Merge branch 'topic/hda-gateway' into topic/hda
[deliverable/linux.git] / arch / mips / include / asm / uaccess.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 */
10 #ifndef _ASM_UACCESS_H
11 #define _ASM_UACCESS_H
12
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/thread_info.h>
16
17 /*
18 * The fs value determines whether argument validity checking should be
19 * performed or not. If get_fs() == USER_DS, checking is performed, with
20 * get_fs() == KERNEL_DS, checking is bypassed.
21 *
22 * For historical reasons, these macros are grossly misnamed.
23 */
24 #ifdef CONFIG_32BIT
25
26 #define __UA_LIMIT 0x80000000UL
27
28 #define __UA_ADDR ".word"
29 #define __UA_LA "la"
30 #define __UA_ADDU "addu"
31 #define __UA_t0 "$8"
32 #define __UA_t1 "$9"
33
34 #endif /* CONFIG_32BIT */
35
36 #ifdef CONFIG_64BIT
37
38 #define __UA_LIMIT (- TASK_SIZE)
39
40 #define __UA_ADDR ".dword"
41 #define __UA_LA "dla"
42 #define __UA_ADDU "daddu"
43 #define __UA_t0 "$12"
44 #define __UA_t1 "$13"
45
46 #endif /* CONFIG_64BIT */
47
48 /*
49 * USER_DS is a bitmask that has the bits set that may not be set in a valid
50 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
51 * the arithmetic we're doing only works if the limit is a power of two, so
52 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
53 * address in this range it's the process's problem, not ours :-)
54 */
55
56 #define KERNEL_DS ((mm_segment_t) { 0UL })
57 #define USER_DS ((mm_segment_t) { __UA_LIMIT })
58
59 #define VERIFY_READ 0
60 #define VERIFY_WRITE 1
61
62 #define get_ds() (KERNEL_DS)
63 #define get_fs() (current_thread_info()->addr_limit)
64 #define set_fs(x) (current_thread_info()->addr_limit = (x))
65
66 #define segment_eq(a, b) ((a).seg == (b).seg)
67
68
69 /*
70 * Is a address valid? This does a straighforward calculation rather
71 * than tests.
72 *
73 * Address valid if:
74 * - "addr" doesn't have any high-bits set
75 * - AND "size" doesn't have any high-bits set
76 * - AND "addr+size" doesn't have any high-bits set
77 * - OR we are in kernel mode.
78 *
79 * __ua_size() is a trick to avoid runtime checking of positive constant
80 * sizes; for those we already know at compile time that the size is ok.
81 */
82 #define __ua_size(size) \
83 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
84
85 /*
86 * access_ok: - Checks if a user space pointer is valid
87 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
88 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
89 * to write to a block, it is always safe to read from it.
90 * @addr: User space pointer to start of block to check
91 * @size: Size of block to check
92 *
93 * Context: User context only. This function may sleep.
94 *
95 * Checks if a pointer to a block of memory in user space is valid.
96 *
97 * Returns true (nonzero) if the memory block may be valid, false (zero)
98 * if it is definitely invalid.
99 *
100 * Note that, depending on architecture, this function probably just
101 * checks that the pointer is in the user space range - after calling
102 * this function, memory access functions may still return -EFAULT.
103 */
104
105 #define __access_mask get_fs().seg
106
107 #define __access_ok(addr, size, mask) \
108 (((signed long)((mask) & ((addr) | ((addr) + (size)) | __ua_size(size)))) == 0)
109
110 #define access_ok(type, addr, size) \
111 likely(__access_ok((unsigned long)(addr), (size), __access_mask))
112
113 /*
114 * put_user: - Write a simple value into user space.
115 * @x: Value to copy to user space.
116 * @ptr: Destination address, in user space.
117 *
118 * Context: User context only. This function may sleep.
119 *
120 * This macro copies a single simple value from kernel space to user
121 * space. It supports simple types like char and int, but not larger
122 * data types like structures or arrays.
123 *
124 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
125 * to the result of dereferencing @ptr.
126 *
127 * Returns zero on success, or -EFAULT on error.
128 */
129 #define put_user(x,ptr) \
130 __put_user_check((x), (ptr), sizeof(*(ptr)))
131
132 /*
133 * get_user: - Get a simple variable from user space.
134 * @x: Variable to store result.
135 * @ptr: Source address, in user space.
136 *
137 * Context: User context only. This function may sleep.
138 *
139 * This macro copies a single simple variable from user space to kernel
140 * space. It supports simple types like char and int, but not larger
141 * data types like structures or arrays.
142 *
143 * @ptr must have pointer-to-simple-variable type, and the result of
144 * dereferencing @ptr must be assignable to @x without a cast.
