cb213089ed2b68d9a09a4b527e993e278db5b13f
[deliverable/linux.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31
32 struct cpu_hw_events {
33 /* Array of events on this cpu. */
34 struct perf_event *events[MIPS_MAX_HWEVENTS];
35
36 /*
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
39 */
40 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42 /*
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
46 */
47 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 .saved_ctrl = {0},
51 };
52
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55 unsigned int event_id;
56 /*
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
59 * even numbers.
60 */
61 unsigned int cntr_mask;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66 enum {
67 T = 0,
68 V = 1,
69 P = 2,
70 } range;
71 #else
72 #define T
73 #define V
74 #define P
75 #endif
76 };
77
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80
81 #define C(x) PERF_COUNT_HW_CACHE_##x
82
83 struct mips_pmu {
84 u64 max_period;
85 u64 valid_count;
86 u64 overflow;
87 const char *name;
88 int irq;
89 u64 (*read_counter)(unsigned int idx);
90 void (*write_counter)(unsigned int idx, u64 val);
91 const struct mips_perf_event *(*map_raw_event)(u64 config);
92 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
93 const struct mips_perf_event (*cache_event_map)
94 [PERF_COUNT_HW_CACHE_MAX]
95 [PERF_COUNT_HW_CACHE_OP_MAX]
96 [PERF_COUNT_HW_CACHE_RESULT_MAX];
97 unsigned int num_counters;
98 };
99
100 static struct mips_pmu mipspmu;
101
102 #define M_CONFIG1_PC (1 << 4)
103
104 #define M_PERFCTL_EXL (1 << 0)
105 #define M_PERFCTL_KERNEL (1 << 1)
106 #define M_PERFCTL_SUPERVISOR (1 << 2)
107 #define M_PERFCTL_USER (1 << 3)
108 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
109 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
110 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
111 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
112 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
113 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
114 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
115 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
116 #define M_PERFCTL_WIDE (1 << 30)
117 #define M_PERFCTL_MORE (1 << 31)
118
119 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
120 M_PERFCTL_KERNEL | \
121 M_PERFCTL_USER | \
122 M_PERFCTL_SUPERVISOR | \
123 M_PERFCTL_INTERRUPT_ENABLE)
124
125 #ifdef CONFIG_MIPS_MT_SMP
126 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
127 #else
128 #define M_PERFCTL_CONFIG_MASK 0x1f
129 #endif
130 #define M_PERFCTL_EVENT_MASK 0xfe0
131
132
133 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
134 static int cpu_has_mipsmt_pertccounters;
135
136 static DEFINE_RWLOCK(pmuint_rwlock);
137
138 /*
139 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
140 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
141 */
142 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
143 0 : smp_processor_id())
144
145 /* Copied from op_model_mipsxx.c */
146 static unsigned int vpe_shift(void)
147 {
148 if (num_possible_cpus() > 1)
149 return 1;
150
151 return 0;
152 }
153
154 static unsigned int counters_total_to_per_cpu(unsigned int counters)
155 {
156 return counters >> vpe_shift();
157 }
158
159 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
160 #define vpe_id() 0
161
162 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
163
164 static void resume_local_counters(void);
165 static void pause_local_counters(void);
166 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
167 static int mipsxx_pmu_handle_shared_irq(void);
168
169 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
170 {
171 if (vpe_id() == 1)
172 idx = (idx + 2) & 3;
173 return idx;
174 }
175
176 static u64 mipsxx_pmu_read_counter(unsigned int idx)
177 {
178 idx = mipsxx_pmu_swizzle_perf_idx(idx);
179
180 switch (idx) {
181 case 0:
182 /*
183 * The counters are unsigned, we must cast to truncate
184 * off the high bits.
