Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2 * Copyright (C) 2013 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32
33 struct core_boot_config *mips_cps_core_bootcfg;
34
35 static int __init setup_nothreads(char *s)
36 {
37 threads_disabled = true;
38 return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41
42 static unsigned core_vpe_count(unsigned core)
43 {
44 unsigned cfg;
45
46 if (threads_disabled)
47 return 1;
48
49 if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
50 && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
51 return 1;
52
53 mips_cm_lock_other(core, 0);
54 cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
55 mips_cm_unlock_other();
56 return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
57 }
58
59 static void __init cps_smp_setup(void)
60 {
61 unsigned int ncores, nvpes, core_vpes;
62 unsigned long core_entry;
63 int c, v;
64
65 /* Detect & record VPE topology */
66 ncores = mips_cm_numcores();
67 pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
68 for (c = nvpes = 0; c < ncores; c++) {
69 core_vpes = core_vpe_count(c);
70 pr_cont("%c%u", c ? ',' : '{', core_vpes);
71
72 /* Use the number of VPEs in core 0 for smp_num_siblings */
73 if (!c)
74 smp_num_siblings = core_vpes;
75
76 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
77 cpu_data[nvpes + v].core = c;
78 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
79 cpu_data[nvpes + v].vpe_id = v;
80 #endif
81 }
82
83 nvpes += core_vpes;
84 }
85 pr_cont("} total %u\n", nvpes);
86
87 /* Indicate present CPUs (CPU being synonymous with VPE) */
88 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89 set_cpu_possible(v, true);
90 set_cpu_present(v, true);
91 __cpu_number_map[v] = v;
92 __cpu_logical_map[v] = v;
93 }
94
95 /* Set a coherent default CCA (CWB) */
96 change_c0_config(CONF_CM_CMASK, 0x5);
97
98 /* Core 0 is powered up (we're running on it) */
99 bitmap_set(core_power, 0, 1);
100
101 /* Initialise core 0 */
102 mips_cps_core_init();
103
104 /* Make core 0 coherent with everything */
105 write_gcr_cl_coherence(0xff);
106
107 if (mips_cm_revision() >= CM_REV_CM3) {
108 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109 write_gcr_bev_base(core_entry);
110 }
111
112 #ifdef CONFIG_MIPS_MT_FPAFF
113 /* If we have an FPU, enroll ourselves in the FPU-full mask */
114 if (cpu_has_fpu)
115 cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118
119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121 unsigned ncores, core_vpes, c, cca;
122 bool cca_unsuitable;
123 u32 *entry_code;
124
125 mips_mt_set_cpuoptions();
126
127 /* Detect whether the CCA is unsuited to multi-core SMP */
128 cca = read_c0_config() & CONF_CM_CMASK;
129 switch (cca) {
130 case 0x4: /* CWBE */
131 case 0x5: /* CWB */
132 /* The CCA is coherent, multi-core is fine */
133 cca_unsuitable = false;
134 break;
135
136 default:
137 /* CCA is not coherent, multi-core is not usable */
138 cca_unsuitable = true;
139 }
140
141 /* Warn the user if the CCA prevents multi-core */
142 ncores = mips_cm_numcores();
143 if (cca_unsuitable && ncores > 1) {
144 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
145 cca);
146
147 for_each_present_cpu(c) {
148 if (cpu_data[c].core)
149 set_cpu_present(c, false);
150 }
151 }
152
153 /*
154 * Patch the start of mips_cps_core_entry to provide:
155 *
156 * s0 = kseg0 CCA
157 */
158 entry_code = (u32 *)&mips_cps_core_entry;
159 uasm_i_addiu(&entry_code, 16, 0, cca);
160 blast_dcache_range((unsigned long)&mips_cps_core_entry,
161 (unsigned long)entry_code);
162 bc_wback_inv((unsigned long)&mips_cps_core_entry,
163 (void *)entry_code - (void *)&mips_cps_core_entry);
164 __sync();
165
166 /* Allocate core boot configuration structs */
167 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
168 GFP_KERNEL);
169 if (!mips_cps_core_bootcfg) {
170 pr_err("Failed to allocate boot config for %u cores\n", ncores);
171 goto err_out;
172 }
173
174 /* Allocate VPE boot configuration structs */
175 for (c = 0; c < ncores; c++) {
176 core_vpes = core_vpe_count(c);
177 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
178 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
179 GFP_KERNEL);
180 if (!mips_cps_core_bootcfg[c].vpe_config) {
181 pr_err("Failed to allocate %u VPE boot configs\n",
182 core_vpes);
183 goto err_out;
184 }
185 }
186
187 /* Mark this CPU as booted */
188 atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
189 1 << cpu_vpe_id(&current_cpu_data));
