regulator: Introduce property to flag set-load support
[deliverable/linux.git] / arch / mips / kernel / smp.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
45
46 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
47
48 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
49 EXPORT_SYMBOL(__cpu_number_map);
50
51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
52 EXPORT_SYMBOL(__cpu_logical_map);
53
54 /* Number of TCs (or siblings in Intel speak) per CPU core */
55 int smp_num_siblings = 1;
56 EXPORT_SYMBOL(smp_num_siblings);
57
58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_sibling_map);
61
62 /* representing the core map of multi-core chips of each logical CPU */
63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_core_map);
65
66 /*
67 * A logcal cpu mask containing only one VPE per core to
68 * reduce the number of IPIs on large MT systems.
69 */
70 cpumask_t cpu_foreign_map __read_mostly;
71 EXPORT_SYMBOL(cpu_foreign_map);
72
73 /* representing cpus for which sibling maps can be computed */
74 static cpumask_t cpu_sibling_setup_map;
75
76 /* representing cpus for which core maps can be computed */
77 static cpumask_t cpu_core_setup_map;
78
79 cpumask_t cpu_coherent_mask;
80
81 static inline void set_cpu_sibling_map(int cpu)
82 {
83 int i;
84
85 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86
87 if (smp_num_siblings > 1) {
88 for_each_cpu(i, &cpu_sibling_setup_map) {
89 if (cpu_data[cpu].package == cpu_data[i].package &&
90 cpu_data[cpu].core == cpu_data[i].core) {
91 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
92 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
93 }
94 }
95 } else
96 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
97 }
98
99 static inline void set_cpu_core_map(int cpu)
100 {
101 int i;
102
103 cpumask_set_cpu(cpu, &cpu_core_setup_map);
104
105 for_each_cpu(i, &cpu_core_setup_map) {
106 if (cpu_data[cpu].package == cpu_data[i].package) {
107 cpumask_set_cpu(i, &cpu_core_map[cpu]);
108 cpumask_set_cpu(cpu, &cpu_core_map[i]);
109 }
110 }
111 }
112
113 /*
114 * Calculate a new cpu_foreign_map mask whenever a
115 * new cpu appears or disappears.
116 */
117 static inline void calculate_cpu_foreign_map(void)
118 {
119 int i, k, core_present;
120 cpumask_t temp_foreign_map;
121
122 /* Re-calculate the mask */
123 for_each_online_cpu(i) {
124 core_present = 0;
125 for_each_cpu(k, &temp_foreign_map)
126 if (cpu_data[i].package == cpu_data[k].package &&
127 cpu_data[i].core == cpu_data[k].core)
128 core_present = 1;
129 if (!core_present)
130 cpumask_set_cpu(i, &temp_foreign_map);
131 }
132
133 cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
134 }
135
136 struct plat_smp_ops *mp_ops;
137 EXPORT_SYMBOL(mp_ops);
138
139 void register_smp_ops(struct plat_smp_ops *ops)
140 {
141 if (mp_ops)
142 printk(KERN_WARNING "Overriding previously set SMP ops\n");
143
144 mp_ops = ops;
145 }
146
147 /*
148 * First C code run on the secondary CPUs after being started up by
149 * the master.
150 */
151 asmlinkage void start_secondary(void)
152 {
153 unsigned int cpu;
154
155 cpu_probe();
156 per_cpu_trap_init(false);
157 mips_clockevent_init();
158 mp_ops->init_secondary();
159 cpu_report();
160
161 /*
162 * XXX parity protection should be folded in here when it's converted
163 * to an option instead of something based on .cputype
164 */
165
166 calibrate_delay();
167 preempt_disable();
168 cpu = smp_processor_id();
169 cpu_data[cpu].udelay_val = loops_per_jiffy;
170
171 cpumask_set_cpu(cpu, &cpu_coherent_mask);
172 notify_cpu_starting(cpu);
173
174 set_cpu_online(cpu, true);
175
176 set_cpu_sibling_map(cpu);
177 set_cpu_core_map(cpu);
178
179 calculate_cpu_foreign_map();
180
181 cpumask_set_cpu(cpu, &cpu_callin_map);
182
183 synchronise_count_slave(cpu);
184
185 /*
186 * irq will be enabled in ->smp_finish(), enabling it too early
187 * is dangerous.
188 */
189 WARN_ON_ONCE(!irqs_disabled());
190 mp_ops->smp_finish();
191
192 cpu_startup_entry(CPUHP_ONLINE);
193 }
194
195 static void stop_this_cpu(void *dummy)
196 {
197 /*
198 * Remove this CPU. Be a bit slow here and
199 * set the bits for every online CPU so we don't miss
200 * any IPI whilst taking this VPE down.
