Merge git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluetooth-2.6
[deliverable/linux.git] / arch / mips / include / asm / uaccess.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 */
10 #ifndef _ASM_UACCESS_H
11 #define _ASM_UACCESS_H
12
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/thread_info.h>
16
17 /*
18 * The fs value determines whether argument validity checking should be
19 * performed or not. If get_fs() == USER_DS, checking is performed, with
20 * get_fs() == KERNEL_DS, checking is bypassed.
21 *
22 * For historical reasons, these macros are grossly misnamed.
23 */
24 #ifdef CONFIG_32BIT
25
26 #define __UA_LIMIT 0x80000000UL
27
28 #define __UA_ADDR ".word"
29 #define __UA_LA "la"
30 #define __UA_ADDU "addu"
31 #define __UA_t0 "$8"
32 #define __UA_t1 "$9"
33
34 #endif /* CONFIG_32BIT */
35
36 #ifdef CONFIG_64BIT
37
38 #define __UA_LIMIT (- TASK_SIZE)
39
40 #define __UA_ADDR ".dword"
41 #define __UA_LA "dla"
42 #define __UA_ADDU "daddu"
43 #define __UA_t0 "$12"
44 #define __UA_t1 "$13"
45
46 #endif /* CONFIG_64BIT */
47
48 /*
49 * USER_DS is a bitmask that has the bits set that may not be set in a valid
50 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
51 * the arithmetic we're doing only works if the limit is a power of two, so
52 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
53 * address in this range it's the process's problem, not ours :-)
54 */
55
56 #define KERNEL_DS ((mm_segment_t) { 0UL })
57 #define USER_DS ((mm_segment_t) { __UA_LIMIT })
58
59 #define VERIFY_READ 0
60 #define VERIFY_WRITE 1
61
62 #define get_ds() (KERNEL_DS)
63 #define get_fs() (current_thread_info()->addr_limit)
64 #define set_fs(x) (current_thread_info()->addr_limit = (x))
65
66 #define segment_eq(a, b) ((a).seg == (b).seg)
67
68
69 /*
70 * Is a address valid? This does a straighforward calculation rather
71 * than tests.
72 *
73 * Address valid if:
74 * - "addr" doesn't have any high-bits set
75 * - AND "size" doesn't have any high-bits set
76 * - AND "addr+size" doesn't have any high-bits set
77 * - OR we are in kernel mode.
78 *
79 * __ua_size() is a trick to avoid runtime checking of positive constant
80 * sizes; for those we already know at compile time that the size is ok.
81 */
82 #define __ua_size(size) \
83 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
84
85 /*
86 * access_ok: - Checks if a user space pointer is valid
87 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
88 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
89 * to write to a block, it is always safe to read from it.
90 * @addr: User space pointer to start of block to check
91 * @size: Size of block to check
92 *
93 * Context: User context only. This function may sleep.
94 *
95 * Checks if a pointer to a block of memory in user space is valid.
96 *
97 * Returns true (nonzero) if the memory block may be valid, false (zero)
98 * if it is definitely invalid.
99 *
100 * Note that, depending on architecture, this function probably just
101 * checks that the pointer is in the user space range - after calling
102 * this function, memory access functions may still return -EFAULT.
103 */
104
105 #define __access_mask get_fs().seg
106
107 #define __access_ok(addr, size, mask) \
108 ({ \
109 unsigned long __addr = (unsigned long) (addr); \
110 unsigned long __size = size; \
111 unsigned long __mask = mask; \
112 unsigned long __ok; \
113 \
114 __chk_user_ptr(addr); \
115 __ok = (signed long)(__mask & (__addr | (__addr + __size) | \
116 __ua_size(__size))); \
117 __ok == 0; \
118 })
119
120 #define access_ok(type, addr, size) \
121 likely(__access_ok((addr), (size), __access_mask))
122
123 /*
124 * put_user: - Write a simple value into user space.
125 * @x: Value to copy to user space.
126 * @ptr: Destination address, in user space.
127 *
128 * Context: User context only. This function may sleep.
129 *
130 * This macro copies a single simple value from kernel space to user
131 * space. It supports simple types like char and int, but not larger
132 * data types like structures or arrays.
133 *
134 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
135 * to the result of dereferencing @ptr.
136 *
137 * Returns zero on success, or -EFAULT on error.
138 */
139 #define put_user(x,ptr) \
140 __put_user_check((x), (ptr), sizeof(*(ptr)))
141
142 /*
143 * get_user: - Get a simple variable from user space.
144 * @x: Variable to store result.
145 * @ptr: Source address, in user space.
146 *
147 * Context: User context only. This function may sleep.