190
191 return;
192 err_out:
193 /* Clean up allocations */
194 if (mips_cps_core_bootcfg) {
195 for (c = 0; c < ncores; c++)
196 kfree(mips_cps_core_bootcfg[c].vpe_config);
197 kfree(mips_cps_core_bootcfg);
198 mips_cps_core_bootcfg = NULL;
199 }
200
201 /* Effectively disable SMP by declaring CPUs not present */
202 for_each_possible_cpu(c) {
203 if (c == 0)
204 continue;
205 set_cpu_present(c, false);
206 }
207 }
208
209 static void boot_core(unsigned int core, unsigned int vpe_id)
210 {
211 u32 access, stat, seq_state;
212 unsigned timeout;
213
214 /* Select the appropriate core */
215 mips_cm_lock_other(core, 0);
216
217 /* Set its reset vector */
218 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
219
220 /* Ensure its coherency is disabled */
221 write_gcr_co_coherence(0);
222
223 /* Start it with the legacy memory map and exception base */
224 write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
225
226 /* Ensure the core can access the GCRs */
227 access = read_gcr_access();
228 access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
229 write_gcr_access(access);
230
231 if (mips_cpc_present()) {
232 /* Reset the core */
233 mips_cpc_lock_other(core);
234
235 if (mips_cm_revision() >= CM_REV_CM3) {
236 /* Run only the requested VP following the reset */
237 write_cpc_co_vp_stop(0xf);
238 write_cpc_co_vp_run(1 << vpe_id);
239
240 /*
241 * Ensure that the VP_RUN register is written before the
242 * core leaves reset.
243 */
244 wmb();
245 }
246
247 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
248
249 timeout = 100;
250 while (true) {
251 stat = read_cpc_co_stat_conf();
252 seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
253
254 /* U6 == coherent execution, ie. the core is up */
255 if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
256 break;
257
258 /* Delay a little while before we start warning */
259 if (timeout) {
260 timeout--;
261 mdelay(10);
262 continue;
263 }
264
265 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
266 core, stat);
267 mdelay(1000);
268 }
269
270 mips_cpc_unlock_other();
271 } else {
272 /* Take the core out of reset */
273 write_gcr_co_reset_release(0);
274 }
275
276 mips_cm_unlock_other();
277
278 /* The core is now powered up */
279 bitmap_set(core_power, core, 1);
280 }
281
282 static void remote_vpe_boot(void *dummy)
283 {
284 unsigned core = current_cpu_data.core;
285 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
286
287 mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
288 }
289
290 static void cps_boot_secondary(int cpu, struct task_struct *idle)
291 {
292 unsigned core = cpu_data[cpu].core;
293 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
294 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
295 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
296 unsigned long core_entry;
297 unsigned int remote;
298 int err;
299
300 vpe_cfg->pc = (unsigned long)&smp_bootstrap;
301 vpe_cfg->sp = __KSTK_TOS(idle);
302 vpe_cfg->gp = (unsigned long)task_thread_info(idle);
303
304 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
305
306 preempt_disable();
307
308 if (!test_bit(core, core_power)) {
309 /* Boot a VPE on a powered down core */
310 boot_core(core, vpe_id);
311 goto out;
312 }
313
314 if (cpu_has_vp) {
315 mips_cm_lock_other(core, vpe_id);
316 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
317 write_gcr_co_reset_base(core_entry);
318 mips_cm_unlock_other();
319 }
320
321 if (core != current_cpu_data.core) {
322 /* Boot a VPE on another powered up core */
323 for (remote = 0; remote < NR_CPUS; remote++) {
324 if (cpu_data[remote].core != core)
325 continue;
326 if (cpu_online(remote))
327 break;
328 }
329 BUG_ON(remote >= NR_CPUS);
330
331 err = smp_call_function_single(remote, remote_vpe_boot,
332 NULL, 1);
333 if (err)
334 panic("Failed to call remote CPU\n");
335 goto out;
336 }
337
338 BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
339
340 /* Boot a VPE on this core */
341 mips_cps_boot_vpes(core_cfg, vpe_id);
342 out:
343 preempt_enable();
344 }
345
346 static void cps_init_secondary(void)
347 {
348 /* Disable MT - we only want to run 1 TC per VPE */
349 if (cpu_has_mipsmt)
350 dmt();
351
352 if (mips_cm_revision() >= CM_REV_CM3) {
353 unsigned ident = gic_read_local_vp_id();
354
355 /*
356 * Ensure that our calculation of the VP ID matches up with
357 * what the GIC reports, otherwise we'll have configured
358 * interrupts incorrectly.