145 *
146 * Returns zero on success, or -EFAULT on error.
147 * On error, the variable @x is set to zero.
148 */
149 #define get_user(x,ptr) \
150 __get_user_check((x), (ptr), sizeof(*(ptr)))
151
152 /*
153 * __put_user: - Write a simple value into user space, with less checking.
154 * @x: Value to copy to user space.
155 * @ptr: Destination address, in user space.
156 *
157 * Context: User context only. This function may sleep.
158 *
159 * This macro copies a single simple value from kernel space to user
160 * space. It supports simple types like char and int, but not larger
161 * data types like structures or arrays.
162 *
163 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
164 * to the result of dereferencing @ptr.
165 *
166 * Caller must check the pointer with access_ok() before calling this
167 * function.
168 *
169 * Returns zero on success, or -EFAULT on error.
170 */
171 #define __put_user(x,ptr) \
172 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
173
174 /*
175 * __get_user: - Get a simple variable from user space, with less checking.
176 * @x: Variable to store result.
177 * @ptr: Source address, in user space.
178 *
179 * Context: User context only. This function may sleep.
180 *
181 * This macro copies a single simple variable from user space to kernel
182 * space. It supports simple types like char and int, but not larger
183 * data types like structures or arrays.
184 *
185 * @ptr must have pointer-to-simple-variable type, and the result of
186 * dereferencing @ptr must be assignable to @x without a cast.
187 *
188 * Caller must check the pointer with access_ok() before calling this
189 * function.
190 *
191 * Returns zero on success, or -EFAULT on error.
192 * On error, the variable @x is set to zero.
193 */
194 #define __get_user(x,ptr) \
195 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
196
197 struct __large_struct { unsigned long buf[100]; };
198 #define __m(x) (*(struct __large_struct __user *)(x))
199
200 /*
201 * Yuck. We need two variants, one for 64bit operation and one
202 * for 32 bit mode and old iron.
203 */
204 #ifdef CONFIG_32BIT
205 #define __GET_USER_DW(val, ptr) __get_user_asm_ll32(val, ptr)
206 #endif
207 #ifdef CONFIG_64BIT
208 #define __GET_USER_DW(val, ptr) __get_user_asm(val, "ld", ptr)
209 #endif
210
211 extern void __get_user_unknown(void);
212
213 #define __get_user_common(val, size, ptr) \
214 do { \
215 switch (size) { \
216 case 1: __get_user_asm(val, "lb", ptr); break; \
217 case 2: __get_user_asm(val, "lh", ptr); break; \
218 case 4: __get_user_asm(val, "lw", ptr); break; \
219 case 8: __GET_USER_DW(val, ptr); break; \
220 default: __get_user_unknown(); break; \
221 } \
222 } while (0)
223
224 #define __get_user_nocheck(x, ptr, size) \
225 ({ \
226 int __gu_err; \
227 \
228 __get_user_common((x), size, ptr); \
229 __gu_err; \
230 })
231
232 #define __get_user_check(x, ptr, size) \
233 ({ \
234 int __gu_err = -EFAULT; \
235 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
236 \
237 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
238 __get_user_common((x), size, __gu_ptr); \
239 \
240 __gu_err; \
241 })
242
243 #define __get_user_asm(val, insn, addr) \
244 { \
245 long __gu_tmp; \
246 \
247 __asm__ __volatile__( \
248 "1: " insn " %1, %3 \n" \
249 "2: \n" \
250 " .section .fixup,\"ax\" \n" \
251 "3: li %0, %4 \n" \
252 " j 2b \n" \
253 " .previous \n" \
254 " .section __ex_table,\"a\" \n" \
255 " "__UA_ADDR "\t1b, 3b \n" \
256 " .previous \n" \
257 : "=r" (__gu_err), "=r" (__gu_tmp) \
258 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
259 \
260 (val) = (__typeof__(*(addr))) __gu_tmp; \
261 }
262
263 /*
264 * Get a long long 64 using 32 bit registers.
265 */
266 #define __get_user_asm_ll32(val, addr) \
267 { \
268 union { \
269 unsigned long long l; \
270 __typeof__(*(addr)) t; \
271 } __gu_tmp; \
272 \
273 __asm__ __volatile__( \
274 "1: lw %1, (%3) \n" \
275 "2: lw %D1, 4(%3) \n" \
276 "3: .section .fixup,\"ax\" \n" \
277 "4: li %0, %4 \n" \
278 " move %1, $0 \n" \
279 " move %D1, $0 \n" \
280 " j 3b \n" \
281 " .previous \n" \
282 " .section __ex_table,\"a\" \n" \
283 " " __UA_ADDR " 1b, 4b \n" \
284 " " __UA_ADDR " 2b, 4b \n" \
285 " .previous \n" \
286 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
287 : "0" (0), "r" (addr), "i" (-EFAULT)); \
288 \
289 (val) = __gu_tmp.t; \
290 }
291
292 /*
293 * Yuck. We need two variants, one for 64bit operation and one
294 * for 32 bit mode and old iron.