185 */
186 return (u32)read_c0_perfcntr0();
187 case 1:
188 return (u32)read_c0_perfcntr1();
189 case 2:
190 return (u32)read_c0_perfcntr2();
191 case 3:
192 return (u32)read_c0_perfcntr3();
193 default:
194 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
195 return 0;
196 }
197 }
198
199 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
200 {
201 idx = mipsxx_pmu_swizzle_perf_idx(idx);
202
203 switch (idx) {
204 case 0:
205 return read_c0_perfcntr0_64();
206 case 1:
207 return read_c0_perfcntr1_64();
208 case 2:
209 return read_c0_perfcntr2_64();
210 case 3:
211 return read_c0_perfcntr3_64();
212 default:
213 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
214 return 0;
215 }
216 }
217
218 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
219 {
220 idx = mipsxx_pmu_swizzle_perf_idx(idx);
221
222 switch (idx) {
223 case 0:
224 write_c0_perfcntr0(val);
225 return;
226 case 1:
227 write_c0_perfcntr1(val);
228 return;
229 case 2:
230 write_c0_perfcntr2(val);
231 return;
232 case 3:
233 write_c0_perfcntr3(val);
234 return;
235 }
236 }
237
238 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
239 {
240 idx = mipsxx_pmu_swizzle_perf_idx(idx);
241
242 switch (idx) {
243 case 0:
244 write_c0_perfcntr0_64(val);
245 return;
246 case 1:
247 write_c0_perfcntr1_64(val);
248 return;
249 case 2:
250 write_c0_perfcntr2_64(val);
251 return;
252 case 3:
253 write_c0_perfcntr3_64(val);
254 return;
255 }
256 }
257
258 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
259 {
260 idx = mipsxx_pmu_swizzle_perf_idx(idx);
261
262 switch (idx) {
263 case 0:
264 return read_c0_perfctrl0();
265 case 1:
266 return read_c0_perfctrl1();
267 case 2:
268 return read_c0_perfctrl2();
269 case 3:
270 return read_c0_perfctrl3();
271 default:
272 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
273 return 0;
274 }
275 }
276
277 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
278 {
279 idx = mipsxx_pmu_swizzle_perf_idx(idx);
280
281 switch (idx) {
282 case 0:
283 write_c0_perfctrl0(val);
284 return;
285 case 1:
286 write_c0_perfctrl1(val);
287 return;
288 case 2:
289 write_c0_perfctrl2(val);
290 return;
291 case 3:
292 write_c0_perfctrl3(val);
293 return;
294 }
295 }
296
297 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
298 struct hw_perf_event *hwc)
299 {
300 int i;
301
302 /*
303 * We only need to care the counter mask. The range has been
304 * checked definitely.
305 */
306 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
307
308 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
309 /*
310 * Note that some MIPS perf events can be counted by both
311 * even and odd counters, wheresas many other are only by
312 * even _or_ odd counters. This introduces an issue that
313 * when the former kind of event takes the counter the
314 * latter kind of event wants to use, then the "counter
315 * allocation" for the latter event will fail. In fact if
316 * they can be dynamically swapped, they both feel happy.
317 * But here we leave this issue alone for now.
318 */
319 if (test_bit(i, &cntr_mask) &&
320 !test_and_set_bit(i, cpuc->used_mask))
321 return i;
322 }
323
324 return -EAGAIN;
325 }
326
327 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
328 {
329 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
330
331 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
332
333 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
334 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
335 /* Make sure interrupt enabled. */
336 M_PERFCTL_INTERRUPT_ENABLE;
337 /*
338 * We do not actually let the counter run. Leave it until start().
339 */
340 }
341
342 static void mipsxx_pmu_disable_event(int idx)
343 {
344 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
345 unsigned long flags;
346
347 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
348
349 local_irq_save(flags);
350 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
351 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
352 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
353 local_irq_restore(flags);
354 }
355
356 static int mipspmu_event_set_period(struct perf_event *event,
357 struct hw_perf_event *hwc,
358 int idx)
359 {
360 u64 left = local64_read(&hwc->period_left);
361 u64 period = hwc->sample_period;
362 int ret = 0;
363
364 if (unlikely((left + period) & (1ULL << 63))) {
365 /* left underflowed by more than period. */
366 left = period;
367 local64_set(&hwc->period_left, left);
368 hwc->last_period = period;
369 ret = 1;
370 } else if (unlikely((left + period) <= period)) {
371 /* left underflowed by less than period. */
372 left += period;
373 local64_set(&hwc->period_left, left);
374 hwc->last_period = period;
375 ret = 1;
376 }
377
378 if (left > mipspmu.max_period) {
379 left = mipspmu.max_period;
380 local64_set(&hwc->period_left, left);
381 }
382
383 local64_set(&hwc->prev_count, mipspmu.overflow - left);
384
385 mipspmu.write_counter(idx, mipspmu.overflow - left);
386
387 perf_event_update_userpage(event);
388
389 return ret;
390 }
391
392 static void mipspmu_event_update(struct perf_event *event,
393 struct hw_perf_event *hwc,
394 int idx)
395 {
396 u64 prev_raw_count, new_raw_count;
397 u64 delta;
398
399 again:
400 prev_raw_count = local64_read(&hwc->prev_count);
401 new_raw_count = mipspmu.read_counter(idx);
402
403 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
404 new_raw_count) != prev_raw_count)
405 goto again;
406
407 delta = new_raw_count - prev_raw_count;
408
409 local64_add(delta, &event->count);
410 local64_sub(delta, &hwc->period_left);
411 }
412
413 static void mipspmu_start(struct perf_event *event, int flags)
414 {
415 struct hw_perf_event *hwc = &event->hw;
416
417 if (flags & PERF_EF_RELOAD)
418 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
419
420 hwc->state = 0;
421
422 /* Set the period for the event. */
423 mipspmu_event_set_period(event, hwc, hwc->idx);
424
425 /* Enable the event. */
426 mipsxx_pmu_enable_event(hwc, hwc->idx);
427 }
428
429 static void mipspmu_stop(struct perf_event *event, int flags)
430 {
431 struct hw_perf_event *hwc = &event->hw;
432
433 if (!(hwc->state & PERF_HES_STOPPED)) {
434 /* We are working on a local event. */
435 mipsxx_pmu_disable_event(hwc->idx);
436 barrier();
437 mipspmu_event_update(event, hwc, hwc->idx);
438 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
439 }
440 }
441
442 static int mipspmu_add(struct perf_event *event, int flags)
443 {
444 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
445 struct hw_perf_event *hwc = &event->hw;
446 int idx;
447 int err = 0;
448
449 perf_pmu_disable(event->pmu);
450
451 /* To look for a free counter for this event. */
452 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
453 if (idx < 0) {
454 err = idx;
455 goto out;
456 }
457
458 /*
459 * If there is an event in the counter we are going to use then
460 * make sure it is disabled.
