metag: Huge TLB
[deliverable/linux.git] / arch / metag / mm / hugetlbpage.c
1 /*
2 * arch/metag/mm/hugetlbpage.c
3 *
4 * METAG HugeTLB page support.
5 *
6 * Cloned from SuperH
7 *
8 * Cloned from sparc64 by Paul Mundt.
9 *
10 * Copyright (C) 2002, 2003 David S. Miller (davem@redhat.com)
11 */
12
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/pagemap.h>
18 #include <linux/sysctl.h>
19
20 #include <asm/mman.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/tlbflush.h>
24 #include <asm/cacheflush.h>
25
26 /*
27 * If the arch doesn't supply something else, assume that hugepage
28 * size aligned regions are ok without further preparation.
29 */
30 int prepare_hugepage_range(struct file *file, unsigned long addr,
31 unsigned long len)
32 {
33 struct mm_struct *mm = current->mm;
34 struct hstate *h = hstate_file(file);
35 struct vm_area_struct *vma;
36
37 if (len & ~huge_page_mask(h))
38 return -EINVAL;
39 if (addr & ~huge_page_mask(h))
40 return -EINVAL;
41 if (TASK_SIZE - len < addr)
42 return -EINVAL;
43
44 vma = find_vma(mm, ALIGN_HUGEPT(addr));
45 if (vma && !(vma->vm_flags & MAP_HUGETLB))
46 return -EINVAL;
47
48 vma = find_vma(mm, addr);
49 if (vma) {
50 if (addr + len > vma->vm_start)
51 return -EINVAL;
52 if (!(vma->vm_flags & MAP_HUGETLB) &&
53 (ALIGN_HUGEPT(addr + len) > vma->vm_start))
54 return -EINVAL;
55 }
56 return 0;
57 }
58
59 pte_t *huge_pte_alloc(struct mm_struct *mm,
60 unsigned long addr, unsigned long sz)
61 {
62 pgd_t *pgd;
63 pud_t *pud;
64 pmd_t *pmd;
65 pte_t *pte;
66
67 pgd = pgd_offset(mm, addr);
68 pud = pud_offset(pgd, addr);
69 pmd = pmd_offset(pud, addr);
70 pte = pte_alloc_map(mm, NULL, pmd, addr);
71 pgd->pgd &= ~_PAGE_SZ_MASK;
72 pgd->pgd |= _PAGE_SZHUGE;
73
74 return pte;
75 }
76
77 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
78 {
79 pgd_t *pgd;
80 pud_t *pud;
81 pmd_t *pmd;
82 pte_t *pte = NULL;
83
84 pgd = pgd_offset(mm, addr);
85 pud = pud_offset(pgd, addr);
86 pmd = pmd_offset(pud, addr);
87 pte = pte_offset_kernel(pmd, addr);
88
89 return pte;
90 }
91
92 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
93 {
94 return 0;
95 }
96
97 struct page *follow_huge_addr(struct mm_struct *mm,
98 unsigned long address, int write)
99 {
100 return ERR_PTR(-EINVAL);
101 }
102
103 int pmd_huge(pmd_t pmd)
104 {
105 return pmd_page_shift(pmd) > PAGE_SHIFT;
106 }
107
108 int pud_huge(pud_t pud)
109 {
110 return 0;
111 }
112
113 struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
114 pmd_t *pmd, int write)
115 {
116 return NULL;
117 }
118
119 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
120
121 /*
122 * Look for an unmapped area starting after another hugetlb vma.
123 * There are guaranteed to be no huge pte's spare if all the huge pages are
124 * full size (4MB), so in that case compile out this search.
125 */
126 #if HPAGE_SHIFT == HUGEPT_SHIFT
127 static inline unsigned long
128 hugetlb_get_unmapped_area_existing(unsigned long len)
129 {
130 return 0;
131 }
132 #else
133 static unsigned long
134 hugetlb_get_unmapped_area_existing(unsigned long len)
135 {
136 struct mm_struct *mm = current->mm;
137 struct vm_area_struct *vma;
138 unsigned long start_addr, addr;
139 int after_huge;
140
141 if (mm->context.part_huge) {
142 start_addr = mm->context.part_huge;
143 after_huge = 1;
144 } else {
145 start_addr = TASK_UNMAPPED_BASE;
146 after_huge = 0;
147 }
148 new_search:
149 addr = start_addr;
150
151 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
152 if ((!vma && !after_huge) || TASK_SIZE - len < addr) {
153 /*
154 * Start a new search - just in case we missed
155 * some holes.