295 */
296 #ifdef CONFIG_32BIT
297 #define __PUT_USER_DW(ptr) __put_user_asm_ll32(ptr)
298 #endif
299 #ifdef CONFIG_64BIT
300 #define __PUT_USER_DW(ptr) __put_user_asm("sd", ptr)
301 #endif
302
303 #define __put_user_nocheck(x, ptr, size) \
304 ({ \
305 __typeof__(*(ptr)) __pu_val; \
306 int __pu_err = 0; \
307 \
308 __pu_val = (x); \
309 switch (size) { \
310 case 1: __put_user_asm("sb", ptr); break; \
311 case 2: __put_user_asm("sh", ptr); break; \
312 case 4: __put_user_asm("sw", ptr); break; \
313 case 8: __PUT_USER_DW(ptr); break; \
314 default: __put_user_unknown(); break; \
315 } \
316 __pu_err; \
317 })
318
319 #define __put_user_check(x, ptr, size) \
320 ({ \
321 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
322 __typeof__(*(ptr)) __pu_val = (x); \
323 int __pu_err = -EFAULT; \
324 \
325 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
326 switch (size) { \
327 case 1: __put_user_asm("sb", __pu_addr); break; \
328 case 2: __put_user_asm("sh", __pu_addr); break; \
329 case 4: __put_user_asm("sw", __pu_addr); break; \
330 case 8: __PUT_USER_DW(__pu_addr); break; \
331 default: __put_user_unknown(); break; \
332 } \
333 } \
334 __pu_err; \
335 })
336
337 #define __put_user_asm(insn, ptr) \
338 { \
339 __asm__ __volatile__( \
340 "1: " insn " %z2, %3 # __put_user_asm\n" \
341 "2: \n" \
342 " .section .fixup,\"ax\" \n" \
343 "3: li %0, %4 \n" \
344 " j 2b \n" \
345 " .previous \n" \
346 " .section __ex_table,\"a\" \n" \
347 " " __UA_ADDR " 1b, 3b \n" \
348 " .previous \n" \
349 : "=r" (__pu_err) \
350 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
351 "i" (-EFAULT)); \
352 }
353
354 #define __put_user_asm_ll32(ptr) \
355 { \
356 __asm__ __volatile__( \
357 "1: sw %2, (%3) # __put_user_asm_ll32 \n" \
358 "2: sw %D2, 4(%3) \n" \
359 "3: \n" \
360 " .section .fixup,\"ax\" \n" \
361 "4: li %0, %4 \n" \
362 " j 3b \n" \
363 " .previous \n" \
364 " .section __ex_table,\"a\" \n" \
365 " " __UA_ADDR " 1b, 4b \n" \
366 " " __UA_ADDR " 2b, 4b \n" \
367 " .previous" \
368 : "=r" (__pu_err) \
369 : "0" (0), "r" (__pu_val), "r" (ptr), \
370 "i" (-EFAULT)); \
371 }
372
373 extern void __put_user_unknown(void);
374
375 /*
376 * put_user_unaligned: - Write a simple value into user space.
377 * @x: Value to copy to user space.
378 * @ptr: Destination address, in user space.
379 *
380 * Context: User context only. This function may sleep.
381 *
382 * This macro copies a single simple value from kernel space to user
383 * space. It supports simple types like char and int, but not larger
384 * data types like structures or arrays.
385 *
386 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
387 * to the result of dereferencing @ptr.
388 *
389 * Returns zero on success, or -EFAULT on error.
390 */
391 #define put_user_unaligned(x,ptr) \
392 __put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
393
394 /*
395 * get_user_unaligned: - Get a simple variable from user space.
396 * @x: Variable to store result.
397 * @ptr: Source address, in user space.
398 *
399 * Context: User context only. This function may sleep.
400 *
401 * This macro copies a single simple variable from user space to kernel
402 * space. It supports simple types like char and int, but not larger
403 * data types like structures or arrays.
404 *
405 * @ptr must have pointer-to-simple-variable type, and the result of
406 * dereferencing @ptr must be assignable to @x without a cast.
407 *
408 * Returns zero on success, or -EFAULT on error.
409 * On error, the variable @x is set to zero.
