off = PT_BBPC;
127 /* fall through */
128 default:
129 if (off < (sizeof(struct pt_regs) >> 2))
130 tmp = get_stack_long(tsk, off);
131 #ifndef NO_FPU
132 else if (off >= (long)(&dummy->fpu >> 2) &&
133 off < (long)(&dummy->u_fpvalid >> 2)) {
134 if (!tsk_used_math(tsk)) {
135 if (off == (long)(&dummy->fpu.fpscr >> 2))
136 tmp = FPSCR_INIT;
137 else
138 tmp = 0;
139 } else
140 tmp = ((long *)(&tsk->thread.fpu >> 2))
141 [off - (long)&dummy->fpu];
142 } else if (off == (long)(&dummy->u_fpvalid >> 2))
143 tmp = !!tsk_used_math(tsk);
144 #endif /* not NO_FPU */
145 else
146 tmp = 0;
147 }
148
149 return put_user(tmp, data);
150 }
151
152 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
153 unsigned long data)
154 {
155 int ret = -EIO;
156 #ifndef NO_FPU
157 struct user * dummy = NULL;
158 #endif
159
160 if ((off & 3) || off < 0 ||
161 off > sizeof(struct user) - 3)
162 return -EIO;
163
164 off >>= 2;
165 switch (off) {
166 case PT_EVB:
167 case PT_BPC:
168 case PT_SPI:
169 /* We don't allow to modify evb. */
170 ret = 0;
171 break;
172 case PT_PSW:
173 case PT_CBR: {
174 /* We allow to modify only cbr in psw */
175 unsigned long psw;
176 psw = get_stack_long(tsk, PT_PSW);
177 psw = (psw & ~0x100) | ((data & 1) << 8);
178 ret = put_stack_long(tsk, PT_PSW, psw);
179 }
180 break;
181 case PT_PC:
182 off = PT_BPC;
183 data &= ~1;
184 /* fall through */
185 default:
186 if (off < (sizeof(struct pt_regs) >> 2))
187 ret = put_stack_long(tsk, off, data);
188 #ifndef NO_FPU
189 else if (off >= (long)(&dummy->fpu >> 2) &&
190 off < (long)(&dummy->u_fpvalid >> 2)) {
191 set_stopped_child_used_math(tsk);
192 ((long *)&tsk->thread.fpu)
193 [off - (long)&dummy->fpu] = data;
194 ret = 0;
195 } else if (off == (long)(&dummy->u_fpvalid >> 2)) {
196 conditional_stopped_child_used_math(data, tsk);
197 ret = 0;
198 }
199 #endif /* not NO_FPU */
200 break;
201 }
202
203 return ret;
204 }
205
206 /*
207 * Get all user integer registers.
208 */
209 static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
210 {
211 struct pt_regs *regs = get_user_regs(tsk);
212
213 return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
214 }
215
216 /*
217 * Set all user integer registers.
218 */
219 static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
220 {
221 struct pt_regs newregs;
222 int ret;
223
224 ret = -EFAULT;
225 if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
226 struct pt_regs *regs = get_user_regs(tsk);
227 *regs = newregs;
228 ret = 0;
229 }
230
231 return ret;
232 }
233
234
235 static inline int
236 check_condition_bit(struct task_struct *child)
237 {
238 return (int)((get_stack_long(child, PT_PSW) >> 8) & 1);
239 }
240
241 static int
242 check_condition_src(unsigned long op, unsigned long regno1,
243 unsigned long regno2, struct task_struct *child)
244 {
245 unsigned long reg1, reg2;
246
247 reg2 = get_stack_long(child, reg_offset[regno2]);
248
249 switch (op) {
250 case 0x0: /* BEQ */
251 reg1 = get_stack_long(child, reg_offset[regno1]);
252 return reg1 == reg2;
253 case 0x1: /* BNE */
254 reg1 = get_stack_long(child, reg_offset[regno1]);
255 return reg1 != reg2;
256 case 0x8: /* BEQZ */
257 return reg2 == 0;
258 case 0x9: /* BNEZ */
259 return reg2 != 0;
260 case 0xa: /* BLTZ */
261 return (int)reg2 < 0;
262 case 0xb: /* BGEZ */
263 return (int)reg2 >= 0;
264 case 0xc: /* BLEZ */
