Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / arch / mips / kernel / elf.c
1 /*
2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/binfmts.h>
12 #include <linux/elf.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
15
16 #include <asm/cpu-features.h>
17 #include <asm/cpu-info.h>
18
19 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */
20 bool mips_use_nan_legacy;
21 bool mips_use_nan_2008;
22
23 /* FPU modes */
24 enum {
25 FP_FRE,
26 FP_FR0,
27 FP_FR1,
28 };
29
30 /**
31 * struct mode_req - ABI FPU mode requirements
32 * @single: The program being loaded needs an FPU but it will only issue
33 * single precision instructions meaning that it can execute in
34 * either FR0 or FR1.
35 * @soft: The soft(-float) requirement means that the program being
36 * loaded needs has no FPU dependency at all (i.e. it has no
37 * FPU instructions).
38 * @fr1: The program being loaded depends on FPU being in FR=1 mode.
39 * @frdefault: The program being loaded depends on the default FPU mode.
40 * That is FR0 for O32 and FR1 for N32/N64.
41 * @fre: The program being loaded depends on FPU with FRE=1. This mode is
42 * a bridge which uses FR=1 whilst still being able to maintain
43 * full compatibility with pre-existing code using the O32 FP32
44 * ABI.
45 *
46 * More information about the FP ABIs can be found here:
47 *
48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
49 *
50 */
51
52 struct mode_req {
53 bool single;
54 bool soft;
55 bool fr1;
56 bool frdefault;
57 bool fre;
58 };
59
60 static const struct mode_req fpu_reqs[] = {
61 [MIPS_ABI_FP_ANY] = { true, true, true, true, true },
62 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true },
63 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false },
64 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false },
65 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
66 [MIPS_ABI_FP_XX] = { false, false, true, true, true },
67 [MIPS_ABI_FP_64] = { false, false, true, false, false },
68 [MIPS_ABI_FP_64A] = { false, false, true, false, true }
69 };
70
71 /*
72 * Mode requirements when .MIPS.abiflags is not present in the ELF.
73 * Not present means that everything is acceptable except FR1.
74 */
75 static struct mode_req none_req = { true, true, false, true, true };
76
77 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
78 bool is_interp, struct arch_elf_state *state)
79 {
80 union {
81 struct elf32_hdr e32;
82 struct elf64_hdr e64;
83 } *ehdr = _ehdr;
84 struct elf32_phdr *phdr32 = _phdr;
85 struct elf64_phdr *phdr64 = _phdr;
86 struct mips_elf_abiflags_v0 abiflags;
87 bool elf32;
88 u32 flags;
89 int ret;
90
91 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
92 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
93
94 /* Let's see if this is an O32 ELF */
95 if (elf32) {
96 if (flags & EF_MIPS_FP64) {
97 /*
98 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
99 * later if needed
100 */
101 if (is_interp)
102 state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
103 else
104 state->fp_abi = MIPS_ABI_FP_OLD_64;
105 }
106 if (phdr32->p_type != PT_MIPS_ABIFLAGS)
107 return 0;
108
109 if (phdr32->p_filesz < sizeof(abiflags))
110 return -EINVAL;
111
112 ret = kernel_read(elf, phdr32->p_offset,
113 (char *)&abiflags,
114 sizeof(abiflags));
115 } else {
116 if (phdr64->p_type != PT_MIPS_ABIFLAGS)
117 return 0;
118 if (phdr64->p_filesz < sizeof(abiflags))
119 return -EINVAL;
120
121 ret = kernel_read(elf, phdr64->p_offset,
122 (char *)&abiflags,
123 sizeof(abiflags));
124 }
125
126 if (ret < 0)
127 return ret;
128 if (ret != sizeof(abiflags))
129 return -EIO;
130
131 /* Record the required FP ABIs for use by mips_check_elf */
132 if (is_interp)
133 state->interp_fp_abi = abiflags.fp_abi;
134 else
135 state->fp_abi = abiflags.fp_abi;
136
137 return 0;
138 }
139
140 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
141 struct arch_elf_state *state)
142 {
143 union {
144 struct elf32_hdr e32;
145 struct elf64_hdr e64;
146 } *ehdr = _ehdr;
147 union {
148 struct elf32_hdr e32;
149 struct elf64_hdr e64;
150 } *iehdr = _interp_ehdr;
151 struct mode_req prog_req, interp_req;
152 int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
153 bool elf32;
154 u32 flags;
155
156 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
157 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
158
159 /*
160 * Determine the NaN personality, reject the binary if not allowed.
161 * Also ensure that any interpreter matches the executable.