461 */
462 event->hw.idx = idx;
463 mipsxx_pmu_disable_event(idx);
464 cpuc->events[idx] = event;
465
466 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
467 if (flags & PERF_EF_START)
468 mipspmu_start(event, PERF_EF_RELOAD);
469
470 /* Propagate our changes to the userspace mapping. */
471 perf_event_update_userpage(event);
472
473 out:
474 perf_pmu_enable(event->pmu);
475 return err;
476 }
477
478 static void mipspmu_del(struct perf_event *event, int flags)
479 {
480 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
481 struct hw_perf_event *hwc = &event->hw;
482 int idx = hwc->idx;
483
484 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
485
486 mipspmu_stop(event, PERF_EF_UPDATE);
487 cpuc->events[idx] = NULL;
488 clear_bit(idx, cpuc->used_mask);
489
490 perf_event_update_userpage(event);
491 }
492
493 static void mipspmu_read(struct perf_event *event)
494 {
495 struct hw_perf_event *hwc = &event->hw;
496
497 /* Don't read disabled counters! */
498 if (hwc->idx < 0)
499 return;
500
501 mipspmu_event_update(event, hwc, hwc->idx);
502 }
503
504 static void mipspmu_enable(struct pmu *pmu)
505 {
506 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
507 write_unlock(&pmuint_rwlock);
508 #endif
509 resume_local_counters();
510 }
511
512 /*
513 * MIPS performance counters can be per-TC. The control registers can
514 * not be directly accessed accross CPUs. Hence if we want to do global
515 * control, we need cross CPU calls. on_each_cpu() can help us, but we
516 * can not make sure this function is called with interrupts enabled. So
517 * here we pause local counters and then grab a rwlock and leave the
518 * counters on other CPUs alone. If any counter interrupt raises while
519 * we own the write lock, simply pause local counters on that CPU and
520 * spin in the handler. Also we know we won't be switched to another
521 * CPU after pausing local counters and before grabbing the lock.
522 */
523 static void mipspmu_disable(struct pmu *pmu)
524 {
525 pause_local_counters();
526 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
527 write_lock(&pmuint_rwlock);
528 #endif
529 }
530
531 static atomic_t active_events = ATOMIC_INIT(0);
532 static DEFINE_MUTEX(pmu_reserve_mutex);
533 static int (*save_perf_irq)(void);
534
535 static int mipspmu_get_irq(void)
536 {
537 int err;
538
539 if (mipspmu.irq >= 0) {
540 /* Request my own irq handler. */
541 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
542 IRQF_PERCPU | IRQF_NOBALANCING,
543 "mips_perf_pmu", NULL);
544 if (err) {
545 pr_warning("Unable to request IRQ%d for MIPS "
546 "performance counters!\n", mipspmu.irq);
547 }
548 } else if (cp0_perfcount_irq < 0) {
549 /*
550 * We are sharing the irq number with the timer interrupt.
551 */
552 save_perf_irq = perf_irq;
553 perf_irq = mipsxx_pmu_handle_shared_irq;
554 err = 0;
555 } else {
556 pr_warning("The platform hasn't properly defined its "
557 "interrupt controller.\n");
558 err = -ENOENT;
559 }
560
561 return err;
562 }
563
564 static void mipspmu_free_irq(void)
565 {
566 if (mipspmu.irq >= 0)
567 free_irq(mipspmu.irq, NULL);
568 else if (cp0_perfcount_irq < 0)
569 perf_irq = save_perf_irq;
570 }
571
572 /*
573 * mipsxx/rm9000/loongson2 have different performance counters, they have
574 * specific low-level init routines.
575 */
576 static void reset_counters(void *arg);
577 static int __hw_perf_event_init(struct perf_event *event);
578
579 static void hw_perf_event_destroy(struct perf_event *event)
580 {
581 if (atomic_dec_and_mutex_lock(&active_events,
582 &pmu_reserve_mutex)) {
583 /*
584 * We must not call the destroy function with interrupts
585 * disabled.