148 *
149 * This macro copies a single simple variable from user space to kernel
150 * space. It supports simple types like char and int, but not larger
151 * data types like structures or arrays.
152 *
153 * @ptr must have pointer-to-simple-variable type, and the result of
154 * dereferencing @ptr must be assignable to @x without a cast.
155 *
156 * Returns zero on success, or -EFAULT on error.
157 * On error, the variable @x is set to zero.
158 */
159 #define get_user(x,ptr) \
160 __get_user_check((x), (ptr), sizeof(*(ptr)))
161
162 /*
163 * __put_user: - Write a simple value into user space, with less checking.
164 * @x: Value to copy to user space.
165 * @ptr: Destination address, in user space.
166 *
167 * Context: User context only. This function may sleep.
168 *
169 * This macro copies a single simple value from kernel space to user
170 * space. It supports simple types like char and int, but not larger
171 * data types like structures or arrays.
172 *
173 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
174 * to the result of dereferencing @ptr.
175 *
176 * Caller must check the pointer with access_ok() before calling this
177 * function.
178 *
179 * Returns zero on success, or -EFAULT on error.
180 */
181 #define __put_user(x,ptr) \
182 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
183
184 /*
185 * __get_user: - Get a simple variable from user space, with less checking.
186 * @x: Variable to store result.
187 * @ptr: Source address, in user space.
188 *
189 * Context: User context only. This function may sleep.
190 *
191 * This macro copies a single simple variable from user space to kernel
192 * space. It supports simple types like char and int, but not larger
193 * data types like structures or arrays.
194 *
195 * @ptr must have pointer-to-simple-variable type, and the result of
196 * dereferencing @ptr must be assignable to @x without a cast.
197 *
198 * Caller must check the pointer with access_ok() before calling this
199 * function.
200 *
201 * Returns zero on success, or -EFAULT on error.
202 * On error, the variable @x is set to zero.
203 */
204 #define __get_user(x,ptr) \
205 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
206
207 struct __large_struct { unsigned long buf[100]; };
208 #define __m(x) (*(struct __large_struct __user *)(x))
209
210 /*
211 * Yuck. We need two variants, one for 64bit operation and one
212 * for 32 bit mode and old iron.
213 */
214 #ifdef CONFIG_32BIT
215 #define __GET_USER_DW(val, ptr) __get_user_asm_ll32(val, ptr)
216 #endif
217 #ifdef CONFIG_64BIT
218 #define __GET_USER_DW(val, ptr) __get_user_asm(val, "ld", ptr)
219 #endif
220
221 extern void __get_user_unknown(void);
222
223 #define __get_user_common(val, size, ptr) \
224 do { \
225 switch (size) { \
226 case 1: __get_user_asm(val, "lb", ptr); break; \
227 case 2: __get_user_asm(val, "lh", ptr); break; \
228 case 4: __get_user_asm(val, "lw", ptr); break; \
229 case 8: __GET_USER_DW(val, ptr); break; \
230 default: __get_user_unknown(); break; \
231 } \
232 } while (0)
233
234 #define __get_user_nocheck(x, ptr, size) \
235 ({ \
236 int __gu_err; \
237 \
238 __chk_user_ptr(ptr); \
239 __get_user_common((x), size, ptr); \
240 __gu_err; \
241 })
242
243 #define __get_user_check(x, ptr, size) \
244 ({ \
245 int __gu_err = -EFAULT; \
246 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
247 \
248 might_fault(); \
249 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
250 __get_user_common((x), size, __gu_ptr); \
251 \
252 __gu_err; \
253 })
254
255 #define __get_user_asm(val, insn, addr) \
256 { \
257 long __gu_tmp; \
258 \
259 __asm__ __volatile__( \
260 "1: " insn " %1, %3 \n" \
261 "2: \n" \
262 " .section .fixup,\"ax\" \n" \
263 "3: li %0, %4 \n" \
264 " j 2b \n" \
265 " .previous \n" \
266 " .section __ex_table,\"a\" \n" \
267 " "__UA_ADDR "\t1b, 3b \n" \
268 " .previous \n" \
269 : "=r" (__gu_err), "=r" (__gu_tmp) \
270 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
271 \
272 (val) = (__typeof__(*(addr))) __gu_tmp; \
273 }
274
275 /*
276 * Get a long long 64 using 32 bit registers.
