Au1x PM fixes.
[deliverable/linux.git] / arch / mips / au1000 / common / time.c
1 /*
2 *
3 * Copyright (C) 2001 MontaVista Software, ppopov@mvista.com
4 * Copied and modified Carsten Langgaard's time.c
5 *
6 * Carsten Langgaard, carstenl@mips.com
7 * Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
8 *
9 * ########################################################################
10 *
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 *
24 * ########################################################################
25 *
26 * Setting up the clock on the MIPS boards.
27 *
28 * Update. Always configure the kernel with CONFIG_NEW_TIME_C. This
29 * will use the user interface gettimeofday() functions from the
30 * arch/mips/kernel/time.c, and we provide the clock interrupt processing
31 * and the timer offset compute functions. If CONFIG_PM is selected,
32 * we also ensure the 32KHz timer is available. -- Dan
33 */
34
35 #include <linux/types.h>
36 #include <linux/config.h>
37 #include <linux/init.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/sched.h>
40 #include <linux/spinlock.h>
41 #include <linux/hardirq.h>
42
43 #include <asm/compiler.h>
44 #include <asm/mipsregs.h>
45 #include <asm/ptrace.h>
46 #include <asm/time.h>
47 #include <asm/div64.h>
48 #include <asm/mach-au1x00/au1000.h>
49
50 #include <linux/mc146818rtc.h>
51 #include <linux/timex.h>
52
53 extern void do_softirq(void);
54 extern volatile unsigned long wall_jiffies;
55 unsigned long missed_heart_beats = 0;
56
57 static unsigned long r4k_offset; /* Amount to increment compare reg each time */
58 static unsigned long r4k_cur; /* What counter should be at next timer irq */
59 int no_au1xxx_32khz;
60 extern int allow_au1k_wait; /* default off for CP0 Counter */
61
62 /* Cycle counter value at the previous timer interrupt.. */
63 static unsigned int timerhi = 0, timerlo = 0;
64
65 #ifdef CONFIG_PM
66 #if HZ < 100 || HZ > 1000
67 #error "unsupported HZ value! Must be in [100,1000]"
68 #endif
69 #define MATCH20_INC (328*100/HZ) /* magic number 328 is for HZ=100... */
70 extern void startup_match20_interrupt(irqreturn_t (*handler)(int, void *, struct pt_regs *));
71 static unsigned long last_pc0, last_match20;
72 #endif
73
74 static DEFINE_SPINLOCK(time_lock);
75
76 static inline void ack_r4ktimer(unsigned long newval)
77 {
78 write_c0_compare(newval);
79 }
80
81 /*
82 * There are a lot of conceptually broken versions of the MIPS timer interrupt
83 * handler floating around. This one is rather different, but the algorithm
84 * is provably more robust.
85 */
86 unsigned long wtimer;
87 void mips_timer_interrupt(struct pt_regs *regs)
88 {
89 int irq = 63;
90 unsigned long count;
91
92 irq_enter();
93 kstat_this_cpu.irqs[irq]++;
94
95 if (r4k_offset == 0)
96 goto null;
97
98 do {
99 count = read_c0_count();
100 timerhi += (count < timerlo); /* Wrap around */
101 timerlo = count;
102
103 kstat_this_cpu.irqs[irq]++;
104 do_timer(regs);
105 #ifndef CONFIG_SMP
106 update_process_times(user_mode(regs));
107 #endif
108 r4k_cur += r4k_offset;
109 ack_r4ktimer(r4k_cur);
110
111 } while (((unsigned long)read_c0_count()
112 - r4k_cur) < 0x7fffffff);
113
114 irq_exit();
115 return;
116
117 null:
118 ack_r4ktimer(0);
119 }
120
121 #ifdef CONFIG_PM
122 irqreturn_t counter0_irq(int irq, void *dev_id, struct pt_regs *regs)
123 {
124 unsigned long pc0;
125 int time_elapsed;
126 static int jiffie_drift = 0;
127
128 if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) {
129 /* should never happen! */
130 printk(KERN_WARNING "counter 0 w status error\n");
131 return IRQ_NONE;
132 }
133
134 pc0 = au_readl(SYS_TOYREAD);
135 if (pc0 < last_match20) {
136 /* counter overflowed */
137 time_elapsed = (0xffffffff - last_match20) + pc0;
138 }
139 else {
140 time_elapsed = pc0 - last_match20;
141 }
142
143 while (time_elapsed > 0) {
144 do_timer(regs);
145 #ifndef CONFIG_SMP
146 update_process_times(user_mode(regs));
147 #endif
148 time_elapsed -= MATCH20_INC;
149 last_match20 += MATCH20_INC;
150 jiffie_drift++;
151 }
152
153 last_pc0 = pc0;
154 au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
155 au_sync();
156
157 /* our counter ticks at 10.009765625 ms/tick, we we're running
158 * almost 10uS too slow per tick.
