microblaze: Highmem support
[deliverable/linux.git] / arch / microblaze / mm / init.c
1 /*
2 * Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu>
3 * Copyright (C) 2006 Atmark Techno, Inc.
4 *
5 * This file is subject to the terms and conditions of the GNU General Public
6 * License. See the file "COPYING" in the main directory of this archive
7 * for more details.
8 */
9
10 #include <linux/bootmem.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h> /* mem_init */
15 #include <linux/initrd.h>
16 #include <linux/pagemap.h>
17 #include <linux/pfn.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/export.h>
21
22 #include <asm/page.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgalloc.h>
25 #include <asm/sections.h>
26 #include <asm/tlb.h>
27 #include <asm/fixmap.h>
28
29 /* Use for MMU and noMMU because of PCI generic code */
30 int mem_init_done;
31
32 #ifndef CONFIG_MMU
33 unsigned int __page_offset;
34 EXPORT_SYMBOL(__page_offset);
35
36 #else
37 static int init_bootmem_done;
38 #endif /* CONFIG_MMU */
39
40 char *klimit = _end;
41
42 /*
43 * Initialize the bootmem system and give it all the memory we
44 * have available.
45 */
46 unsigned long memory_start;
47 EXPORT_SYMBOL(memory_start);
48 unsigned long memory_size;
49 EXPORT_SYMBOL(memory_size);
50 unsigned long lowmem_size;
51
52 #ifdef CONFIG_HIGHMEM
53 pte_t *kmap_pte;
54 EXPORT_SYMBOL(kmap_pte);
55 pgprot_t kmap_prot;
56 EXPORT_SYMBOL(kmap_prot);
57
58 static inline pte_t *virt_to_kpte(unsigned long vaddr)
59 {
60 return pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr),
61 vaddr), vaddr);
62 }
63
64 static void __init highmem_init(void)
65 {
66 pr_debug("%x\n", (u32)PKMAP_BASE);
67 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
68 pkmap_page_table = virt_to_kpte(PKMAP_BASE);
69
70 kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
71 kmap_prot = PAGE_KERNEL;
72 }
73
74 static unsigned long highmem_setup(void)
75 {
76 unsigned long pfn;
77 unsigned long reservedpages = 0;
78
79 for (pfn = max_low_pfn; pfn < max_pfn; ++pfn) {
80 struct page *page = pfn_to_page(pfn);
81
82 /* FIXME not sure about */
83 if (memblock_is_reserved(pfn << PAGE_SHIFT))
84 continue;
85 ClearPageReserved(page);
86 init_page_count(page);
87 __free_page(page);
88 totalhigh_pages++;
89 reservedpages++;
90 }
91 totalram_pages += totalhigh_pages;
92 printk(KERN_INFO "High memory: %luk\n",
93 totalhigh_pages << (PAGE_SHIFT-10));
94
95 return reservedpages;
96 }
97 #endif /* CONFIG_HIGHMEM */
98
99 /*
100 * paging_init() sets up the page tables - in fact we've already done this.
101 */
102 static void __init paging_init(void)
103 {
104 unsigned long zones_size[MAX_NR_ZONES];
105 #ifdef CONFIG_MMU
106 int idx;
107
108 /* Setup fixmaps */
109 for (idx = 0; idx < __end_of_fixed_addresses; idx++)
110 clear_fixmap(idx);
111 #endif
112
113 /* Clean every zones */
114 memset(zones_size, 0, sizeof(zones_size));
115
116 #ifdef CONFIG_HIGHMEM
117 highmem_init();
118
119 zones_size[ZONE_DMA] = max_low_pfn;
120 zones_size[ZONE_HIGHMEM] = max_pfn;
121 #else
122 zones_size[ZONE_DMA] = max_pfn;
123 #endif
124
125 /* We don't have holes in memory map */
126 free_area_init_nodes(zones_size);
127 }
128
129 void __init setup_memory(void)
130 {
131 unsigned long map_size;
132 struct memblock_region *reg;
133
134 #ifndef CONFIG_MMU
135 u32 kernel_align_start, kernel_align_size;
136
137 /* Find main memory where is the kernel */
138 for_each_memblock(memory, reg) {
139 memory_start = (u32)reg->base;
140 lowmem_size = reg->size;
141 if ((memory_start <= (u32)_text) &&
142 ((u32)_text <= (memory_start + lowmem_size - 1))) {