156 */
157 if (start_addr != TASK_UNMAPPED_BASE) {
158 start_addr = TASK_UNMAPPED_BASE;
159 goto new_search;
160 }
161 return 0;
162 }
163 /* skip ahead if we've aligned right over some vmas */
164 if (vma && vma->vm_end <= addr)
165 continue;
166 /* space before the next vma? */
167 if (after_huge && (!vma || ALIGN_HUGEPT(addr + len)
168 <= vma->vm_start)) {
169 unsigned long end = addr + len;
170 if (end & HUGEPT_MASK)
171 mm->context.part_huge = end;
172 else if (addr == mm->context.part_huge)
173 mm->context.part_huge = 0;
174 return addr;
175 }
176 if (vma && (vma->vm_flags & MAP_HUGETLB)) {
177 /* space after a huge vma in 2nd level page table? */
178 if (vma->vm_end & HUGEPT_MASK) {
179 after_huge = 1;
180 /* no need to align to the next PT block */
181 addr = vma->vm_end;
182 continue;
183 }
184 }
185 after_huge = 0;
186 addr = ALIGN_HUGEPT(vma->vm_end);
187 }
188 }
189 #endif
190
191 /* Do a full search to find an area without any nearby normal pages. */
192 static unsigned long
193 hugetlb_get_unmapped_area_new_pmd(unsigned long len)
194 {
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *vma;
197 unsigned long start_addr, addr;
198
199 if (ALIGN_HUGEPT(len) > mm->cached_hole_size)
200 start_addr = mm->free_area_cache;
201 else
202 start_addr = TASK_UNMAPPED_BASE;
203
204 new_search:
205 addr = ALIGN_HUGEPT(start_addr);
206
207 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
208 if (TASK_SIZE - len < addr) {
209 /*
210 * Start a new search - just in case we missed
211 * some holes.
212 */
213 if (start_addr != TASK_UNMAPPED_BASE) {
214 start_addr = TASK_UNMAPPED_BASE;
215 mm->cached_hole_size = 0;
216 goto new_search;
217 }
218 return 0;
219 }
220 /* skip ahead if we've aligned right over some vmas */
221 if (vma && vma->vm_end <= addr)
222 continue;
223 if (!vma || ALIGN_HUGEPT(addr + len) <= vma->vm_start) {
224 #if HPAGE_SHIFT < HUGEPT_SHIFT
225 if (len & HUGEPT_MASK)
226 mm->context.part_huge = addr + len;
227 #endif
228 return addr;
229 }
230 addr = ALIGN_HUGEPT(vma->vm_end);
231 }
232 }
233
234 unsigned long
235 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 unsigned long len, unsigned long pgoff, unsigned long flags)
237 {
238 struct hstate *h = hstate_file(file);
239
240 if (len & ~huge_page_mask(h))
241 return -EINVAL;
242 if (len > TASK_SIZE)
243 return -ENOMEM;
244
245 if (flags & MAP_FIXED) {
246 if (prepare_hugepage_range(file, addr, len))
247 return -EINVAL;
248 return addr;
249 }
250
251 if (addr) {
252 addr = ALIGN(addr, huge_page_size(h));
253 if (!prepare_hugepage_range(file, addr, len))
254 return addr;
255 }
256
257 /*
258 * Look for an existing hugetlb vma with space after it (this is to to
259 * minimise fragmentation caused by huge pages.
260 */
261 addr = hugetlb_get_unmapped_area_existing(len);
262 if (addr)
263 return addr;
264
265 /*
266 * Find an unmapped naturally aligned set of 4MB blocks that we can use
267 * for huge pages.
268 */
269 addr = hugetlb_get_unmapped_area_new_pmd(len);
270 if (likely(addr))
271 return addr;
272
273 return -EINVAL;
274 }
275
276 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
277
278 /* necessary for boot time 4MB huge page allocation */
279 static __init int setup_hugepagesz(char *opt)
280 {
281 unsigned long ps = memparse(opt, &opt);
282 if (ps == (1 << HPAGE_SHIFT)) {
283 hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
284 } else {
285 pr_err("hugepagesz: Unsupported page size %lu M\n",
286 ps >> 20);
287 return 0;
288 }
289 return 1;
290 }
291 __setup("hugepagesz=", setup_hugepagesz);
This page took 0.038095 seconds and 5 git commands to generate.