277 */
278 #define __get_user_asm_ll32(val, addr) \
279 { \
280 union { \
281 unsigned long long l; \
282 __typeof__(*(addr)) t; \
283 } __gu_tmp; \
284 \
285 __asm__ __volatile__( \
286 "1: lw %1, (%3) \n" \
287 "2: lw %D1, 4(%3) \n" \
288 "3: .section .fixup,\"ax\" \n" \
289 "4: li %0, %4 \n" \
290 " move %1, $0 \n" \
291 " move %D1, $0 \n" \
292 " j 3b \n" \
293 " .previous \n" \
294 " .section __ex_table,\"a\" \n" \
295 " " __UA_ADDR " 1b, 4b \n" \
296 " " __UA_ADDR " 2b, 4b \n" \
297 " .previous \n" \
298 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
299 : "0" (0), "r" (addr), "i" (-EFAULT)); \
300 \
301 (val) = __gu_tmp.t; \
302 }
303
304 /*
305 * Yuck. We need two variants, one for 64bit operation and one
306 * for 32 bit mode and old iron.
307 */
308 #ifdef CONFIG_32BIT
309 #define __PUT_USER_DW(ptr) __put_user_asm_ll32(ptr)
310 #endif
311 #ifdef CONFIG_64BIT
312 #define __PUT_USER_DW(ptr) __put_user_asm("sd", ptr)
313 #endif
314
315 #define __put_user_nocheck(x, ptr, size) \
316 ({ \
317 __typeof__(*(ptr)) __pu_val; \
318 int __pu_err = 0; \
319 \
320 __chk_user_ptr(ptr); \
321 __pu_val = (x); \
322 switch (size) { \
323 case 1: __put_user_asm("sb", ptr); break; \
324 case 2: __put_user_asm("sh", ptr); break; \
325 case 4: __put_user_asm("sw", ptr); break; \
326 case 8: __PUT_USER_DW(ptr); break; \
327 default: __put_user_unknown(); break; \
328 } \
329 __pu_err; \
330 })
331
332 #define __put_user_check(x, ptr, size) \
333 ({ \
334 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
335 __typeof__(*(ptr)) __pu_val = (x); \
336 int __pu_err = -EFAULT; \
337 \
338 might_fault(); \
339 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
340 switch (size) { \
341 case 1: __put_user_asm("sb", __pu_addr); break; \
342 case 2: __put_user_asm("sh", __pu_addr); break; \
343 case 4: __put_user_asm("sw", __pu_addr); break; \
344 case 8: __PUT_USER_DW(__pu_addr); break; \
345 default: __put_user_unknown(); break; \
346 } \
347 } \
348 __pu_err; \
349 })
350
351 #define __put_user_asm(insn, ptr) \
352 { \
353 __asm__ __volatile__( \
354 "1: " insn " %z2, %3 # __put_user_asm\n" \
355 "2: \n" \
356 " .section .fixup,\"ax\" \n" \
357 "3: li %0, %4 \n" \
358 " j 2b \n" \
359 " .previous \n" \
360 " .section __ex_table,\"a\" \n" \
361 " " __UA_ADDR " 1b, 3b \n" \
362 " .previous \n" \
363 : "=r" (__pu_err) \
364 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
365 "i" (-EFAULT)); \
366 }
367
368 #define __put_user_asm_ll32(ptr) \
369 { \
370 __asm__ __volatile__( \
371 "1: sw %2, (%3) # __put_user_asm_ll32 \n" \
372 "2: sw %D2, 4(%3) \n" \
373 "3: \n" \
374 " .section .fixup,\"ax\" \n" \
375 "4: li %0, %4 \n" \
376 " j 3b \n" \
377 " .previous \n" \
378 " .section __ex_table,\"a\" \n" \
379 " " __UA_ADDR " 1b, 4b \n" \
380 " " __UA_ADDR " 2b, 4b \n" \
381 " .previous" \
382 : "=r" (__pu_err) \
383 : "0" (0), "r" (__pu_val), "r" (ptr), \
384 "i" (-EFAULT)); \
385 }
386
387 extern void __put_user_unknown(void);
388
389 /*
390 * put_user_unaligned: - Write a simple value into user space.
391 * @x: Value to copy to user space.
392 * @ptr: Destination address, in user space.
393 *
394 * Context: User context only. This function may sleep.
395 *
396 * This macro copies a single simple value from kernel space to user
397 * space. It supports simple types like char and int, but not larger
398 * data types like structures or arrays.
399 *
400 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
401 * to the result of dereferencing @ptr.
402 *
403 * Returns zero on success, or -EFAULT on error.
404 */
405 #define put_user_unaligned(x,ptr) \
406 __put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
407
408 /*
409 * get_user_unaligned: - Get a simple variable from user space.
410 * @x: Variable to store result.
411 * @ptr: Source address, in user space.
412 *
413 * Context: User context only. This function may sleep.
414 *
415 * This macro copies a single simple variable from user space to kernel
416 * space. It supports simple types like char and int, but not larger
417 * data types like structures or arrays.
418 *
419 * @ptr must have pointer-to-simple-variable type, and the result of
420 * dereferencing @ptr must be assignable to @x without a cast.