359 */
360 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
361 }
362
363 if (cpu_has_veic)
364 clear_c0_status(ST0_IM);
365 else
366 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
367 STATUSF_IP4 | STATUSF_IP5 |
368 STATUSF_IP6 | STATUSF_IP7);
369 }
370
371 static void cps_smp_finish(void)
372 {
373 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
374
375 #ifdef CONFIG_MIPS_MT_FPAFF
376 /* If we have an FPU, enroll ourselves in the FPU-full mask */
377 if (cpu_has_fpu)
378 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
379 #endif /* CONFIG_MIPS_MT_FPAFF */
380
381 local_irq_enable();
382 }
383
384 #ifdef CONFIG_HOTPLUG_CPU
385
386 static int cps_cpu_disable(void)
387 {
388 unsigned cpu = smp_processor_id();
389 struct core_boot_config *core_cfg;
390
391 if (!cpu)
392 return -EBUSY;
393
394 if (!cps_pm_support_state(CPS_PM_POWER_GATED))
395 return -EINVAL;
396
397 core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
398 atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
399 smp_mb__after_atomic();
400 set_cpu_online(cpu, false);
401 calculate_cpu_foreign_map();
402 cpumask_clear_cpu(cpu, &cpu_callin_map);
403
404 return 0;
405 }
406
407 static DECLARE_COMPLETION(cpu_death_chosen);
408 static unsigned cpu_death_sibling;
409 static enum {
410 CPU_DEATH_HALT,
411 CPU_DEATH_POWER,
412 } cpu_death;
413
414 void play_dead(void)
415 {
416 unsigned int cpu, core, vpe_id;
417
418 local_irq_disable();
419 idle_task_exit();
420 cpu = smp_processor_id();
421 cpu_death = CPU_DEATH_POWER;
422
423 pr_debug("CPU%d going offline\n", cpu);
424
425 if (cpu_has_mipsmt || cpu_has_vp) {
426 core = cpu_data[cpu].core;
427
428 /* Look for another online VPE within the core */
429 for_each_online_cpu(cpu_death_sibling) {
430 if (cpu_data[cpu_death_sibling].core != core)
431 continue;
432
433 /*
434 * There is an online VPE within the core. Just halt
435 * this TC and leave the core alone.