159 */
160
161 if (jiffie_drift >= 999) {
162 jiffie_drift -= 999;
163 do_timer(regs); /* increment jiffies by one */
164 #ifndef CONFIG_SMP
165 update_process_times(user_mode(regs));
166 #endif
167 }
168
169 return IRQ_HANDLED;
170 }
171
172 /* When we wakeup from sleep, we have to "catch up" on all of the
173 * timer ticks we have missed.
174 */
175 void
176 wakeup_counter0_adjust(void)
177 {
178 unsigned long pc0;
179 int time_elapsed;
180
181 pc0 = au_readl(SYS_TOYREAD);
182 if (pc0 < last_match20) {
183 /* counter overflowed */
184 time_elapsed = (0xffffffff - last_match20) + pc0;
185 }
186 else {
187 time_elapsed = pc0 - last_match20;
188 }
189
190 while (time_elapsed > 0) {
191 time_elapsed -= MATCH20_INC;
192 last_match20 += MATCH20_INC;
193 }
194
195 last_pc0 = pc0;
196 au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
197 au_sync();
198
199 }
200
201 /* This is just for debugging to set the timer for a sleep delay.
202 */
203 void
204 wakeup_counter0_set(int ticks)
205 {
206 unsigned long pc0;
207
208 pc0 = au_readl(SYS_TOYREAD);
209 last_pc0 = pc0;
210 au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2);
211 au_sync();
212 }
213 #endif
214
215 /* I haven't found anyone that doesn't use a 12 MHz source clock,
216 * but just in case.....
217 */
218 #ifdef CONFIG_AU1000_SRC_CLK
219 #define AU1000_SRC_CLK CONFIG_AU1000_SRC_CLK
220 #else
221 #define AU1000_SRC_CLK 12000000
222 #endif
223
224 /*
225 * We read the real processor speed from the PLL. This is important
226 * because it is more accurate than computing it from the 32KHz
227 * counter, if it exists. If we don't have an accurate processor
228 * speed, all of the peripherals that derive their clocks based on
229 * this advertised speed will introduce error and sometimes not work
230 * properly. This function is futher convoluted to still allow configurations
231 * to do that in case they have really, really old silicon with a
232 * write-only PLL register, that we need the 32KHz when power management
233 * "wait" is enabled, and we need to detect if the 32KHz isn't present
234 * but requested......got it? :-) -- Dan
235 */
236 unsigned long cal_r4koff(void)
237 {
238 unsigned long count;
239 unsigned long cpu_speed;
240 unsigned long flags;
241 unsigned long counter;
242
243 spin_lock_irqsave(&time_lock, flags);
244
245 /* Power management cares if we don't have a 32KHz counter.
246 */
247 no_au1xxx_32khz = 0;
248 counter = au_readl(SYS_COUNTER_CNTRL);
249 if (counter & SYS_CNTRL_E0) {
250 int trim_divide = 16;
251
252 au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL);
253
254 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
255 /* RTC now ticks at 32.768/16 kHz */
256 au_writel(trim_divide-1, SYS_RTCTRIM);
257 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
258
259 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
260 au_writel (0, SYS_TOYWRITE);
261 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
262
263 #if defined(CONFIG_AU1000_USE32K)
264 {
265 unsigned long start, end;
266
267 start = au_readl(SYS_RTCREAD);
268 start += 2;
269 /* wait for the beginning of a new tick
270 */
271 while (au_readl(SYS_RTCREAD) < start);
272
273 /* Start r4k counter.
274 */
275 write_c0_count(0);
276
277 /* Wait 0.5 seconds.
278 */
279 end = start + (32768 / trim_divide)/2;
280
281 while (end > au_readl(SYS_RTCREAD));
282
283 count = read_c0_count();
284 cpu_speed = count * 2;
285 }
286 #else
287 cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) *
288 AU1000_SRC_CLK;
289 count = cpu_speed / 2;
290 #endif
291 }
292 else {
293 /* The 32KHz oscillator isn't running, so assume there
294 * isn't one and grab the processor speed from the PLL.
295 * NOTE: some old silicon doesn't allow reading the PLL.
296 */
297 cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK;
298 count = cpu_speed / 2;
299 no_au1xxx_32khz = 1;
300 }
301 mips_hpt_frequency = count;
302 // Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16)
303 set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16));
304 spin_unlock_irqrestore(&time_lock, flags);
305 return (cpu_speed / HZ);
306 }
307
308 /* This is for machines which generate the exact clock. */
309 #define USECS_PER_JIFFY (1000000/HZ)
310 #define USECS_PER_JIFFY_FRAC (0x100000000LL*1000000/HZ&0xffffffff)
311
312 static unsigned long
313 div64_32(unsigned long v1, unsigned long v2, unsigned long v3)
314 {
315 unsigned long r0;
316 do_div64_32(r0, v1, v2, v3);
317 return r0;
318 }
319
320 static unsigned long do_fast_cp0_gettimeoffset(void)
321 {
322 u32 count;
323 unsigned long res, tmp;
324 unsigned long r0;
325
326 /* Last jiffy when do_fast_gettimeoffset() was called. */
327 static unsigned long last_jiffies=0;
328 unsigned long quotient;
329
330 /*
331 * Cached "1/(clocks per usec)*2^32" value.