421 *
422 * Returns zero on success, or -EFAULT on error.
423 * On error, the variable @x is set to zero.
424 */
425 #define get_user_unaligned(x,ptr) \
426 __get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
427
428 /*
429 * __put_user_unaligned: - Write a simple value into user space, with less checking.
430 * @x: Value to copy to user space.
431 * @ptr: Destination address, in user space.
432 *
433 * Context: User context only. This function may sleep.
434 *
435 * This macro copies a single simple value from kernel space to user
436 * space. It supports simple types like char and int, but not larger
437 * data types like structures or arrays.
438 *
439 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
440 * to the result of dereferencing @ptr.
441 *
442 * Caller must check the pointer with access_ok() before calling this
443 * function.
444 *
445 * Returns zero on success, or -EFAULT on error.
446 */
447 #define __put_user_unaligned(x,ptr) \
448 __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
449
450 /*
451 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
452 * @x: Variable to store result.
453 * @ptr: Source address, in user space.
454 *
455 * Context: User context only. This function may sleep.
456 *
457 * This macro copies a single simple variable from user space to kernel
458 * space. It supports simple types like char and int, but not larger
459 * data types like structures or arrays.
460 *
461 * @ptr must have pointer-to-simple-variable type, and the result of
462 * dereferencing @ptr must be assignable to @x without a cast.
463 *
464 * Caller must check the pointer with access_ok() before calling this
465 * function.
466 *
467 * Returns zero on success, or -EFAULT on error.
468 * On error, the variable @x is set to zero.
469 */
470 #define __get_user_unaligned(x,ptr) \
471 __get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
472
473 /*
474 * Yuck. We need two variants, one for 64bit operation and one
475 * for 32 bit mode and old iron.
476 */
477 #ifdef CONFIG_32BIT
478 #define __GET_USER_UNALIGNED_DW(val, ptr) \
479 __get_user_unaligned_asm_ll32(val, ptr)
480 #endif
481 #ifdef CONFIG_64BIT
482 #define __GET_USER_UNALIGNED_DW(val, ptr) \
483 __get_user_unaligned_asm(val, "uld", ptr)
484 #endif
485
486 extern void __get_user_unaligned_unknown(void);
487
488 #define __get_user_unaligned_common(val, size, ptr) \
489 do { \
490 switch (size) { \
491 case 1: __get_user_asm(val, "lb", ptr); break; \
492 case 2: __get_user_unaligned_asm(val, "ulh", ptr); break; \
493 case 4: __get_user_unaligned_asm(val, "ulw", ptr); break; \
494 case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \
495 default: __get_user_unaligned_unknown(); break; \
496 } \
497 } while (0)
498
499 #define __get_user_unaligned_nocheck(x,ptr,size) \
500 ({ \
501 int __gu_err; \
502 \
503 __get_user_unaligned_common((x), size, ptr); \
504 __gu_err; \
505 })
506
507 #define __get_user_unaligned_check(x,ptr,size) \
508 ({ \
509 int __gu_err = -EFAULT; \
510 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
511 \
512 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
513 __get_user_unaligned_common((x), size, __gu_ptr); \
514 \
515 __gu_err; \
516 })
517
518 #define __get_user_unaligned_asm(val, insn, addr) \
519 { \
520 long __gu_tmp; \
521 \
522 __asm__ __volatile__( \
523 "1: " insn " %1, %3 \n" \
524 "2: \n" \
525 " .section .fixup,\"ax\" \n" \
526 "3: li %0, %4 \n" \
527 " j 2b \n" \
528 " .previous \n" \
529 " .section __ex_table,\"a\" \n" \
530 " "__UA_ADDR "\t1b, 3b \n" \
531 " "__UA_ADDR "\t1b + 4, 3b \n" \
532 " .previous \n" \
533 : "=r" (__gu_err), "=r" (__gu_tmp) \
534 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
535 \
536 (val) = (__typeof__(*(addr))) __gu_tmp; \
537 }
538
539 /*
540 * Get a long long 64 using 32 bit registers.
541 */
542 #define __get_user_unaligned_asm_ll32(val, addr) \
543 { \
544 unsigned long long __gu_tmp; \
545 \
546 __asm__ __volatile__( \
547 "1: ulw %1, (%3) \n" \
548 "2: ulw %D1, 4(%3) \n" \
549 " move %0, $0 \n" \
550 "3: .section .fixup,\"ax\" \n" \
551 "4: li %0, %4 \n" \
552 " move %1, $0 \n" \
553 " move %D1, $0 \n" \
554 " j 3b \n" \
555 " .previous \n" \
556 " .section __ex_table,\"a\" \n" \
557 " " __UA_ADDR " 1b, 4b \n" \
558 " " __UA_ADDR " 1b + 4, 4b \n" \
559 " " __UA_ADDR " 2b, 4b \n" \
560 " " __UA_ADDR " 2b + 4, 4b \n" \
561 " .previous \n" \
562 : "=r" (__gu_err), "=&r" (__gu_tmp) \
563 : "0" (0), "r" (addr), "i" (-EFAULT)); \
564 (val) = (__typeof__(*(addr))) __gu_tmp; \
565 }
566
567 /*
568 * Yuck. We need two variants, one for 64bit operation and one
569 * for 32 bit mode and old iron.