410 */
411 #define get_user_unaligned(x,ptr) \
412 __get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
413
414 /*
415 * __put_user_unaligned: - Write a simple value into user space, with less checking.
416 * @x: Value to copy to user space.
417 * @ptr: Destination address, in user space.
418 *
419 * Context: User context only. This function may sleep.
420 *
421 * This macro copies a single simple value from kernel space to user
422 * space. It supports simple types like char and int, but not larger
423 * data types like structures or arrays.
424 *
425 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
426 * to the result of dereferencing @ptr.
427 *
428 * Caller must check the pointer with access_ok() before calling this
429 * function.
430 *
431 * Returns zero on success, or -EFAULT on error.
432 */
433 #define __put_user_unaligned(x,ptr) \
434 __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
435
436 /*
437 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
438 * @x: Variable to store result.
439 * @ptr: Source address, in user space.
440 *
441 * Context: User context only. This function may sleep.
442 *
443 * This macro copies a single simple variable from user space to kernel
444 * space. It supports simple types like char and int, but not larger
445 * data types like structures or arrays.
446 *
447 * @ptr must have pointer-to-simple-variable type, and the result of
448 * dereferencing @ptr must be assignable to @x without a cast.
449 *
450 * Caller must check the pointer with access_ok() before calling this
451 * function.
452 *
453 * Returns zero on success, or -EFAULT on error.
454 * On error, the variable @x is set to zero.
455 */
456 #define __get_user_unaligned(x,ptr) \
457 __get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
458
459 /*
460 * Yuck. We need two variants, one for 64bit operation and one
461 * for 32 bit mode and old iron.
462 */
463 #ifdef CONFIG_32BIT
464 #define __GET_USER_UNALIGNED_DW(val, ptr) \
465 __get_user_unaligned_asm_ll32(val, ptr)
466 #endif
467 #ifdef CONFIG_64BIT
468 #define __GET_USER_UNALIGNED_DW(val, ptr) \
469 __get_user_unaligned_asm(val, "uld", ptr)
470 #endif
471
472 extern void __get_user_unaligned_unknown(void);
473
474 #define __get_user_unaligned_common(val, size, ptr) \
475 do { \
476 switch (size) { \
477 case 1: __get_user_asm(val, "lb", ptr); break; \
478 case 2: __get_user_unaligned_asm(val, "ulh", ptr); break; \
479 case 4: __get_user_unaligned_asm(val, "ulw", ptr); break; \
480 case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \
481 default: __get_user_unaligned_unknown(); break; \
482 } \
483 } while (0)
484
485 #define __get_user_unaligned_nocheck(x,ptr,size) \
486 ({ \
487 int __gu_err; \
488 \
489 __get_user_unaligned_common((x), size, ptr); \
490 __gu_err; \
491 })
492
493 #define __get_user_unaligned_check(x,ptr,size) \
494 ({ \
495 int __gu_err = -EFAULT; \
496 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
497 \
498 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
499 __get_user_unaligned_common((x), size, __gu_ptr); \
500 \
501 __gu_err; \
502 })
503
504 #define __get_user_unaligned_asm(val, insn, addr) \
505 { \
506 long __gu_tmp; \
507 \
508 __asm__ __volatile__( \
509 "1: " insn " %1, %3 \n" \
510 "2: \n" \
511 " .section .fixup,\"ax\" \n" \
512 "3: li %0, %4 \n" \
513 " j 2b \n" \
514 " .previous \n" \
515 " .section __ex_table,\"a\" \n" \
516 " "__UA_ADDR "\t1b, 3b \n" \
517 " "__UA_ADDR "\t1b + 4, 3b \n" \
518 " .previous \n" \
519 : "=r" (__gu_err), "=r" (__gu_tmp) \
520 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
521 \
522 (val) = (__typeof__(*(addr))) __gu_tmp; \
523 }
524
525 /*
526 * Get a long long 64 using 32 bit registers.
527 */
528 #define __get_user_unaligned_asm_ll32(val, addr) \
529 { \
530 unsigned long long __gu_tmp; \
531 \
532 __asm__ __volatile__( \
533 "1: ulw %1, (%3) \n" \
534 "2: ulw %D1, 4(%3) \n" \
535 " move %0, $0 \n" \
536 "3: .section .fixup,\"ax\" \n" \
537 "4: li %0, %4 \n" \
538 " move %1, $0 \n" \
539 " move %D1, $0 \n" \
540 " j 3b \n" \
541 " .previous \n" \
542 " .section __ex_table,\"a\" \n" \
543 " " __UA_ADDR " 1b, 4b \n" \
544 " " __UA_ADDR " 1b + 4, 4b \n" \
545 " " __UA_ADDR " 2b, 4b \n" \
546 " " __UA_ADDR " 2b + 4, 4b \n" \
547 " .previous \n" \
548 : "=r" (__gu_err), "=&r" (__gu_tmp) \
549 : "0" (0), "r" (addr), "i" (-EFAULT)); \
550 (val) = (__typeof__(*(addr))) __gu_tmp; \
551 }
552
553 /*
554 * Yuck. We need two variants, one for 64bit operation and one
555 * for 32 bit mode and old iron.