332 * It has to be recalculated once each jiffy.
333 */
334 static unsigned long cached_quotient=0;
335
336 tmp = jiffies;
337
338 quotient = cached_quotient;
339
340 if (tmp && last_jiffies != tmp) {
341 last_jiffies = tmp;
342 if (last_jiffies != 0) {
343 r0 = div64_32(timerhi, timerlo, tmp);
344 quotient = div64_32(USECS_PER_JIFFY, USECS_PER_JIFFY_FRAC, r0);
345 cached_quotient = quotient;
346 }
347 }
348
349 /* Get last timer tick in absolute kernel time */
350 count = read_c0_count();
351
352 /* .. relative to previous jiffy (32 bits is enough) */
353 count -= timerlo;
354
355 __asm__("multu\t%1,%2\n\t"
356 "mfhi\t%0"
357 : "=r" (res)
358 : "r" (count), "r" (quotient)
359 : "hi", "lo", GCC_REG_ACCUM);
360
361 /*
362 * Due to possible jiffies inconsistencies, we need to check
363 * the result so that we'll get a timer that is monotonic.
364 */
365 if (res >= USECS_PER_JIFFY)
366 res = USECS_PER_JIFFY-1;
367
368 return res;
369 }
370
371 #ifdef CONFIG_PM
372 static unsigned long do_fast_pm_gettimeoffset(void)
373 {
374 unsigned long pc0;
375 unsigned long offset;
376
377 pc0 = au_readl(SYS_TOYREAD);
378 au_sync();
379 offset = pc0 - last_pc0;
380 if (offset > 2*MATCH20_INC) {
381 printk("huge offset %x, last_pc0 %x last_match20 %x pc0 %x\n",
382 (unsigned)offset, (unsigned)last_pc0,
383 (unsigned)last_match20, (unsigned)pc0);
384 }
385 offset = (unsigned long)((offset * 305) / 10);
386 return offset;
387 }
388 #endif
389
390 void au1xxx_timer_setup(struct irqaction *irq)
391 {
392 unsigned int est_freq;
393 extern unsigned long (*do_gettimeoffset)(void);
394
395 printk("calculating r4koff... ");
396 r4k_offset = cal_r4koff();
397 printk("%08lx(%d)\n", r4k_offset, (int) r4k_offset);
398
399 //est_freq = 2*r4k_offset*HZ;
400 est_freq = r4k_offset*HZ;
401 est_freq += 5000; /* round */
402 est_freq -= est_freq%10000;
403 printk("CPU frequency %d.%02d MHz\n", est_freq/1000000,
404 (est_freq%1000000)*100/1000000);
405 set_au1x00_speed(est_freq);
406 set_au1x00_lcd_clock(); // program the LCD clock
407
408 r4k_cur = (read_c0_count() + r4k_offset);
409 write_c0_compare(r4k_cur);
410
411 #ifdef CONFIG_PM
412 /*
413 * setup counter 0, since it keeps ticking after a
414 * 'wait' instruction has been executed. The CP0 timer and
415 * counter 1 do NOT continue running after 'wait'
416 *
417 * It's too early to call request_irq() here, so we handle
418 * counter 0 interrupt as a special irq and it doesn't show
419 * up under /proc/interrupts.
420 *
421 * Check to ensure we really have a 32KHz oscillator before
422 * we do this.
423 */
424 if (no_au1xxx_32khz) {
425 unsigned int c0_status;
426
427 printk("WARNING: no 32KHz clock found.\n");
428 do_gettimeoffset = do_fast_cp0_gettimeoffset;
429
430 /* Ensure we get CPO_COUNTER interrupts.
431 */
432 c0_status = read_c0_status();
433 c0_status |= IE_IRQ5;
434 write_c0_status(c0_status);
435 }
436 else {
437 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
438 au_writel(0, SYS_TOYWRITE);
439 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
440
441 au_writel(au_readl(SYS_WAKEMSK) | (1<<8), SYS_WAKEMSK);
442 au_writel(~0, SYS_WAKESRC);
443 au_sync();
444 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
445
446 /* setup match20 to interrupt once every HZ */
447 last_pc0 = last_match20 = au_readl(SYS_TOYREAD);
448 au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
449 au_sync();
450 while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
451 startup_match20_interrupt(counter0_irq);
452
453 do_gettimeoffset = do_fast_pm_gettimeoffset;
454
455 /* We can use the real 'wait' instruction.
456 */
457 allow_au1k_wait = 1;
458 }
459
460 #else
461 /* We have to do this here instead of in timer_init because
462 * the generic code in arch/mips/kernel/time.c will write
463 * over our function pointer.
464 */
465 do_gettimeoffset = do_fast_cp0_gettimeoffset;
466 #endif
467 }
468
469 void __init au1xxx_time_init(void)
470 {
471 }
This page took 0.117533 seconds and 5 git commands to generate.