265 return (int)reg2 <= 0;
266 case 0xd: /* BGTZ */
267 return (int)reg2 > 0;
268 default:
269 /* never reached */
270 return 0;
271 }
272 }
273
274 static void
275 compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc,
276 unsigned long *next_pc,
277 struct task_struct *child)
278 {
279 unsigned long op, op2, op3;
280 unsigned long disp;
281 unsigned long regno;
282 int parallel = 0;
283
284 if (insn & 0x00008000)
285 parallel = 1;
286 if (pc & 3)
287 insn &= 0x7fff; /* right slot */
288 else
289 insn >>= 16; /* left slot */
290
291 op = (insn >> 12) & 0xf;
292 op2 = (insn >> 8) & 0xf;
293 op3 = (insn >> 4) & 0xf;
294
295 if (op == 0x7) {
296 switch (op2) {
297 case 0xd: /* BNC */
298 case 0x9: /* BNCL */
299 if (!check_condition_bit(child)) {
300 disp = (long)(insn << 24) >> 22;
301 *next_pc = (pc & ~0x3) + disp;
302 return;
303 }
304 break;
305 case 0x8: /* BCL */
306 case 0xc: /* BC */
307 if (check_condition_bit(child)) {
308 disp = (long)(insn << 24) >> 22;
309 *next_pc = (pc & ~0x3) + disp;
310 return;
311 }
312 break;
313 case 0xe: /* BL */
314 case 0xf: /* BRA */
315 disp = (long)(insn << 24) >> 22;
316 *next_pc = (pc & ~0x3) + disp;
317 return;
318 break;
319 }
320 } else if (op == 0x1) {
321 switch (op2) {
322 case 0x0:
323 if (op3 == 0xf) { /* TRAP */
324 #if 1
325 /* pass through */
326 #else
327 /* kernel space is not allowed as next_pc */
328 unsigned long evb;
329 unsigned long trapno;
330 trapno = insn & 0xf;
331 __asm__ __volatile__ (
332 "mvfc %0, cr5\n"
333 :"=r"(evb)
334 :
335 );
336 *next_pc = evb + (trapno << 2);
337 return;
338 #endif
339 } else if (op3 == 0xd) { /* RTE */
340 *next_pc = get_stack_long(child, PT_BPC);
341 return;
342 }
343 break;
344 case 0xc: /* JC */
345 if (op3 == 0xc && check_condition_bit(child)) {
346 regno = insn & 0xf;
347 *next_pc = get_stack_long(child,
348 reg_offset[regno]);
349 return;
350 }
351 break;
352 case 0xd: /* JNC */
353 if (op3 == 0xc && !check_condition_bit(child)) {
354 regno = insn & 0xf;
355 *next_pc = get_stack_long(child,
356 reg_offset[regno]);
357 return;
358 }
359 break;
360 case 0xe: /* JL */
361 case 0xf: /* JMP */
362 if (op3 == 0xc) { /* JMP */
363 regno = insn & 0xf;
364 *next_pc = get_stack_long(child,
365 reg_offset[regno]);
366 return;
367 }
368 break;
369 }
370 }
371 if (parallel)
372 *next_pc = pc + 4;
373 else
374 *next_pc = pc + 2;
375 }
376
377 static void
378 compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc,
379 unsigned long *next_pc,
380 struct task_struct *child)
381 {
382 unsigned long op;
383 unsigned long op2;
384 unsigned long disp;
385 unsigned long regno1, regno2;
386
387 op = (insn >> 28) & 0xf;
388 if (op == 0xf) { /* branch 24-bit relative */
389 op2 = (insn >> 24) & 0xf;
390 switch (op2) {
391 case 0xd: /* BNC */
392 case 0x9: /* BNCL */
393 if (!check_condition_bit(child)) {
394 disp = (long)(insn << 8) >> 6;
395 *next_pc = (pc & ~0x3) + disp;
396 return;
397 }
398 break;
399 case 0x8: /* BCL */
400 case 0xc: /* BC */
401 if (check_condition_bit(child)) {
402 disp = (long)(insn << 8) >> 6;
403 *next_pc = (pc & ~0x3) + disp;
404 return;
405 }
406 break;
407 case 0xe: /* BL */
408 case 0xf: /* BRA */
409 disp = (long)(insn << 8) >> 6;
410 *next_pc = (pc & ~0x3) + disp;
411 return;
412 }
413 } else if (op == 0xb) { /* branch 16-bit relative */
414 op2 = (insn >> 20) & 0xf;