556 */
557 #ifdef CONFIG_32BIT
558 #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
559 #endif
560 #ifdef CONFIG_64BIT
561 #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
562 #endif
563
564 #define __put_user_unaligned_nocheck(x,ptr,size) \
565 ({ \
566 __typeof__(*(ptr)) __pu_val; \
567 int __pu_err = 0; \
568 \
569 __pu_val = (x); \
570 switch (size) { \
571 case 1: __put_user_asm("sb", ptr); break; \
572 case 2: __put_user_unaligned_asm("ush", ptr); break; \
573 case 4: __put_user_unaligned_asm("usw", ptr); break; \
574 case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \
575 default: __put_user_unaligned_unknown(); break; \
576 } \
577 __pu_err; \
578 })
579
580 #define __put_user_unaligned_check(x,ptr,size) \
581 ({ \
582 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
583 __typeof__(*(ptr)) __pu_val = (x); \
584 int __pu_err = -EFAULT; \
585 \
586 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
587 switch (size) { \
588 case 1: __put_user_asm("sb", __pu_addr); break; \
589 case 2: __put_user_unaligned_asm("ush", __pu_addr); break; \
590 case 4: __put_user_unaligned_asm("usw", __pu_addr); break; \
591 case 8: __PUT_USER_UNALGINED_DW(__pu_addr); break; \
592 default: __put_user_unaligned_unknown(); break; \
593 } \
594 } \
595 __pu_err; \
596 })
597
598 #define __put_user_unaligned_asm(insn, ptr) \
599 { \
600 __asm__ __volatile__( \
601 "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \
602 "2: \n" \
603 " .section .fixup,\"ax\" \n" \
604 "3: li %0, %4 \n" \
605 " j 2b \n" \
606 " .previous \n" \
607 " .section __ex_table,\"a\" \n" \
608 " " __UA_ADDR " 1b, 3b \n" \
609 " .previous \n" \
610 : "=r" (__pu_err) \
611 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
612 "i" (-EFAULT)); \
613 }
614
615 #define __put_user_unaligned_asm_ll32(ptr) \
616 { \
617 __asm__ __volatile__( \
618 "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \
619 "2: sw %D2, 4(%3) \n" \
620 "3: \n" \
621 " .section .fixup,\"ax\" \n" \
622 "4: li %0, %4 \n" \
623 " j 3b \n" \
624 " .previous \n" \
625 " .section __ex_table,\"a\" \n" \
626 " " __UA_ADDR " 1b, 4b \n" \
627 " " __UA_ADDR " 1b + 4, 4b \n" \
628 " " __UA_ADDR " 2b, 4b \n" \
629 " " __UA_ADDR " 2b + 4, 4b \n" \
630 " .previous" \
631 : "=r" (__pu_err) \
632 : "0" (0), "r" (__pu_val), "r" (ptr), \
633 "i" (-EFAULT)); \
634 }
635
636 extern void __put_user_unaligned_unknown(void);
637
638 /*
639 * We're generating jump to subroutines which will be outside the range of
640 * jump instructions
641 */
642 #ifdef MODULE
643 #define __MODULE_JAL(destination) \
644 ".set\tnoat\n\t" \
645 __UA_LA "\t$1, " #destination "\n\t" \
646 "jalr\t$1\n\t" \
647 ".set\tat\n\t"
648 #else
649 #define __MODULE_JAL(destination) \
650 "jal\t" #destination "\n\t"
651 #endif
652
653 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS
654 #define DADDI_SCRATCH "$0"
655 #else
656 #define DADDI_SCRATCH "$3"
657 #endif
658
659 extern size_t __copy_user(void *__to, const void *__from, size_t __n);
660
661 #define __invoke_copy_to_user(to, from, n) \
662 ({ \
663 register void __user *__cu_to_r __asm__("$4"); \
664 register const void *__cu_from_r __asm__("$5"); \
665 register long __cu_len_r __asm__("$6"); \
666 \
667 __cu_to_r = (to); \
668 __cu_from_r = (from); \
669 __cu_len_r = (n); \
670 __asm__ __volatile__( \
671 __MODULE_JAL(__copy_user) \
672 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
673 : \
674 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
675 DADDI_SCRATCH, "memory"); \
676 __cu_len_r; \
677 })
678
679 /*
680 * __copy_to_user: - Copy a block of data into user space, with less checking.