586 */
587 on_each_cpu(reset_counters,
588 (void *)(long)mipspmu.num_counters, 1);
589 mipspmu_free_irq();
590 mutex_unlock(&pmu_reserve_mutex);
591 }
592 }
593
594 static int mipspmu_event_init(struct perf_event *event)
595 {
596 int err = 0;
597
598 /* does not support taken branch sampling */
599 if (has_branch_stack(event))
600 return -EOPNOTSUPP;
601
602 switch (event->attr.type) {
603 case PERF_TYPE_RAW:
604 case PERF_TYPE_HARDWARE:
605 case PERF_TYPE_HW_CACHE:
606 break;
607
608 default:
609 return -ENOENT;
610 }
611
612 if (event->cpu >= nr_cpumask_bits ||
613 (event->cpu >= 0 && !cpu_online(event->cpu)))
614 return -ENODEV;
615
616 if (!atomic_inc_not_zero(&active_events)) {
617 mutex_lock(&pmu_reserve_mutex);
618 if (atomic_read(&active_events) == 0)
619 err = mipspmu_get_irq();
620
621 if (!err)
622 atomic_inc(&active_events);
623 mutex_unlock(&pmu_reserve_mutex);
624 }
625
626 if (err)
627 return err;
628
629 return __hw_perf_event_init(event);
630 }
631
632 static struct pmu pmu = {
633 .pmu_enable = mipspmu_enable,
634 .pmu_disable = mipspmu_disable,
635 .event_init = mipspmu_event_init,
636 .add = mipspmu_add,
637 .del = mipspmu_del,
638 .start = mipspmu_start,
639 .stop = mipspmu_stop,
640 .read = mipspmu_read,
641 };
642
643 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
644 {
645 /*
646 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
647 * event_id.
648 */
649 #ifdef CONFIG_MIPS_MT_SMP
650 return ((unsigned int)pev->range << 24) |
651 (pev->cntr_mask & 0xffff00) |
652 (pev->event_id & 0xff);
653 #else
654 return (pev->cntr_mask & 0xffff00) |
655 (pev->event_id & 0xff);
656 #endif
657 }
658
659 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
660 {
661
662 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
663 return ERR_PTR(-EOPNOTSUPP);
664 return &(*mipspmu.general_event_map)[idx];
665 }
666
667 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
668 {
669 unsigned int cache_type, cache_op, cache_result;
670 const struct mips_perf_event *pev;
671
672 cache_type = (config >> 0) & 0xff;
673 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
674 return ERR_PTR(-EINVAL);
675
676 cache_op = (config >> 8) & 0xff;
677 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
678 return ERR_PTR(-EINVAL);
679
680 cache_result = (config >> 16) & 0xff;
681 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
682 return ERR_PTR(-EINVAL);
683
684 pev = &((*mipspmu.cache_event_map)
685 [cache_type]
686 [cache_op]
687 [cache_result]);
688
689 if (pev->cntr_mask == 0)
690 return ERR_PTR(-EOPNOTSUPP);
691
692 return pev;
693
694 }
695
696 static int validate_group(struct perf_event *event)
697 {
698 struct perf_event *sibling, *leader = event->group_leader;
699 struct cpu_hw_events fake_cpuc;
700
701 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
702
703 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
704 return -EINVAL;
705
706 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
707 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
708 return -EINVAL;
709 }
710
711 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
712 return -EINVAL;
713
714 return 0;
715 }
716
717 /* This is needed by specific irq handlers in perf_event_*.c */
718 static void handle_associated_event(struct cpu_hw_events *cpuc,
719 int idx, struct perf_sample_data *data,
720 struct pt_regs *regs)
721 {
722 struct perf_event *event = cpuc->events[idx];
723 struct hw_perf_event *hwc = &event->hw;
724
725 mipspmu_event_update(event, hwc, idx);
726 data->period = event->hw.last_period;
727 if (!mipspmu_event_set_period(event, hwc, idx))
728 return;
729
730 if (perf_event_overflow(event, data, regs))
731 mipsxx_pmu_disable_event(idx);
732 }
733
734
735 static int __n_counters(void)
736 {
737 if (!(read_c0_config1() & M_CONFIG1_PC))
738 return 0;
739 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
740 return 1;
741 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
742 return 2;
743 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
744 return 3;
745
746 return 4;
747 }
748
749 static int n_counters(void)
750 {
751 int counters;
752
753 switch (current_cpu_type()) {
754 case CPU_R10000:
755 counters = 2;
756 break;
757
758 case CPU_R12000:
759 case CPU_R14000:
760 counters = 4;
761 break;
762
763 default:
764 counters = __n_counters();
765 }
766
767 return counters;
768 }
769
770 static void reset_counters(void *arg)
771 {
772 int counters = (int)(long)arg;
773 switch (counters) {
774 case 4:
775 mipsxx_pmu_write_control(3, 0);
776 mipspmu.write_counter(3, 0);
777 case 3:
778 mipsxx_pmu_write_control(2, 0);
779 mipspmu.write_counter(2, 0);
780 case 2:
781 mipsxx_pmu_write_control(1, 0);
782 mipspmu.write_counter(1, 0);
783 case 1:
784 mipsxx_pmu_write_control(0, 0);
785 mipspmu.write_counter(0, 0);
786 }
787 }
788
789 /* 24K/34K/1004K cores can share the same event map. */
790 static const struct mips_perf_event mipsxxcore_event_map
791 [PERF_COUNT_HW_MAX] = {
792 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
793 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
794 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
795 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
796 };
797
798 /* 74K core has different branch event code. */
799 static const struct mips_perf_event mipsxx74Kcore_event_map
800 [PERF_COUNT_HW_MAX] = {
801 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
802 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
803 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
804 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
805 };
806
807 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
808 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
809 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
810 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
811 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