143 memory_size = lowmem_size;
144 PAGE_OFFSET = memory_start;
145 printk(KERN_INFO "%s: Main mem: 0x%x, "
146 "size 0x%08x\n", __func__, (u32) memory_start,
147 (u32) memory_size);
148 break;
149 }
150 }
151
152 if (!memory_start || !memory_size) {
153 panic("%s: Missing memory setting 0x%08x, size=0x%08x\n",
154 __func__, (u32) memory_start, (u32) memory_size);
155 }
156
157 /* reservation of region where is the kernel */
158 kernel_align_start = PAGE_DOWN((u32)_text);
159 /* ALIGN can be remove because _end in vmlinux.lds.S is align */
160 kernel_align_size = PAGE_UP((u32)klimit) - kernel_align_start;
161 printk(KERN_INFO "%s: kernel addr:0x%08x-0x%08x size=0x%08x\n",
162 __func__, kernel_align_start, kernel_align_start
163 + kernel_align_size, kernel_align_size);
164 memblock_reserve(kernel_align_start, kernel_align_size);
165 #endif
166 /*
167 * Kernel:
168 * start: base phys address of kernel - page align
169 * end: base phys address of kernel - page align
170 *
171 * min_low_pfn - the first page (mm/bootmem.c - node_boot_start)
172 * max_low_pfn
173 * max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn)
174 * num_physpages - number of all pages
175 */
176
177 /* memory start is from the kernel end (aligned) to higher addr */
178 min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */
179 /* RAM is assumed contiguous */
180 num_physpages = max_mapnr = memory_size >> PAGE_SHIFT;
181 max_low_pfn = ((u64)memory_start + (u64)lowmem_size) >> PAGE_SHIFT;
182 max_pfn = ((u64)memory_start + (u64)memory_size) >> PAGE_SHIFT;
183
184 printk(KERN_INFO "%s: max_mapnr: %#lx\n", __func__, max_mapnr);
185 printk(KERN_INFO "%s: min_low_pfn: %#lx\n", __func__, min_low_pfn);
186 printk(KERN_INFO "%s: max_low_pfn: %#lx\n", __func__, max_low_pfn);
187 printk(KERN_INFO "%s: max_pfn: %#lx\n", __func__, max_pfn);
188
189 /*
190 * Find an area to use for the bootmem bitmap.
191 * We look for the first area which is at least
192 * 128kB in length (128kB is enough for a bitmap
193 * for 4GB of memory, using 4kB pages), plus 1 page
194 * (in case the address isn't page-aligned).
195 */
196 map_size = init_bootmem_node(NODE_DATA(0),
197 PFN_UP(TOPHYS((u32)klimit)), min_low_pfn, max_low_pfn);
198 memblock_reserve(PFN_UP(TOPHYS((u32)klimit)) << PAGE_SHIFT, map_size);
199
200 /* Add active regions with valid PFNs */
201 for_each_memblock(memory, reg) {
202 unsigned long start_pfn, end_pfn;
203
204 start_pfn = memblock_region_memory_base_pfn(reg);
205 end_pfn = memblock_region_memory_end_pfn(reg);
206 memblock_set_node(start_pfn << PAGE_SHIFT,
207 (end_pfn - start_pfn) << PAGE_SHIFT, 0);
208 }
209
210 /* free bootmem is whole main memory */
211 free_bootmem_with_active_regions(0, max_low_pfn);
212
213 /* reserve allocate blocks */
214 for_each_memblock(reserved, reg) {
215 unsigned long top = reg->base + reg->size - 1;
216
217 pr_debug("reserved - 0x%08x-0x%08x, %lx, %lx\n",
218 (u32) reg->base, (u32) reg->size, top,
219 memory_start + lowmem_size - 1);
220
221 if (top <= (memory_start + lowmem_size - 1)) {
222 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
223 } else if (reg->base < (memory_start + lowmem_size - 1)) {
224 unsigned long trunc_size = memory_start + lowmem_size -
225 reg->base;
226 reserve_bootmem(reg->base, trunc_size, BOOTMEM_DEFAULT);
227 }
228 }
229
230 /* XXX need to clip this if using highmem? */
231 sparse_memory_present_with_active_regions(0);
232
233 #ifdef CONFIG_MMU
234 init_bootmem_done = 1;
235 #endif
236 paging_init();
237 }
238
239 void free_init_pages(char *what, unsigned long begin, unsigned long end)
240 {
241 unsigned long addr;
242