162 */
163 if (flags & EF_MIPS_NAN2008) {
164 if (mips_use_nan_2008)
165 state->nan_2008 = 1;
166 else
167 return -ENOEXEC;
168 } else {
169 if (mips_use_nan_legacy)
170 state->nan_2008 = 0;
171 else
172 return -ENOEXEC;
173 }
174 if (has_interpreter) {
175 bool ielf32;
176 u32 iflags;
177
178 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
179 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
180
181 if ((flags ^ iflags) & EF_MIPS_NAN2008)
182 return -ELIBBAD;
183 }
184
185 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
186 return 0;
187
188 fp_abi = state->fp_abi;
189
190 if (has_interpreter) {
191 interp_fp_abi = state->interp_fp_abi;
192
193 abi0 = min(fp_abi, interp_fp_abi);
194 abi1 = max(fp_abi, interp_fp_abi);
195 } else {
196 abi0 = abi1 = fp_abi;
197 }
198
199 if (elf32 && !(flags & EF_MIPS_ABI2)) {
200 /* Default to a mode capable of running code expecting FR=0 */
201 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
202
203 /* Allow all ABIs we know about */
204 max_abi = MIPS_ABI_FP_64A;
205 } else {
206 /* MIPS64 code always uses FR=1, thus the default is easy */
207 state->overall_fp_mode = FP_FR1;
208
209 /* Disallow access to the various FPXX & FP64 ABIs */
210 max_abi = MIPS_ABI_FP_SOFT;
211 }
212
213 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
214 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
215 return -ELIBBAD;
216
217 /* It's time to determine the FPU mode requirements */
218 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
219 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
220
221 /*
222 * Check whether the program's and interp's ABIs have a matching FPU
223 * mode requirement.
224 */
225 prog_req.single = interp_req.single && prog_req.single;
226 prog_req.soft = interp_req.soft && prog_req.soft;
227 prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
228 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
229 prog_req.fre = interp_req.fre && prog_req.fre;
230
231 /*
232 * Determine the desired FPU mode
233 *
234 * Decision making:
235 *
236 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
237 * means that we have a combination of program and interpreter
238 * that inherently require the hybrid FP mode.
239 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
240 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
241 * instructions so we don't care about the mode. We will simply use
242 * the one preferred by the hardware. In fpxx case, that ABI can
243 * handle both FR=1 and FR=0, so, again, we simply choose the one
244 * preferred by the hardware. Next, if we only use single-precision
245 * FPU instructions, and the default ABI FPU mode is not good
246 * (ie single + any ABI combination), we set again the FPU mode to the
247 * one is preferred by the hardware. Next, if we know that the code
248 * will only use single-precision instructions, shown by single being
249 * true but frdefault being false, then we again set the FPU mode to
250 * the one that is preferred by the hardware.
251 * - We want FP_FR1 if that's the only matching mode and the default one
252 * is not good.
253 * - Return with -ELIBADD if we can't find a matching FPU mode.
254 */
255 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
256 state->overall_fp_mode = FP_FRE;
257 else if ((prog_req.fr1 && prog_req.frdefault) ||
258 (prog_req.single && !prog_req.frdefault))
259 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
260 state->overall_fp_mode = ((current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
261 cpu_has_mips_r2_r6) ?
262 FP_FR1 : FP_FR0;
263 else if (prog_req.fr1)
264 state->overall_fp_mode = FP_FR1;
265 else if (!prog_req.fre && !prog_req.frdefault &&
266 !prog_req.fr1 && !prog_req.single && !prog_req.soft)
267 return -ELIBBAD;
268
269 return 0;
270 }
271
272 static inline void set_thread_fp_mode(int hybrid, int regs32)
273 {
274 if (hybrid)
275 set_thread_flag(TIF_HYBRID_FPREGS);
276 else
277 clear_thread_flag(TIF_HYBRID_FPREGS);
278 if (regs32)
279 set_thread_flag(TIF_32BIT_FPREGS);
280 else
281 clear_thread_flag(TIF_32BIT_FPREGS);
282 }
283
284 void mips_set_personality_fp(struct arch_elf_state *state)
285 {
286 /*
287 * This function is only ever called for O32 ELFs so we should
288 * not be worried about N32/N64 binaries.
289 */
290
291 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
292 return;
293
294 switch (state->overall_fp_mode) {
295 case FP_FRE:
296 set_thread_fp_mode(1, 0);
297 break;
298 case FP_FR0:
299 set_thread_fp_mode(0, 1);
300 break;
301 case FP_FR1:
302 set_thread_fp_mode(0, 0);
303 break;
304 default:
305 BUG();
306 }
307 }
308
309 /*
310 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
311 * in FCSR according to the ELF NaN personality.
312 */
313 void mips_set_personality_nan(struct arch_elf_state *state)
314 {
315 struct cpuinfo_mips *c = &boot_cpu_data;
316 struct task_struct *t = current;
317
318 t->thread.fpu.fcr31 = c->fpu_csr31;
319 switch (state->nan_2008) {
320 case 0:
321 break;
322 case 1:
323 if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
324 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
325 if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
326 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
327 break;
328 default:
329 BUG();
330 }
331 }
332
333 int mips_elf_read_implies_exec(void *elf_ex, int exstack)
334 {
335 if (exstack != EXSTACK_DISABLE_X) {
336 /* The binary doesn't request a non-executable stack */
337 return 1;
338 }
339
340 if (!cpu_has_rixi) {
341 /* The CPU doesn't support non-executable memory */
342 return 1;
343 }
344
345 return 0;
346 }
347 EXPORT_SYMBOL(mips_elf_read_implies_exec);
This page took 0.07363 seconds and 5 git commands to generate.