415 switch (op2) {
416 case 0x0: /* BEQ */
417 case 0x1: /* BNE */
418 case 0x8: /* BEQZ */
419 case 0x9: /* BNEZ */
420 case 0xa: /* BLTZ */
421 case 0xb: /* BGEZ */
422 case 0xc: /* BLEZ */
423 case 0xd: /* BGTZ */
424 regno1 = ((insn >> 24) & 0xf);
425 regno2 = ((insn >> 16) & 0xf);
426 if (check_condition_src(op2, regno1, regno2, child)) {
427 disp = (long)(insn << 16) >> 14;
428 *next_pc = (pc & ~0x3) + disp;
429 return;
430 }
431 break;
432 }
433 }
434 *next_pc = pc + 4;
435 }
436
437 static inline void
438 compute_next_pc(unsigned long insn, unsigned long pc,
439 unsigned long *next_pc, struct task_struct *child)
440 {
441 if (insn & 0x80000000)
442 compute_next_pc_for_32bit_insn(insn, pc, next_pc, child);
443 else
444 compute_next_pc_for_16bit_insn(insn, pc, next_pc, child);
445 }
446
447 static int
448 register_debug_trap(struct task_struct *child, unsigned long next_pc,
449 unsigned long next_insn, unsigned long *code)
450 {
451 struct debug_trap *p = &child->thread.debug_trap;
452 unsigned long addr = next_pc & ~3;
453
454 if (p->nr_trap == MAX_TRAPS) {
455 printk("kernel BUG at %s %d: p->nr_trap = %d\n",
456 __FILE__, __LINE__, p->nr_trap);
457 return -1;
458 }
459 p->addr[p->nr_trap] = addr;
460 p->insn[p->nr_trap] = next_insn;
461 p->nr_trap++;
462 if (next_pc & 3) {
463 *code = (next_insn & 0xffff0000) | 0x10f1;
464 /* xxx --> TRAP1 */
465 } else {
466 if ((next_insn & 0x80000000) || (next_insn & 0x8000)) {
467 *code = 0x10f17000;
468 /* TRAP1 --> NOP */
469 } else {
470 *code = (next_insn & 0xffff) | 0x10f10000;
471 /* TRAP1 --> xxx */
472 }
473 }
474 return 0;
475 }
476
477 static int
478 unregister_debug_trap(struct task_struct *child, unsigned long addr,
479 unsigned long *code)
480 {
481 struct debug_trap *p = &child->thread.debug_trap;
482 int i;
483
484 /* Search debug trap entry. */
485 for (i = 0; i < p->nr_trap; i++) {
486 if (p->addr[i] == addr)
487 break;
488 }
489 if (i >= p->nr_trap) {
490 /* The trap may be requested from debugger.
491 * ptrace should do nothing in this case.
492 */
493 return 0;
494 }
495
496 /* Recover orignal instruction code. */
497 *code = p->insn[i];
498
499 /* Shift debug trap entries. */
500 while (i < p->nr_trap - 1) {
501 p->insn[i] = p->insn[i + 1];
502 p->addr[i] = p->addr[i + 1];
503 i++;
504 }
505 p->nr_trap--;
506 return 1;
507 }
508
509 static void
510 unregister_all_debug_traps(struct task_struct *child)
511 {
512 struct debug_trap *p = &child->thread.debug_trap;
513 int i;
514
515 for (i = 0; i < p->nr_trap; i++)
516 access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]), 1);
517 p->nr_trap = 0;
518 }
519
520 static inline void
521 invalidate_cache(void)
522 {
523 #if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP)
524
525 _flush_cache_copyback_all();
526
527 #else /* ! CONFIG_CHIP_M32700 */
528
529 /* Invalidate cache */
530 __asm__ __volatile__ (
531 "ldi r0, #-1 \n\t"
532 "ldi r1, #0 \n\t"
533 "stb r1, @r0 ; cache off \n\t"
534 "; \n\t"
535 "ldi r0, #-2 \n\t"
536 "ldi r1, #1 \n\t"
537 "stb r1, @r0 ; cache invalidate \n\t"
538 ".fillinsn \n"
539 "0: \n\t"
540 "ldb r1, @r0 ; invalidate check \n\t"
541 "bnez r1, 0b \n\t"
542 "; \n\t"
543 "ldi r0, #-1 \n\t"
544 "ldi r1, #1 \n\t"
545 "stb r1, @r0 ; cache on \n\t"
546 : : : "r0", "r1", "memory"
547 );
548 /* FIXME: copying-back d-cache and invalidating i-cache are needed.