570 */
571 #ifdef CONFIG_32BIT
572 #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
573 #endif
574 #ifdef CONFIG_64BIT
575 #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
576 #endif
577
578 #define __put_user_unaligned_nocheck(x,ptr,size) \
579 ({ \
580 __typeof__(*(ptr)) __pu_val; \
581 int __pu_err = 0; \
582 \
583 __pu_val = (x); \
584 switch (size) { \
585 case 1: __put_user_asm("sb", ptr); break; \
586 case 2: __put_user_unaligned_asm("ush", ptr); break; \
587 case 4: __put_user_unaligned_asm("usw", ptr); break; \
588 case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \
589 default: __put_user_unaligned_unknown(); break; \
590 } \
591 __pu_err; \
592 })
593
594 #define __put_user_unaligned_check(x,ptr,size) \
595 ({ \
596 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
597 __typeof__(*(ptr)) __pu_val = (x); \
598 int __pu_err = -EFAULT; \
599 \
600 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
601 switch (size) { \
602 case 1: __put_user_asm("sb", __pu_addr); break; \
603 case 2: __put_user_unaligned_asm("ush", __pu_addr); break; \
604 case 4: __put_user_unaligned_asm("usw", __pu_addr); break; \
605 case 8: __PUT_USER_UNALGINED_DW(__pu_addr); break; \
606 default: __put_user_unaligned_unknown(); break; \
607 } \
608 } \
609 __pu_err; \
610 })
611
612 #define __put_user_unaligned_asm(insn, ptr) \
613 { \
614 __asm__ __volatile__( \
615 "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \
616 "2: \n" \
617 " .section .fixup,\"ax\" \n" \
618 "3: li %0, %4 \n" \
619 " j 2b \n" \
620 " .previous \n" \
621 " .section __ex_table,\"a\" \n" \
622 " " __UA_ADDR " 1b, 3b \n" \
623 " .previous \n" \
624 : "=r" (__pu_err) \
625 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
626 "i" (-EFAULT)); \
627 }
628
629 #define __put_user_unaligned_asm_ll32(ptr) \
630 { \
631 __asm__ __volatile__( \
632 "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \
633 "2: sw %D2, 4(%3) \n" \
634 "3: \n" \
635 " .section .fixup,\"ax\" \n" \
636 "4: li %0, %4 \n" \
637 " j 3b \n" \
638 " .previous \n" \
639 " .section __ex_table,\"a\" \n" \
640 " " __UA_ADDR " 1b, 4b \n" \
641 " " __UA_ADDR " 1b + 4, 4b \n" \
642 " " __UA_ADDR " 2b, 4b \n" \
643 " " __UA_ADDR " 2b + 4, 4b \n" \
644 " .previous" \
645 : "=r" (__pu_err) \
646 : "0" (0), "r" (__pu_val), "r" (ptr), \
647 "i" (-EFAULT)); \
648 }
649
650 extern void __put_user_unaligned_unknown(void);
651
652 /*
653 * We're generating jump to subroutines which will be outside the range of
654 * jump instructions
655 */
656 #ifdef MODULE
657 #define __MODULE_JAL(destination) \
658 ".set\tnoat\n\t" \
659 __UA_LA "\t$1, " #destination "\n\t" \
660 "jalr\t$1\n\t" \
661 ".set\tat\n\t"
662 #else
663 #define __MODULE_JAL(destination) \
664 "jal\t" #destination "\n\t"
665 #endif
666
667 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS
668 #define DADDI_SCRATCH "$0"
669 #else
670 #define DADDI_SCRATCH "$3"
671 #endif
672
673 extern size_t __copy_user(void *__to, const void *__from, size_t __n);
674
675 #define __invoke_copy_to_user(to, from, n) \
676 ({ \
677 register void __user *__cu_to_r __asm__("$4"); \
678 register const void *__cu_from_r __asm__("$5"); \
679 register long __cu_len_r __asm__("$6"); \
680 \
681 __cu_to_r = (to); \
682 __cu_from_r = (from); \
683 __cu_len_r = (n); \
684 __asm__ __volatile__( \
685 __MODULE_JAL(__copy_user) \
686 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
687 : \
688 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
689 DADDI_SCRATCH, "memory"); \
690 __cu_len_r; \
691 })
692
693 /*
694 * __copy_to_user: - Copy a block of data into user space, with less checking.