681 * @to: Destination address, in user space.
682 * @from: Source address, in kernel space.
683 * @n: Number of bytes to copy.
684 *
685 * Context: User context only. This function may sleep.
686 *
687 * Copy data from kernel space to user space. Caller must check
688 * the specified block with access_ok() before calling this function.
689 *
690 * Returns number of bytes that could not be copied.
691 * On success, this will be zero.
692 */
693 #define __copy_to_user(to, from, n) \
694 ({ \
695 void __user *__cu_to; \
696 const void *__cu_from; \
697 long __cu_len; \
698 \
699 might_sleep(); \
700 __cu_to = (to); \
701 __cu_from = (from); \
702 __cu_len = (n); \
703 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len); \
704 __cu_len; \
705 })
706
707 extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
708
709 #define __copy_to_user_inatomic(to, from, n) \
710 ({ \
711 void __user *__cu_to; \
712 const void *__cu_from; \
713 long __cu_len; \
714 \
715 __cu_to = (to); \
716 __cu_from = (from); \
717 __cu_len = (n); \
718 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len); \
719 __cu_len; \
720 })
721
722 #define __copy_from_user_inatomic(to, from, n) \
723 ({ \
724 void *__cu_to; \
725 const void __user *__cu_from; \
726 long __cu_len; \
727 \
728 __cu_to = (to); \
729 __cu_from = (from); \
730 __cu_len = (n); \
731 __cu_len = __invoke_copy_from_user_inatomic(__cu_to, __cu_from, \
732 __cu_len); \
733 __cu_len; \
734 })
735
736 /*
737 * copy_to_user: - Copy a block of data into user space.
738 * @to: Destination address, in user space.
739 * @from: Source address, in kernel space.
740 * @n: Number of bytes to copy.
741 *
742 * Context: User context only. This function may sleep.
743 *
744 * Copy data from kernel space to user space.
745 *
746 * Returns number of bytes that could not be copied.
747 * On success, this will be zero.
748 */
749 #define copy_to_user(to, from, n) \
750 ({ \
751 void __user *__cu_to; \
752 const void *__cu_from; \
753 long __cu_len; \
754 \
755 might_sleep(); \
756 __cu_to = (to); \
757 __cu_from = (from); \
758 __cu_len = (n); \
759 if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) \
760 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
761 __cu_len); \
762 __cu_len; \
763 })
764
765 #define __invoke_copy_from_user(to, from, n) \
766 ({ \
767 register void *__cu_to_r __asm__("$4"); \
768 register const void __user *__cu_from_r __asm__("$5"); \
769 register long __cu_len_r __asm__("$6"); \
770 \
771 __cu_to_r = (to); \
772 __cu_from_r = (from); \
773 __cu_len_r = (n); \
774 __asm__ __volatile__( \
775 ".set\tnoreorder\n\t" \
776 __MODULE_JAL(__copy_user) \
777 ".set\tnoat\n\t" \
778 __UA_ADDU "\t$1, %1, %2\n\t" \
779 ".set\tat\n\t" \
780 ".set\treorder" \
781 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
782 : \
783 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
784 DADDI_SCRATCH, "memory"); \
785 __cu_len_r; \
786 })
787
788 #define __invoke_copy_from_user_inatomic(to, from, n) \
789 ({ \
790 register void *__cu_to_r __asm__("$4"); \
791 register const void __user *__cu_from_r __asm__("$5"); \
792 register long __cu_len_r __asm__("$6"); \
793 \
794 __cu_to_r = (to); \
795 __cu_from_r = (from); \
796 __cu_len_r = (n); \
797 __asm__ __volatile__( \
798 ".set\tnoreorder\n\t" \
799 __MODULE_JAL(__copy_user_inatomic) \
800 ".set\tnoat\n\t" \
801 __UA_ADDU "\t$1, %1, %2\n\t" \
802 ".set\tat\n\t" \
803 ".set\treorder" \
804 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
805 : \
806 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
807 DADDI_SCRATCH, "memory"); \
808 __cu_len_r; \
809 })
810
811 /*
812 * __copy_from_user: - Copy a block of data from user space, with less checking.
813 * @to: Destination address, in kernel space.
814 * @from: Source address, in user space.
815 * @n: Number of bytes to copy.
816 *
817 * Context: User context only. This function may sleep.
818 *
819 * Copy data from user space to kernel space. Caller must check
820 * the specified block with access_ok() before calling this function.