812 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
813 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
814 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
815 };
816
817 /* 24K/34K/1004K cores can share the same cache event map. */
818 static const struct mips_perf_event mipsxxcore_cache_map
819 [PERF_COUNT_HW_CACHE_MAX]
820 [PERF_COUNT_HW_CACHE_OP_MAX]
821 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
822 [C(L1D)] = {
823 /*
824 * Like some other architectures (e.g. ARM), the performance
825 * counters don't differentiate between read and write
826 * accesses/misses, so this isn't strictly correct, but it's the
827 * best we can do. Writes and reads get combined.
828 */
829 [C(OP_READ)] = {
830 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
831 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
832 },
833 [C(OP_WRITE)] = {
834 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
835 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
836 },
837 },
838 [C(L1I)] = {
839 [C(OP_READ)] = {
840 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
841 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
842 },
843 [C(OP_WRITE)] = {
844 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
845 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
846 },
847 [C(OP_PREFETCH)] = {
848 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
849 /*
850 * Note that MIPS has only "hit" events countable for
851 * the prefetch operation.
852 */
853 },
854 },
855 [C(LL)] = {
856 [C(OP_READ)] = {
857 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
858 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
859 },
860 [C(OP_WRITE)] = {
861 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
862 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
863 },
864 },
865 [C(DTLB)] = {
866 [C(OP_READ)] = {
867 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
868 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
869 },
870 [C(OP_WRITE)] = {
871 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
872 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
873 },
874 },
875 [C(ITLB)] = {
876 [C(OP_READ)] = {
877 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
878 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
879 },
880 [C(OP_WRITE)] = {
881 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
882 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
883 },
884 },
885 [C(BPU)] = {
886 /* Using the same code for *HW_BRANCH* */
887 [C(OP_READ)] = {
888 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
889 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
890 },
891 [C(OP_WRITE)] = {
892 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
893 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
894 },
895 },
896 };
897
898 /* 74K core has completely different cache event map. */
899 static const struct mips_perf_event mipsxx74Kcore_cache_map
900 [PERF_COUNT_HW_CACHE_MAX]
901 [PERF_COUNT_HW_CACHE_OP_MAX]
902 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
903 [C(L1D)] = {
904 /*
905 * Like some other architectures (e.g. ARM), the performance
906 * counters don't differentiate between read and write
907 * accesses/misses, so this isn't strictly correct, but it's the
908 * best we can do. Writes and reads get combined.
909 */
910 [C(OP_READ)] = {
911 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
912 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
913 },
914 [C(OP_WRITE)] = {
915 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
916 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
917 },
918 },
919 [C(L1I)] = {
920 [C(OP_READ)] = {
921 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
922 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
923 },
924 [C(OP_WRITE)] = {
925 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
926 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
927 },
928 [C(OP_PREFETCH)] = {
929 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
930 /*
931 * Note that MIPS has only "hit" events countable for
932 * the prefetch operation.
933 */
934 },
935 },
936 [C(LL)] = {
937 [C(OP_READ)] = {
938 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
939 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
940 },
941 [C(OP_WRITE)] = {
942 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
943 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
944 },
945 },
946 [C(ITLB)] = {
947 [C(OP_READ)] = {
948 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
949 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
950 },
951 [C(OP_WRITE)] = {
952 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
953 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
954 },
955 },
956 [C(BPU)] = {
957 /* Using the same code for *HW_BRANCH* */
958 [C(OP_READ)] = {
959 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
960 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
961 },
962 [C(OP_WRITE)] = {
963 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
964 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
965 },
966 },
967 };
968
969
970 static const struct mips_perf_event octeon_cache_map
971 [PERF_COUNT_HW_CACHE_MAX]
972 [PERF_COUNT_HW_CACHE_OP_MAX]
973 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
974 [C(L1D)] = {
975 [C(OP_READ)] = {
976 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
977 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
978 },
979 [C(OP_WRITE)] = {
980 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
981 },
982 },
983 [C(L1I)] = {
984 [C(OP_READ)] = {
985 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
986 },
987 [C(OP_PREFETCH)] = {
988 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
989 },
990 },
991 [C(DTLB)] = {
992 /*
993 * Only general DTLB misses are counted use the same event for
994 * read and write.