695 * @to: Destination address, in user space.
696 * @from: Source address, in kernel space.
697 * @n: Number of bytes to copy.
698 *
699 * Context: User context only. This function may sleep.
700 *
701 * Copy data from kernel space to user space. Caller must check
702 * the specified block with access_ok() before calling this function.
703 *
704 * Returns number of bytes that could not be copied.
705 * On success, this will be zero.
706 */
707 #define __copy_to_user(to, from, n) \
708 ({ \
709 void __user *__cu_to; \
710 const void *__cu_from; \
711 long __cu_len; \
712 \
713 __cu_to = (to); \
714 __cu_from = (from); \
715 __cu_len = (n); \
716 might_fault(); \
717 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len); \
718 __cu_len; \
719 })
720
721 extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
722
723 #define __copy_to_user_inatomic(to, from, n) \
724 ({ \
725 void __user *__cu_to; \
726 const void *__cu_from; \
727 long __cu_len; \
728 \
729 __cu_to = (to); \
730 __cu_from = (from); \
731 __cu_len = (n); \
732 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len); \
733 __cu_len; \
734 })
735
736 #define __copy_from_user_inatomic(to, from, n) \
737 ({ \
738 void *__cu_to; \
739 const void __user *__cu_from; \
740 long __cu_len; \
741 \
742 __cu_to = (to); \
743 __cu_from = (from); \
744 __cu_len = (n); \
745 __cu_len = __invoke_copy_from_user_inatomic(__cu_to, __cu_from, \
746 __cu_len); \
747 __cu_len; \
748 })
749
750 /*
751 * copy_to_user: - Copy a block of data into user space.
752 * @to: Destination address, in user space.
753 * @from: Source address, in kernel space.
754 * @n: Number of bytes to copy.
755 *
756 * Context: User context only. This function may sleep.
757 *
758 * Copy data from kernel space to user space.
759 *
760 * Returns number of bytes that could not be copied.
761 * On success, this will be zero.
762 */
763 #define copy_to_user(to, from, n) \
764 ({ \
765 void __user *__cu_to; \
766 const void *__cu_from; \
767 long __cu_len; \
768 \
769 __cu_to = (to); \
770 __cu_from = (from); \
771 __cu_len = (n); \
772 if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \
773 might_fault(); \
774 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
775 __cu_len); \
776 } \
777 __cu_len; \
778 })
779
780 #define __invoke_copy_from_user(to, from, n) \
781 ({ \
782 register void *__cu_to_r __asm__("$4"); \
783 register const void __user *__cu_from_r __asm__("$5"); \
784 register long __cu_len_r __asm__("$6"); \
785 \
786 __cu_to_r = (to); \
787 __cu_from_r = (from); \
788 __cu_len_r = (n); \
789 __asm__ __volatile__( \
790 ".set\tnoreorder\n\t" \
791 __MODULE_JAL(__copy_user) \
792 ".set\tnoat\n\t" \
793 __UA_ADDU "\t$1, %1, %2\n\t" \
794 ".set\tat\n\t" \
795 ".set\treorder" \
796 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
797 : \
798 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
799 DADDI_SCRATCH, "memory"); \
800 __cu_len_r; \
801 })
802
803 #define __invoke_copy_from_user_inatomic(to, from, n) \
804 ({ \
805 register void *__cu_to_r __asm__("$4"); \
806 register const void __user *__cu_from_r __asm__("$5"); \
807 register long __cu_len_r __asm__("$6"); \
808 \
809 __cu_to_r = (to); \
810 __cu_from_r = (from); \
811 __cu_len_r = (n); \
812 __asm__ __volatile__( \
813 ".set\tnoreorder\n\t" \
814 __MODULE_JAL(__copy_user_inatomic) \
815 ".set\tnoat\n\t" \
816 __UA_ADDU "\t$1, %1, %2\n\t" \
817 ".set\tat\n\t" \
818 ".set\treorder" \
819 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
820 : \
821 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
822 DADDI_SCRATCH, "memory"); \
823 __cu_len_r; \
824 })
825
826 /*
827 * __copy_from_user: - Copy a block of data from user space, with less checking.
828 * @to: Destination address, in kernel space.
829 * @from: Source address, in user space.
830 * @n: Number of bytes to copy.
831 *
832 * Context: User context only. This function may sleep.
833 *
834 * Copy data from user space to kernel space. Caller must check
835 * the specified block with access_ok() before calling this function.