549 */
550 #endif /* CONFIG_CHIP_M32700 */
551 }
552
553 /* Embed a debug trap (TRAP1) code */
554 static int
555 embed_debug_trap(struct task_struct *child, unsigned long next_pc)
556 {
557 unsigned long next_insn, code;
558 unsigned long addr = next_pc & ~3;
559
560 if (access_process_vm(child, addr, &next_insn, sizeof(next_insn), 0)
561 != sizeof(next_insn)) {
562 return -1; /* error */
563 }
564
565 /* Set a trap code. */
566 if (register_debug_trap(child, next_pc, next_insn, &code)) {
567 return -1; /* error */
568 }
569 if (access_process_vm(child, addr, &code, sizeof(code), 1)
570 != sizeof(code)) {
571 return -1; /* error */
572 }
573 return 0; /* success */
574 }
575
576 void
577 withdraw_debug_trap(struct pt_regs *regs)
578 {
579 unsigned long addr;
580 unsigned long code;
581
582 addr = (regs->bpc - 2) & ~3;
583 regs->bpc -= 2;
584 if (unregister_debug_trap(current, addr, &code)) {
585 access_process_vm(current, addr, &code, sizeof(code), 1);
586 invalidate_cache();
587 }
588 }
589
590 static void
591 init_debug_traps(struct task_struct *child)
592 {
593 struct debug_trap *p = &child->thread.debug_trap;
594 int i;
595 p->nr_trap = 0;
596 for (i = 0; i < MAX_TRAPS; i++) {
597 p->addr[i] = 0;
598 p->insn[i] = 0;
599 }
600 }
601
602
603 /*
604 * Called by kernel/ptrace.c when detaching..
605 *
606 * Make sure single step bits etc are not set.
607 */
608 void ptrace_disable(struct task_struct *child)
609 {
610 /* nothing to do.. */
611 }
612
613 static int
614 do_ptrace(long request, struct task_struct *child, long addr, long data)
615 {
616 unsigned long tmp;
617 int ret;
618
619 switch (request) {
620 /*
621 * read word at location "addr" in the child process.
622 */
623 case PTRACE_PEEKTEXT:
624 case PTRACE_PEEKDATA:
625 ret = access_process_vm(child, addr, &tmp, sizeof(tmp), 0);
626 if (ret == sizeof(tmp))
627 ret = put_user(tmp,(unsigned long __user *) data);
628 else
629 ret = -EIO;
630 break;
631
632 /*
633 * read the word at location addr in the USER area.
634 */
635 case PTRACE_PEEKUSR:
636 ret = ptrace_read_user(child, addr,
637 (unsigned long __user *)data);
638 break;
639
640 /*
641 * write the word at location addr.
642 */
643 case PTRACE_POKETEXT:
644 case PTRACE_POKEDATA:
645 ret = access_process_vm(child, addr, &data, sizeof(data), 1);
646 if (ret == sizeof(data)) {
647 ret = 0;
648 if (request == PTRACE_POKETEXT) {
649 invalidate_cache();
650 }
651 } else {
652 ret = -EIO;
653 }
654 break;
655
656 /*
657 * write the word at location addr in the USER area.
658 */
659 case PTRACE_POKEUSR:
660 ret = ptrace_write_user(child, addr, data);
661 break;
662
663 /*
664 * continue/restart and stop at next (return from) syscall
665 */
666 case PTRACE_SYSCALL:
667 case PTRACE_CONT:
668 ret = -EIO;
669 if (!valid_signal(data))
670 break;
671 if (request == PTRACE_SYSCALL)
672 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
673 else
674 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
675 child->exit_code = data;
676 wake_up_process(child);
677 ret = 0;
678 break;
679
680 /*
681 * make the child exit. Best I can do is send it a sigkill.