995 */
996 [C(OP_READ)] = {
997 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
998 },
999 [C(OP_WRITE)] = {
1000 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1001 },
1002 },
1003 [C(ITLB)] = {
1004 [C(OP_READ)] = {
1005 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1006 },
1007 },
1008 };
1009
1010 #ifdef CONFIG_MIPS_MT_SMP
1011 static void check_and_calc_range(struct perf_event *event,
1012 const struct mips_perf_event *pev)
1013 {
1014 struct hw_perf_event *hwc = &event->hw;
1015
1016 if (event->cpu >= 0) {
1017 if (pev->range > V) {
1018 /*
1019 * The user selected an event that is processor
1020 * wide, while expecting it to be VPE wide.
1021 */
1022 hwc->config_base |= M_TC_EN_ALL;
1023 } else {
1024 /*
1025 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1026 * for both CPUs.
1027 */
1028 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1029 hwc->config_base |= M_TC_EN_VPE;
1030 }
1031 } else
1032 hwc->config_base |= M_TC_EN_ALL;
1033 }
1034 #else
1035 static void check_and_calc_range(struct perf_event *event,
1036 const struct mips_perf_event *pev)
1037 {
1038 }
1039 #endif
1040
1041 static int __hw_perf_event_init(struct perf_event *event)
1042 {
1043 struct perf_event_attr *attr = &event->attr;
1044 struct hw_perf_event *hwc = &event->hw;
1045 const struct mips_perf_event *pev;
1046 int err;
1047
1048 /* Returning MIPS event descriptor for generic perf event. */
1049 if (PERF_TYPE_HARDWARE == event->attr.type) {
1050 if (event->attr.config >= PERF_COUNT_HW_MAX)
1051 return -EINVAL;
1052 pev = mipspmu_map_general_event(event->attr.config);
1053 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1054 pev = mipspmu_map_cache_event(event->attr.config);
1055 } else if (PERF_TYPE_RAW == event->attr.type) {
1056 /* We are working on the global raw event. */
1057 mutex_lock(&raw_event_mutex);
1058 pev = mipspmu.map_raw_event(event->attr.config);
1059 } else {
1060 /* The event type is not (yet) supported. */
1061 return -EOPNOTSUPP;
1062 }
1063
1064 if (IS_ERR(pev)) {
1065 if (PERF_TYPE_RAW == event->attr.type)
1066 mutex_unlock(&raw_event_mutex);
1067 return PTR_ERR(pev);
1068 }
1069
1070 /*
1071 * We allow max flexibility on how each individual counter shared
1072 * by the single CPU operates (the mode exclusion and the range).
1073 */
1074 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1075
1076 /* Calculate range bits and validate it. */
1077 if (num_possible_cpus() > 1)
1078 check_and_calc_range(event, pev);
1079
1080 hwc->event_base = mipspmu_perf_event_encode(pev);
1081 if (PERF_TYPE_RAW == event->attr.type)
1082 mutex_unlock(&raw_event_mutex);
1083
1084 if (!attr->exclude_user)
1085 hwc->config_base |= M_PERFCTL_USER;
1086 if (!attr->exclude_kernel) {
1087 hwc->config_base |= M_PERFCTL_KERNEL;
1088 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1089 hwc->config_base |= M_PERFCTL_EXL;
1090 }
1091 if (!attr->exclude_hv)
1092 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1093
1094 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1095 /*
1096 * The event can belong to another cpu. We do not assign a local
1097 * counter for it for now.