836 *
837 * Returns number of bytes that could not be copied.
838 * On success, this will be zero.
839 *
840 * If some data could not be copied, this function will pad the copied
841 * data to the requested size using zero bytes.
842 */
843 #define __copy_from_user(to, from, n) \
844 ({ \
845 void *__cu_to; \
846 const void __user *__cu_from; \
847 long __cu_len; \
848 \
849 __cu_to = (to); \
850 __cu_from = (from); \
851 __cu_len = (n); \
852 might_fault(); \
853 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
854 __cu_len); \
855 __cu_len; \
856 })
857
858 /*
859 * copy_from_user: - Copy a block of data from user space.
860 * @to: Destination address, in kernel space.
861 * @from: Source address, in user space.
862 * @n: Number of bytes to copy.
863 *
864 * Context: User context only. This function may sleep.
865 *
866 * Copy data from user space to kernel space.
867 *
868 * Returns number of bytes that could not be copied.
869 * On success, this will be zero.
870 *
871 * If some data could not be copied, this function will pad the copied
872 * data to the requested size using zero bytes.
873 */
874 #define copy_from_user(to, from, n) \
875 ({ \
876 void *__cu_to; \
877 const void __user *__cu_from; \
878 long __cu_len; \
879 \
880 __cu_to = (to); \
881 __cu_from = (from); \
882 __cu_len = (n); \
883 if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \
884 might_fault(); \
885 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
886 __cu_len); \
887 } \
888 __cu_len; \
889 })
890
891 #define __copy_in_user(to, from, n) \
892 ({ \
893 void __user *__cu_to; \
894 const void __user *__cu_from; \
895 long __cu_len; \
896 \
897 __cu_to = (to); \
898 __cu_from = (from); \
899 __cu_len = (n); \
900 might_fault(); \
901 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
902 __cu_len); \
903 __cu_len; \
904 })
905
906 #define copy_in_user(to, from, n) \
907 ({ \
908 void __user *__cu_to; \
909 const void __user *__cu_from; \
910 long __cu_len; \
911 \
912 __cu_to = (to); \
913 __cu_from = (from); \
914 __cu_len = (n); \
915 if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) && \
916 access_ok(VERIFY_WRITE, __cu_to, __cu_len))) { \
917 might_fault(); \
918 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
919 __cu_len); \
920 } \
921 __cu_len; \
922 })
923
924 /*
925 * __clear_user: - Zero a block of memory in user space, with less checking.
926 * @to: Destination address, in user space.
927 * @n: Number of bytes to zero.
928 *
929 * Zero a block of memory in user space. Caller must check
930 * the specified block with access_ok() before calling this function.
931 *
932 * Returns number of bytes that could not be cleared.
933 * On success, this will be zero.
934 */
935 static inline __kernel_size_t
936 __clear_user(void __user *addr, __kernel_size_t size)
937 {
938 __kernel_size_t res;
939
940 might_fault();
941 __asm__ __volatile__(
942 "move\t$4, %1\n\t"
943 "move\t$5, $0\n\t"
944 "move\t$6, %2\n\t"
945 __MODULE_JAL(__bzero)
946 "move\t%0, $6"
947 : "=r" (res)
948 : "r" (addr), "r" (size)
949 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
950
951 return res;
952 }
953
954 #define clear_user(addr,n) \
955 ({ \
956 void __user * __cl_addr = (addr); \
957 unsigned long __cl_size = (n); \
958 if (__cl_size && access_ok(VERIFY_WRITE, \
959 ((unsigned long)(__cl_addr)), __cl_size)) \
960 __cl_size = __clear_user(__cl_addr, __cl_size); \
961 __cl_size; \
962 })
963
964 /*
965 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
966 * @dst: Destination address, in kernel space. This buffer must be at
967 * least @count bytes long.
968 * @src: Source address, in user space.
969 * @count: Maximum number of bytes to copy, including the trailing NUL.
970 *
971 * Copies a NUL-terminated string from userspace to kernel space.
972 * Caller must check the specified block with access_ok() before calling
973 * this function.
974 *
975 * On success, returns the length of the string (not including the trailing
976 * NUL).
977 *
978 * If access to userspace fails, returns -EFAULT (some data may have been
979 * copied).
980 *
981 * If @count is smaller than the length of the string, copies @count bytes
982 * and returns @count.
983 */
984 static inline long
985 __strncpy_from_user(char *__to, const char __user *__from, long __len)
986 {
987 long res;
988
989 might_fault();
990 __asm__ __volatile__(
991 "move\t$4, %1\n\t"
992 "move\t$5, %2\n\t"
993 "move\t$6, %3\n\t"
994 __MODULE_JAL(__strncpy_from_user_nocheck_asm)
995 "move\t%0, $2"
996 : "=r" (res)
997 : "r" (__to), "r" (__from), "r" (__len)
998 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
999
1000 return res;
1001 }
1002
1003 /*
1004 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1005 * @dst: Destination address, in kernel space. This buffer must be at
1006 * least @count bytes long.