821 *
822 * Returns number of bytes that could not be copied.
823 * On success, this will be zero.
824 *
825 * If some data could not be copied, this function will pad the copied
826 * data to the requested size using zero bytes.
827 */
828 #define __copy_from_user(to, from, n) \
829 ({ \
830 void *__cu_to; \
831 const void __user *__cu_from; \
832 long __cu_len; \
833 \
834 might_sleep(); \
835 __cu_to = (to); \
836 __cu_from = (from); \
837 __cu_len = (n); \
838 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
839 __cu_len); \
840 __cu_len; \
841 })
842
843 /*
844 * copy_from_user: - Copy a block of data from user space.
845 * @to: Destination address, in kernel space.
846 * @from: Source address, in user space.
847 * @n: Number of bytes to copy.
848 *
849 * Context: User context only. This function may sleep.
850 *
851 * Copy data from user space to kernel space.
852 *
853 * Returns number of bytes that could not be copied.
854 * On success, this will be zero.
855 *
856 * If some data could not be copied, this function will pad the copied
857 * data to the requested size using zero bytes.
858 */
859 #define copy_from_user(to, from, n) \
860 ({ \
861 void *__cu_to; \
862 const void __user *__cu_from; \
863 long __cu_len; \
864 \
865 might_sleep(); \
866 __cu_to = (to); \
867 __cu_from = (from); \
868 __cu_len = (n); \
869 if (access_ok(VERIFY_READ, __cu_from, __cu_len)) \
870 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
871 __cu_len); \
872 __cu_len; \
873 })
874
875 #define __copy_in_user(to, from, n) __copy_from_user(to, from, n)
876
877 #define copy_in_user(to, from, n) \
878 ({ \
879 void __user *__cu_to; \
880 const void __user *__cu_from; \
881 long __cu_len; \
882 \
883 might_sleep(); \
884 __cu_to = (to); \
885 __cu_from = (from); \
886 __cu_len = (n); \
887 if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) && \
888 access_ok(VERIFY_WRITE, __cu_to, __cu_len))) \
889 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
890 __cu_len); \
891 __cu_len; \
892 })
893
894 /*
895 * __clear_user: - Zero a block of memory in user space, with less checking.
896 * @to: Destination address, in user space.
897 * @n: Number of bytes to zero.
898 *
899 * Zero a block of memory in user space. Caller must check
900 * the specified block with access_ok() before calling this function.
901 *
902 * Returns number of bytes that could not be cleared.
903 * On success, this will be zero.
904 */
905 static inline __kernel_size_t
906 __clear_user(void __user *addr, __kernel_size_t size)
907 {
908 __kernel_size_t res;
909
910 might_sleep();
911 __asm__ __volatile__(
912 "move\t$4, %1\n\t"
913 "move\t$5, $0\n\t"
914 "move\t$6, %2\n\t"
915 __MODULE_JAL(__bzero)
916 "move\t%0, $6"
917 : "=r" (res)
918 : "r" (addr), "r" (size)
919 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
920
921 return res;
922 }
923
924 #define clear_user(addr,n) \
925 ({ \
926 void __user * __cl_addr = (addr); \
927 unsigned long __cl_size = (n); \
928 if (__cl_size && access_ok(VERIFY_WRITE, \
929 ((unsigned long)(__cl_addr)), __cl_size)) \
930 __cl_size = __clear_user(__cl_addr, __cl_size); \
931 __cl_size; \
932 })
933
934 /*
935 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
936 * @dst: Destination address, in kernel space. This buffer must be at
937 * least @count bytes long.
938 * @src: Source address, in user space.
939 * @count: Maximum number of bytes to copy, including the trailing NUL.
940 *
941 * Copies a NUL-terminated string from userspace to kernel space.
942 * Caller must check the specified block with access_ok() before calling
943 * this function.
944 *
945 * On success, returns the length of the string (not including the trailing
946 * NUL).
947 *
948 * If access to userspace fails, returns -EFAULT (some data may have been
949 * copied).
950 *
951 * If @count is smaller than the length of the string, copies @count bytes
952 * and returns @count.
953 */
954 static inline long
955 __strncpy_from_user(char *__to, const char __user *__from, long __len)
956 {
957 long res;
958
959 might_sleep();
960 __asm__ __volatile__(
961 "move\t$4, %1\n\t"
962 "move\t$5, %2\n\t"
963 "move\t$6, %3\n\t"
964 __MODULE_JAL(__strncpy_from_user_nocheck_asm)
965 "move\t%0, $2"
966 : "=r" (res)
967 : "r" (__to), "r" (__from), "r" (__len)
968 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
969
970 return res;
971 }
972
973 /*
974 * strncpy_from_user: - Copy a NUL terminated string from userspace.