436 */
437 cpu_death = CPU_DEATH_HALT;
438 break;
439 }
440 }
441
442 /* This CPU has chosen its way out */
443 complete(&cpu_death_chosen);
444
445 if (cpu_death == CPU_DEATH_HALT) {
446 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
447
448 pr_debug("Halting core %d VP%d\n", core, vpe_id);
449 if (cpu_has_mipsmt) {
450 /* Halt this TC */
451 write_c0_tchalt(TCHALT_H);
452 instruction_hazard();
453 } else if (cpu_has_vp) {
454 write_cpc_cl_vp_stop(1 << vpe_id);
455
456 /* Ensure that the VP_STOP register is written */
457 wmb();
458 }
459 } else {
460 pr_debug("Gating power to core %d\n", core);
461 /* Power down the core */
462 cps_pm_enter_state(CPS_PM_POWER_GATED);
463 }
464
465 /* This should never be reached */
466 panic("Failed to offline CPU %u", cpu);
467 }
468
469 static void wait_for_sibling_halt(void *ptr_cpu)
470 {
471 unsigned cpu = (unsigned long)ptr_cpu;
472 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
473 unsigned halted;
474 unsigned long flags;
475
476 do {
477 local_irq_save(flags);
478 settc(vpe_id);
479 halted = read_tc_c0_tchalt();
480 local_irq_restore(flags);
481 } while (!(halted & TCHALT_H));
482 }
483
484 static void cps_cpu_die(unsigned int cpu)
485 {
486 unsigned core = cpu_data[cpu].core;
487 unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
488 unsigned stat;
489 int err;
490
491 /* Wait for the cpu to choose its way out */
492 if (!wait_for_completion_timeout(&cpu_death_chosen,
493 msecs_to_jiffies(5000))) {
494 pr_err("CPU%u: didn't offline\n", cpu);
495 return;
496 }
497
498 /*
499 * Now wait for the CPU to actually offline. Without doing this that
500 * offlining may race with one or more of:
501 *
502 * - Onlining the CPU again.
503 * - Powering down the core if another VPE within it is offlined.
504 * - A sibling VPE entering a non-coherent state.
505 *
506 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
507 * with which we could race, so do nothing.
508 */
509 if (cpu_death == CPU_DEATH_POWER) {
510 /*
511 * Wait for the core to enter a powered down or clock gated
512 * state, the latter happening when a JTAG probe is connected
513 * in which case the CPC will refuse to power down the core.
514 */
515 do {
516 mips_cm_lock_other(core, vpe_id);
517 mips_cpc_lock_other(core);
518 stat = read_cpc_co_stat_conf();
519 stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
520 mips_cpc_unlock_other();
521 mips_cm_unlock_other();
522 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
523 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
524 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
525
526 /* Indicate the core is powered off */
527 bitmap_clear(core_power, core, 1);
528 } else if (cpu_has_mipsmt) {
529 /*
530 * Have a CPU with access to the offlined CPUs registers wait
531 * for its TC to halt.
532 */
533 err = smp_call_function_single(cpu_death_sibling,
534 wait_for_sibling_halt,
535 (void *)(unsigned long)cpu, 1);
536 if (err)
537 panic("Failed to call remote sibling CPU\n");
538 } else if (cpu_has_vp) {
539 do {
540 mips_cm_lock_other(core, vpe_id);
541 stat = read_cpc_co_vp_running();
542 mips_cm_unlock_other();
543 } while (stat & (1 << vpe_id));
544 }
545 }
546
547 #endif /* CONFIG_HOTPLUG_CPU */
548
549 static struct plat_smp_ops cps_smp_ops = {
550 .smp_setup = cps_smp_setup,
551 .prepare_cpus = cps_prepare_cpus,
552 .boot_secondary = cps_boot_secondary,
553 .init_secondary = cps_init_secondary,
554 .smp_finish = cps_smp_finish,
555 .send_ipi_single = mips_smp_send_ipi_single,
556 .send_ipi_mask = mips_smp_send_ipi_mask,
557 #ifdef CONFIG_HOTPLUG_CPU
558 .cpu_disable = cps_cpu_disable,
559 .cpu_die = cps_cpu_die,
560 #endif
561 };
562
563 bool mips_cps_smp_in_use(void)
564 {
565 extern struct plat_smp_ops *mp_ops;
566 return mp_ops == &cps_smp_ops;
567 }
568
569 int register_cps_smp_ops(void)
570 {
571 if (!mips_cm_present()) {
572 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
573 return -ENODEV;
574 }
575
576 /* check we have a GIC - we need one for IPIs */
577 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
578 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
579 return -ENODEV;
580 }
581
582 register_smp_ops(&cps_smp_ops);
583 return 0;
584 }
This page took 0.041913 seconds and 5 git commands to generate.