1007 * @src: Source address, in user space.
1008 * @count: Maximum number of bytes to copy, including the trailing NUL.
1009 *
1010 * Copies a NUL-terminated string from userspace to kernel space.
1011 *
1012 * On success, returns the length of the string (not including the trailing
1013 * NUL).
1014 *
1015 * If access to userspace fails, returns -EFAULT (some data may have been
1016 * copied).
1017 *
1018 * If @count is smaller than the length of the string, copies @count bytes
1019 * and returns @count.
1020 */
1021 static inline long
1022 strncpy_from_user(char *__to, const char __user *__from, long __len)
1023 {
1024 long res;
1025
1026 might_fault();
1027 __asm__ __volatile__(
1028 "move\t$4, %1\n\t"
1029 "move\t$5, %2\n\t"
1030 "move\t$6, %3\n\t"
1031 __MODULE_JAL(__strncpy_from_user_asm)
1032 "move\t%0, $2"
1033 : "=r" (res)
1034 : "r" (__to), "r" (__from), "r" (__len)
1035 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1036
1037 return res;
1038 }
1039
1040 /* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1041 static inline long __strlen_user(const char __user *s)
1042 {
1043 long res;
1044
1045 might_fault();
1046 __asm__ __volatile__(
1047 "move\t$4, %1\n\t"
1048 __MODULE_JAL(__strlen_user_nocheck_asm)
1049 "move\t%0, $2"
1050 : "=r" (res)
1051 : "r" (s)
1052 : "$2", "$4", __UA_t0, "$31");
1053
1054 return res;
1055 }
1056
1057 /*
1058 * strlen_user: - Get the size of a string in user space.
1059 * @str: The string to measure.
1060 *
1061 * Context: User context only. This function may sleep.
1062 *
1063 * Get the size of a NUL-terminated string in user space.
1064 *
1065 * Returns the size of the string INCLUDING the terminating NUL.
1066 * On exception, returns 0.
1067 *
1068 * If there is a limit on the length of a valid string, you may wish to
1069 * consider using strnlen_user() instead.
1070 */
1071 static inline long strlen_user(const char __user *s)
1072 {
1073 long res;
1074
1075 might_fault();
1076 __asm__ __volatile__(
1077 "move\t$4, %1\n\t"
1078 __MODULE_JAL(__strlen_user_asm)
1079 "move\t%0, $2"
1080 : "=r" (res)
1081 : "r" (s)
1082 : "$2", "$4", __UA_t0, "$31");
1083
1084 return res;
1085 }
1086
1087 /* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1088 static inline long __strnlen_user(const char __user *s, long n)
1089 {
1090 long res;
1091
1092 might_fault();
1093 __asm__ __volatile__(
1094 "move\t$4, %1\n\t"
1095 "move\t$5, %2\n\t"
1096 __MODULE_JAL(__strnlen_user_nocheck_asm)
1097 "move\t%0, $2"
1098 : "=r" (res)
1099 : "r" (s), "r" (n)
1100 : "$2", "$4", "$5", __UA_t0, "$31");
1101
1102 return res;
1103 }
1104
1105 /*
1106 * strlen_user: - Get the size of a string in user space.
1107 * @str: The string to measure.
1108 *
1109 * Context: User context only. This function may sleep.
1110 *
1111 * Get the size of a NUL-terminated string in user space.
1112 *
1113 * Returns the size of the string INCLUDING the terminating NUL.
1114 * On exception, returns 0.
1115 *
1116 * If there is a limit on the length of a valid string, you may wish to
1117 * consider using strnlen_user() instead.
1118 */
1119 static inline long strnlen_user(const char __user *s, long n)
1120 {
1121 long res;
1122
1123 might_fault();
1124 __asm__ __volatile__(
1125 "move\t$4, %1\n\t"
1126 "move\t$5, %2\n\t"
1127 __MODULE_JAL(__strnlen_user_asm)
1128 "move\t%0, $2"
1129 : "=r" (res)
1130 : "r" (s), "r" (n)
1131 : "$2", "$4", "$5", __UA_t0, "$31");
1132
1133 return res;
1134 }
1135
1136 struct exception_table_entry
1137 {
1138 unsigned long insn;
1139 unsigned long nextinsn;
1140 };
1141
1142 extern int fixup_exception(struct pt_regs *regs);
1143
1144 #endif /* _ASM_UACCESS_H */
This page took 0.055923 seconds and 6 git commands to generate.