975 * @dst: Destination address, in kernel space. This buffer must be at
976 * least @count bytes long.
977 * @src: Source address, in user space.
978 * @count: Maximum number of bytes to copy, including the trailing NUL.
979 *
980 * Copies a NUL-terminated string from userspace to kernel space.
981 *
982 * On success, returns the length of the string (not including the trailing
983 * NUL).
984 *
985 * If access to userspace fails, returns -EFAULT (some data may have been
986 * copied).
987 *
988 * If @count is smaller than the length of the string, copies @count bytes
989 * and returns @count.
990 */
991 static inline long
992 strncpy_from_user(char *__to, const char __user *__from, long __len)
993 {
994 long res;
995
996 might_sleep();
997 __asm__ __volatile__(
998 "move\t$4, %1\n\t"
999 "move\t$5, %2\n\t"
1000 "move\t$6, %3\n\t"
1001 __MODULE_JAL(__strncpy_from_user_asm)
1002 "move\t%0, $2"
1003 : "=r" (res)
1004 : "r" (__to), "r" (__from), "r" (__len)
1005 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1006
1007 return res;
1008 }
1009
1010 /* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1011 static inline long __strlen_user(const char __user *s)
1012 {
1013 long res;
1014
1015 might_sleep();
1016 __asm__ __volatile__(
1017 "move\t$4, %1\n\t"
1018 __MODULE_JAL(__strlen_user_nocheck_asm)
1019 "move\t%0, $2"
1020 : "=r" (res)
1021 : "r" (s)
1022 : "$2", "$4", __UA_t0, "$31");
1023
1024 return res;
1025 }
1026
1027 /*
1028 * strlen_user: - Get the size of a string in user space.
1029 * @str: The string to measure.
1030 *
1031 * Context: User context only. This function may sleep.
1032 *
1033 * Get the size of a NUL-terminated string in user space.
1034 *
1035 * Returns the size of the string INCLUDING the terminating NUL.
1036 * On exception, returns 0.
1037 *
1038 * If there is a limit on the length of a valid string, you may wish to
1039 * consider using strnlen_user() instead.
1040 */
1041 static inline long strlen_user(const char __user *s)
1042 {
1043 long res;
1044
1045 might_sleep();
1046 __asm__ __volatile__(
1047 "move\t$4, %1\n\t"
1048 __MODULE_JAL(__strlen_user_asm)
1049 "move\t%0, $2"
1050 : "=r" (res)
1051 : "r" (s)
1052 : "$2", "$4", __UA_t0, "$31");
1053
1054 return res;
1055 }
1056
1057 /* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1058 static inline long __strnlen_user(const char __user *s, long n)
1059 {
1060 long res;
1061
1062 might_sleep();
1063 __asm__ __volatile__(
1064 "move\t$4, %1\n\t"
1065 "move\t$5, %2\n\t"
1066 __MODULE_JAL(__strnlen_user_nocheck_asm)
1067 "move\t%0, $2"
1068 : "=r" (res)
1069 : "r" (s), "r" (n)
1070 : "$2", "$4", "$5", __UA_t0, "$31");
1071
1072 return res;
1073 }
1074
1075 /*
1076 * strlen_user: - Get the size of a string in user space.
1077 * @str: The string to measure.
1078 *
1079 * Context: User context only. This function may sleep.
1080 *
1081 * Get the size of a NUL-terminated string in user space.
1082 *
1083 * Returns the size of the string INCLUDING the terminating NUL.
1084 * On exception, returns 0.
1085 *
1086 * If there is a limit on the length of a valid string, you may wish to
1087 * consider using strnlen_user() instead.
1088 */
1089 static inline long strnlen_user(const char __user *s, long n)
1090 {
1091 long res;
1092
1093 might_sleep();
1094 __asm__ __volatile__(
1095 "move\t$4, %1\n\t"
1096 "move\t$5, %2\n\t"
1097 __MODULE_JAL(__strnlen_user_asm)
1098 "move\t%0, $2"
1099 : "=r" (res)
1100 : "r" (s), "r" (n)
1101 : "$2", "$4", "$5", __UA_t0, "$31");
1102
1103 return res;
1104 }
1105
1106 struct exception_table_entry
1107 {
1108 unsigned long insn;
1109 unsigned long nextinsn;
1110 };
1111
1112 extern int fixup_exception(struct pt_regs *regs);
1113
1114 #endif /* _ASM_UACCESS_H */
This page took 0.062208 seconds and 6 git commands to generate.