243 for (addr = begin; addr < end; addr += PAGE_SIZE) {
244 ClearPageReserved(virt_to_page(addr));
245 init_page_count(virt_to_page(addr));
246 free_page(addr);
247 totalram_pages++;
248 }
249 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
250 }
251
252 #ifdef CONFIG_BLK_DEV_INITRD
253 void free_initrd_mem(unsigned long start, unsigned long end)
254 {
255 int pages = 0;
256 for (; start < end; start += PAGE_SIZE) {
257 ClearPageReserved(virt_to_page(start));
258 init_page_count(virt_to_page(start));
259 free_page(start);
260 totalram_pages++;
261 pages++;
262 }
263 printk(KERN_NOTICE "Freeing initrd memory: %dk freed\n",
264 (int)(pages * (PAGE_SIZE / 1024)));
265 }
266 #endif
267
268 void free_initmem(void)
269 {
270 free_init_pages("unused kernel memory",
271 (unsigned long)(&__init_begin),
272 (unsigned long)(&__init_end));
273 }
274
275 void __init mem_init(void)
276 {
277 pg_data_t *pgdat;
278 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
279
280 high_memory = (void *)__va(memory_start + lowmem_size - 1);
281
282 /* this will put all memory onto the freelists */
283 totalram_pages += free_all_bootmem();
284
285 for_each_online_pgdat(pgdat) {
286 unsigned long i;
287 struct page *page;
288
289 for (i = 0; i < pgdat->node_spanned_pages; i++) {
290 if (!pfn_valid(pgdat->node_start_pfn + i))
291 continue;
292 page = pgdat_page_nr(pgdat, i);
293 if (PageReserved(page))
294 reservedpages++;
295 }
296 }
297
298 #ifdef CONFIG_HIGHMEM
299 reservedpages -= highmem_setup();
300 #endif
301
302 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
303 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
304 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
305 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
306
307 pr_info("Memory: %luk/%luk available (%luk kernel code, "
308 "%luk reserved, %luk data, %luk bss, %luk init)\n",
309 nr_free_pages() << (PAGE_SHIFT-10),
310 num_physpages << (PAGE_SHIFT-10),
311 codesize >> 10,
312 reservedpages << (PAGE_SHIFT-10),
313 datasize >> 10,
314 bsssize >> 10,
315 initsize >> 10);
316
317 #ifdef CONFIG_MMU
318 pr_info("Kernel virtual memory layout:\n");
319 pr_info(" * 0x%08lx..0x%08lx : fixmap\n", FIXADDR_START, FIXADDR_TOP);
320 #ifdef CONFIG_HIGHMEM
321 pr_info(" * 0x%08lx..0x%08lx : highmem PTEs\n",
322 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP));
323 #endif /* CONFIG_HIGHMEM */
324 pr_info(" * 0x%08lx..0x%08lx : early ioremap\n",
325 ioremap_bot, ioremap_base);
326 pr_info(" * 0x%08lx..0x%08lx : vmalloc & ioremap\n",
327 (unsigned long)VMALLOC_START, VMALLOC_END);
328 #endif
329 mem_init_done = 1;
330 }
331
332 #ifndef CONFIG_MMU
333 int page_is_ram(unsigned long pfn)
334 {
335 return __range_ok(pfn, 0);
336 }
337 #else
338 int page_is_ram(unsigned long pfn)
339 {
340 return pfn < max_low_pfn;
341 }
342
343 /*
344 * Check for command-line options that affect what MMU_init will do.
345 */
346 static void mm_cmdline_setup(void)
347 {
348 unsigned long maxmem = 0;
349 char *p = cmd_line;
350
351 /* Look for mem= option on command line */
352 p = strstr(cmd_line, "mem=");
353 if (p) {
354 p += 4;
355 maxmem = memparse(p, &p);
356 if (maxmem && memory_size > maxmem) {
357 memory_size = maxmem;
358 memblock.memory.regions[0].size = memory_size;
359 }
360 }
361 }
362
363 /*
364 * MMU_init_hw does the chip-specific initialization of the MMU hardware.
365 */
366 static void __init mmu_init_hw(void)
367 {
368 /*
369 * The Zone Protection Register (ZPR) defines how protection will
370 * be applied to every page which is a member of a given zone. At
371 * present, we utilize only two of the zones.