1098 */
1099 hwc->idx = -1;
1100 hwc->config = 0;
1101
1102 if (!hwc->sample_period) {
1103 hwc->sample_period = mipspmu.max_period;
1104 hwc->last_period = hwc->sample_period;
1105 local64_set(&hwc->period_left, hwc->sample_period);
1106 }
1107
1108 err = 0;
1109 if (event->group_leader != event)
1110 err = validate_group(event);
1111
1112 event->destroy = hw_perf_event_destroy;
1113
1114 if (err)
1115 event->destroy(event);
1116
1117 return err;
1118 }
1119
1120 static void pause_local_counters(void)
1121 {
1122 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1123 int ctr = mipspmu.num_counters;
1124 unsigned long flags;
1125
1126 local_irq_save(flags);
1127 do {
1128 ctr--;
1129 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1130 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1131 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1132 } while (ctr > 0);
1133 local_irq_restore(flags);
1134 }
1135
1136 static void resume_local_counters(void)
1137 {
1138 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1139 int ctr = mipspmu.num_counters;
1140
1141 do {
1142 ctr--;
1143 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1144 } while (ctr > 0);
1145 }
1146
1147 static int mipsxx_pmu_handle_shared_irq(void)
1148 {
1149 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1150 struct perf_sample_data data;
1151 unsigned int counters = mipspmu.num_counters;
1152 u64 counter;
1153 int handled = IRQ_NONE;
1154 struct pt_regs *regs;
1155
1156 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1157 return handled;
1158 /*
1159 * First we pause the local counters, so that when we are locked
1160 * here, the counters are all paused. When it gets locked due to
1161 * perf_disable(), the timer interrupt handler will be delayed.
1162 *
1163 * See also mipsxx_pmu_start().
1164 */
1165 pause_local_counters();
1166 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1167 read_lock(&pmuint_rwlock);
1168 #endif
1169
1170 regs = get_irq_regs();
1171
1172 perf_sample_data_init(&data, 0, 0);
1173
1174 switch (counters) {
1175 #define HANDLE_COUNTER(n) \
1176 case n + 1: \
1177 if (test_bit(n, cpuc->used_mask)) { \
1178 counter = mipspmu.read_counter(n); \
1179 if (counter & mipspmu.overflow) { \
1180 handle_associated_event(cpuc, n, &data, regs); \
1181 handled = IRQ_HANDLED; \
1182 } \
1183 }
1184 HANDLE_COUNTER(3)
1185 HANDLE_COUNTER(2)
1186 HANDLE_COUNTER(1)
1187 HANDLE_COUNTER(0)
1188 }
1189
1190 /*
1191 * Do all the work for the pending perf events. We can do this
1192 * in here because the performance counter interrupt is a regular
1193 * interrupt, not NMI.
1194 */
1195 if (handled == IRQ_HANDLED)
1196 irq_work_run();
1197
1198 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1199 read_unlock(&pmuint_rwlock);
1200 #endif
1201 resume_local_counters();
1202 return handled;
1203 }
1204
1205 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1206 {
1207 return mipsxx_pmu_handle_shared_irq();
1208 }
1209
1210 /* 24K */
1211 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1212 ((b) == 0 || (b) == 1 || (b) == 11)
1213
1214 /* 34K */
1215 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1216 ((b) == 0 || (b) == 1 || (b) == 11)
1217 #ifdef CONFIG_MIPS_MT_SMP
1218 #define IS_RANGE_P_34K_EVENT(r, b) \
1219 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1220 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1221 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1222 ((b) >= 64 && (b) <= 67))
1223 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1224 #endif
1225
1226 /* 74K */
1227 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1228 ((b) == 0 || (b) == 1)
1229
1230 /* 1004K */
1231 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1232 ((b) == 0 || (b) == 1 || (b) == 11)
1233 #ifdef CONFIG_MIPS_MT_SMP
1234 #define IS_RANGE_P_1004K_EVENT(r, b) \
1235 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1236 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1237 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1238 (r) == 188 || (b) == 61 || (b) == 62 || \
1239 ((b) >= 64 && (b) <= 67))
1240 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1241 #endif
1242
1243 /*
1244 * User can use 0-255 raw events, where 0-127 for the events of even
1245 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1246 * indicate the parity. So, for example, when user wants to take the
1247 * Event Num of 15 for odd counters (by referring to the user manual),
1248 * then 128 needs to be added to 15 as the input for the event config,
1249 * i.e., 143 (0x8F) to be used.
1250 */
1251 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1252 {
1253 unsigned int raw_id = config & 0xff;
1254 unsigned int base_id = raw_id & 0x7f;
1255
1256 raw_event.event_id = base_id;
1257
1258 switch (current_cpu_type()) {
1259 case CPU_24K:
1260 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1261 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1262 else
1263 raw_event.cntr_mask =
1264 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1265 #ifdef CONFIG_MIPS_MT_SMP
1266 /*
1267 * This is actually doing nothing. Non-multithreading
1268 * CPUs will not check and calculate the range.