682 * perhaps it should be put in the status that it wants to
683 * exit.
684 */
685 case PTRACE_KILL: {
686 ret = 0;
687 unregister_all_debug_traps(child);
688 invalidate_cache();
689 if (child->exit_state == EXIT_ZOMBIE) /* already dead */
690 break;
691 child->exit_code = SIGKILL;
692 wake_up_process(child);
693 break;
694 }
695
696 /*
697 * execute single instruction.
698 */
699 case PTRACE_SINGLESTEP: {
700 unsigned long next_pc;
701 unsigned long pc, insn;
702
703 ret = -EIO;
704 if (!valid_signal(data))
705 break;
706 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
707 if ((child->ptrace & PT_DTRACE) == 0) {
708 /* Spurious delayed TF traps may occur */
709 child->ptrace |= PT_DTRACE;
710 }
711
712 /* Compute next pc. */
713 pc = get_stack_long(child, PT_BPC);
714
715 if (access_process_vm(child, pc&~3, &insn, sizeof(insn), 0)
716 != sizeof(insn))
717 break;
718
719 compute_next_pc(insn, pc, &next_pc, child);
720 if (next_pc & 0x80000000)
721 break;
722
723 if (embed_debug_trap(child, next_pc))
724 break;
725
726 invalidate_cache();
727 child->exit_code = data;
728
729 /* give it a chance to run. */
730 wake_up_process(child);
731 ret = 0;
732 break;
733 }
734
735 /*
736 * detach a process that was attached.
737 */
738 case PTRACE_DETACH:
739 ret = 0;
740 ret = ptrace_detach(child, data);
741 break;
742
743 case PTRACE_GETREGS:
744 ret = ptrace_getregs(child, (void __user *)data);
745 break;
746
747 case PTRACE_SETREGS:
748 ret = ptrace_setregs(child, (void __user *)data);
749 break;
750
751 default:
752 ret = ptrace_request(child, request, addr, data);
753 break;
754 }
755
756 return ret;
757 }
758
759 asmlinkage long sys_ptrace(long request, long pid, long addr, long data)
760 {
761 struct task_struct *child;
762 int ret;
763
764 lock_kernel();
765 ret = -EPERM;
766 if (request == PTRACE_TRACEME) {
767 /* are we already being traced? */
768 if (current->ptrace & PT_PTRACED)
769 goto out;
770 /* set the ptrace bit in the process flags. */
771 current->ptrace |= PT_PTRACED;
772 ret = 0;
773 goto out;
774 }
775 ret = -ESRCH;
776 read_lock(&tasklist_lock);
777 child = find_task_by_pid(pid);
778 if (child)
779 get_task_struct(child);
780 read_unlock(&tasklist_lock);
781 if (!child)
782 goto out;
783
784 ret = -EPERM;
785 if (pid == 1) /* you may not mess with init */
786 goto out;
787
788 if (request == PTRACE_ATTACH) {
789 ret = ptrace_attach(child);
790 if (ret == 0)
791 init_debug_traps(child);
792 goto out_tsk;
793 }
794
795 ret = ptrace_check_attach(child, request == PTRACE_KILL);
796 if (ret == 0)
797 ret = do_ptrace(request, child, addr, data);
798
799 out_tsk:
800 put_task_struct(child);
801 out:
802 unlock_kernel();
803
804 return ret;
805 }
806
807 /* notification of system call entry/exit
808 * - triggered by current->work.syscall_trace
809 */
810 void do_syscall_trace(void)
811 {
812 if (!test_thread_flag(TIF_SYSCALL_TRACE))
813 return;
814 if (!(current->ptrace & PT_PTRACED))
815 return;
816 /* the 0x80 provides a way for the tracing parent to distinguish
817 between a syscall stop and SIGTRAP delivery */
818 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
819 ? 0x80 : 0));
820
821 /*
822 * this isn't the same as continuing with a signal, but it will do
823 * for normal use. strace only continues with a signal if the
824 * stopping signal is not SIGTRAP. -brl
825 */
826 if (current->exit_code) {
827 send_sig(current->exit_code, current, 1);
828 current->exit_code = 0;
829 }
830 }
This page took 0.048043 seconds and 6 git commands to generate.