372 * The zone index bits (of ZSEL) in the PTE are used for software
373 * indicators, except the LSB. For user access, zone 1 is used,
374 * for kernel access, zone 0 is used. We set all but zone 1
375 * to zero, allowing only kernel access as indicated in the PTE.
376 * For zone 1, we set a 01 binary (a value of 10 will not work)
377 * to allow user access as indicated in the PTE. This also allows
378 * kernel access as indicated in the PTE.
379 */
380 __asm__ __volatile__ ("ori r11, r0, 0x10000000;" \
381 "mts rzpr, r11;"
382 : : : "r11");
383 }
384
385 /*
386 * MMU_init sets up the basic memory mappings for the kernel,
387 * including both RAM and possibly some I/O regions,
388 * and sets up the page tables and the MMU hardware ready to go.
389 */
390
391 /* called from head.S */
392 asmlinkage void __init mmu_init(void)
393 {
394 unsigned int kstart, ksize;
395
396 if (!memblock.reserved.cnt) {
397 printk(KERN_EMERG "Error memory count\n");
398 machine_restart(NULL);
399 }
400
401 if ((u32) memblock.memory.regions[0].size < 0x1000000) {
402 printk(KERN_EMERG "Memory must be greater than 16MB\n");
403 machine_restart(NULL);
404 }
405 /* Find main memory where the kernel is */
406 memory_start = (u32) memblock.memory.regions[0].base;
407 lowmem_size = memory_size = (u32) memblock.memory.regions[0].size;
408
409 if (lowmem_size > CONFIG_LOWMEM_SIZE) {
410 lowmem_size = CONFIG_LOWMEM_SIZE;
411 #ifndef CONFIG_HIGHMEM
412 memory_size = lowmem_size;
413 #endif
414 }
415
416 mm_cmdline_setup(); /* FIXME parse args from command line - not used */
417
418 /*
419 * Map out the kernel text/data/bss from the available physical
420 * memory.
421 */
422 kstart = __pa(CONFIG_KERNEL_START); /* kernel start */
423 /* kernel size */
424 ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START));
425 memblock_reserve(kstart, ksize);
426
427 #if defined(CONFIG_BLK_DEV_INITRD)
428 /* Remove the init RAM disk from the available memory. */
429 /* if (initrd_start) {
430 mem_pieces_remove(&phys_avail, __pa(initrd_start),
431 initrd_end - initrd_start, 1);
432 }*/
433 #endif /* CONFIG_BLK_DEV_INITRD */
434
435 /* Initialize the MMU hardware */
436 mmu_init_hw();
437
438 /* Map in all of RAM starting at CONFIG_KERNEL_START */
439 mapin_ram();
440
441 /* Extend vmalloc and ioremap area as big as possible */
442 #ifdef CONFIG_HIGHMEM
443 ioremap_base = ioremap_bot = PKMAP_BASE;
444 #else
445 ioremap_base = ioremap_bot = FIXADDR_START;
446 #endif
447
448 /* Initialize the context management stuff */
449 mmu_context_init();
450
451 /* Shortly after that, the entire linear mapping will be available */
452 /* This will also cause that unflatten device tree will be allocated
453 * inside 768MB limit */
454 memblock_set_current_limit(memory_start + lowmem_size - 1);
455 }
456
457 /* This is only called until mem_init is done. */
458 void __init *early_get_page(void)
459 {
460 void *p;
461 if (init_bootmem_done) {
462 p = alloc_bootmem_pages(PAGE_SIZE);
463 } else {
464 /*
465 * Mem start + 32MB -> here is limit
466 * because of mem mapping from head.S
467 */
468 p = __va(memblock_alloc_base(PAGE_SIZE, PAGE_SIZE,
469 memory_start + 0x2000000));
470 }
471 return p;
472 }
473
474 #endif /* CONFIG_MMU */
475
476 void * __init_refok alloc_maybe_bootmem(size_t size, gfp_t mask)
477 {
478 if (mem_init_done)
479 return kmalloc(size, mask);
480 else
481 return alloc_bootmem(size);
482 }
483
484 void * __init_refok zalloc_maybe_bootmem(size_t size, gfp_t mask)
485 {
486 void *p;
487
488 if (mem_init_done)
489 p = kzalloc(size, mask);
490 else {
491 p = alloc_bootmem(size);
492 if (p)
493 memset(p, 0, size);
494 }
495 return p;
496 }
This page took 0.041945 seconds and 5 git commands to generate.