1269 */
1270 raw_event.range = P;
1271 #endif
1272 break;
1273 case CPU_34K:
1274 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1275 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1276 else
1277 raw_event.cntr_mask =
1278 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1279 #ifdef CONFIG_MIPS_MT_SMP
1280 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1281 raw_event.range = P;
1282 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1283 raw_event.range = V;
1284 else
1285 raw_event.range = T;
1286 #endif
1287 break;
1288 case CPU_74K:
1289 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1290 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1291 else
1292 raw_event.cntr_mask =
1293 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1294 #ifdef CONFIG_MIPS_MT_SMP
1295 raw_event.range = P;
1296 #endif
1297 break;
1298 case CPU_1004K:
1299 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1300 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1301 else
1302 raw_event.cntr_mask =
1303 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1304 #ifdef CONFIG_MIPS_MT_SMP
1305 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1306 raw_event.range = P;
1307 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1308 raw_event.range = V;
1309 else
1310 raw_event.range = T;
1311 #endif
1312 break;
1313 }
1314
1315 return &raw_event;
1316 }
1317
1318 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1319 {
1320 unsigned int raw_id = config & 0xff;
1321 unsigned int base_id = raw_id & 0x7f;
1322
1323
1324 raw_event.cntr_mask = CNTR_ALL;
1325 raw_event.event_id = base_id;
1326
1327 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1328 if (base_id > 0x42)
1329 return ERR_PTR(-EOPNOTSUPP);
1330 } else {
1331 if (base_id > 0x3a)
1332 return ERR_PTR(-EOPNOTSUPP);
1333 }
1334
1335 switch (base_id) {
1336 case 0x00:
1337 case 0x0f:
1338 case 0x1e:
1339 case 0x1f:
1340 case 0x2f:
1341 case 0x34:
1342 case 0x3b ... 0x3f:
1343 return ERR_PTR(-EOPNOTSUPP);
1344 default:
1345 break;
1346 }
1347
1348 return &raw_event;
1349 }
1350
1351 static int __init
1352 init_hw_perf_events(void)
1353 {
1354 int counters, irq;
1355 int counter_bits;
1356
1357 pr_info("Performance counters: ");
1358
1359 counters = n_counters();
1360 if (counters == 0) {
1361 pr_cont("No available PMU.\n");
1362 return -ENODEV;
1363 }
1364
1365 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1366 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1367 if (!cpu_has_mipsmt_pertccounters)
1368 counters = counters_total_to_per_cpu(counters);
1369 #endif
1370
1371 #ifdef MSC01E_INT_BASE
1372 if (cpu_has_veic) {
1373 /*
1374 * Using platform specific interrupt controller defines.
1375 */
1376 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1377 } else {
1378 #endif
1379 if ((cp0_perfcount_irq >= 0) &&
1380 (cp0_compare_irq != cp0_perfcount_irq))
1381 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1382 else
1383 irq = -1;
1384 #ifdef MSC01E_INT_BASE
1385 }
1386 #endif
1387
1388 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1389
1390 switch (current_cpu_type()) {
1391 case CPU_24K:
1392 mipspmu.name = "mips/24K";
1393 mipspmu.general_event_map = &mipsxxcore_event_map;
1394 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1395 break;
1396 case CPU_34K:
1397 mipspmu.name = "mips/34K";
1398 mipspmu.general_event_map = &mipsxxcore_event_map;
1399 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1400 break;
1401 case CPU_74K:
1402 mipspmu.name = "mips/74K";
1403 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1404 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1405 break;
1406 case CPU_1004K:
1407 mipspmu.name = "mips/1004K";
1408 mipspmu.general_event_map = &mipsxxcore_event_map;
1409 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1410 break;
1411 case CPU_LOONGSON1:
1412 mipspmu.name = "mips/loongson1";
1413 mipspmu.general_event_map = &mipsxxcore_event_map;
1414 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1415 break;
1416 case CPU_CAVIUM_OCTEON:
1417 case CPU_CAVIUM_OCTEON_PLUS:
1418 case CPU_CAVIUM_OCTEON2:
1419 mipspmu.name = "octeon";
1420 mipspmu.general_event_map = &octeon_event_map;
1421 mipspmu.cache_event_map = &octeon_cache_map;
1422 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1423 break;
1424 default:
1425 pr_cont("Either hardware does not support performance "
1426 "counters, or not yet implemented.\n");
1427 return -ENODEV;
1428 }
1429
1430 mipspmu.num_counters = counters;
1431 mipspmu.irq = irq;
1432
1433 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1434 mipspmu.max_period = (1ULL << 63) - 1;
1435 mipspmu.valid_count = (1ULL << 63) - 1;
1436 mipspmu.overflow = 1ULL << 63;
1437 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1438 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1439 counter_bits = 64;
1440 } else {
1441 mipspmu.max_period = (1ULL << 31) - 1;
1442 mipspmu.valid_count = (1ULL << 31) - 1;
1443 mipspmu.overflow = 1ULL << 31;
1444 mipspmu.read_counter = mipsxx_pmu_read_counter;
1445 mipspmu.write_counter = mipsxx_pmu_write_counter;
1446 counter_bits = 32;
1447 }
1448
1449 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1450
1451 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1452 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1453 irq < 0 ? " (share with timer interrupt)" : "");
1454
1455 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1456
1457 return 0;
1458 }
1459 early_initcall(init_hw_perf_events);
This page took 0.061536 seconds and 4 git commands to generate.