201 */
202
203 cpumask_copy(&cpu_foreign_map, cpu_online_mask);
204
205 /* Make it visible to every other CPU */
206 smp_mb();
207
208 set_cpu_online(smp_processor_id(), false);
209 calculate_cpu_foreign_map();
210 local_irq_disable();
211 while (1);
212 }
213
214 void smp_send_stop(void)
215 {
216 smp_call_function(stop_this_cpu, NULL, 0);
217 }
218
219 void __init smp_cpus_done(unsigned int max_cpus)
220 {
221 }
222
223 /* called from main before smp_init() */
224 void __init smp_prepare_cpus(unsigned int max_cpus)
225 {
226 init_new_context(current, &init_mm);
227 current_thread_info()->cpu = 0;
228 mp_ops->prepare_cpus(max_cpus);
229 set_cpu_sibling_map(0);
230 set_cpu_core_map(0);
231 calculate_cpu_foreign_map();
232 #ifndef CONFIG_HOTPLUG_CPU
233 init_cpu_present(cpu_possible_mask);
234 #endif
235 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
236 }
237
238 /* preload SMP state for boot cpu */
239 void smp_prepare_boot_cpu(void)
240 {
241 set_cpu_possible(0, true);
242 set_cpu_online(0, true);
243 cpumask_set_cpu(0, &cpu_callin_map);
244 }
245
246 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
247 {
248 mp_ops->boot_secondary(cpu, tidle);
249
250 /*
251 * Trust is futile. We should really have timeouts ...
252 */
253 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
254 udelay(100);
255 schedule();
256 }
257
258 synchronise_count_master(cpu);
259 return 0;
260 }
261
262 /* Not really SMP stuff ... */
263 int setup_profiling_timer(unsigned int multiplier)
264 {
265 return 0;
266 }
267
268 static void flush_tlb_all_ipi(void *info)
269 {
270 local_flush_tlb_all();
271 }
272
273 void flush_tlb_all(void)
274 {
275 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
276 }
277
278 static void flush_tlb_mm_ipi(void *mm)
279 {
280 local_flush_tlb_mm((struct mm_struct *)mm);
281 }
282
283 /*
284 * Special Variant of smp_call_function for use by TLB functions:
285 *
286 * o No return value
287 * o collapses to normal function call on UP kernels
288 * o collapses to normal function call on systems with a single shared
289 * primary cache.
290 */
291 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
292 {
293 smp_call_function(func, info, 1);
294 }
295
296 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
297 {
298 preempt_disable();
299
300 smp_on_other_tlbs(func, info);
301 func(info);
302
303 preempt_enable();
304 }
305
306 /*
307 * The following tlb flush calls are invoked when old translations are
308 * being torn down, or pte attributes are changing. For single threaded
309 * address spaces, a new context is obtained on the current cpu, and tlb
310 * context on other cpus are invalidated to force a new context allocation
311 * at switch_mm time, should the mm ever be used on other cpus. For
312 * multithreaded address spaces, intercpu interrupts have to be sent.
313 * Another case where intercpu interrupts are required is when the target
314 * mm might be active on another cpu (eg debuggers doing the flushes on
315 * behalf of debugees, kswapd stealing pages from another process etc).
316 * Kanoj 07/00.
317 */
318
319 void flush_tlb_mm(struct mm_struct *mm)
320 {
321 preempt_disable();
322
323 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
324 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
325 } else {
326 unsigned int cpu;
327
328 for_each_online_cpu(cpu) {
329 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
330 cpu_context(cpu, mm) = 0;
331 }
332 }
333 local_flush_tlb_mm(mm);
334
335 preempt_enable();
336 }
337
338 struct flush_tlb_data {
339 struct vm_area_struct *vma;
340 unsigned long addr1;
341 unsigned long addr2;
342 };
343
344 static void flush_tlb_range_ipi(void *info)
345 {
346 struct flush_tlb_data *fd = info;
347
348 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
349 }
350
351 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
352 {
353 struct mm_struct *mm = vma->vm_mm;
354
355 preempt_disable();
356 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
357 struct flush_tlb_data fd = {
358 .vma = vma,
359 .addr1 = start,
360 .addr2 = end,
361 };
362
363 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
364 } else {
365 unsigned int cpu;
366
367 for_each_online_cpu(cpu) {
368 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
369 cpu_context(cpu, mm) = 0;
370 }
371 }
372 local_flush_tlb_range(vma, start, end);
373 preempt_enable();
374 }
375
376 static void flush_tlb_kernel_range_ipi(void *info)
377 {
378 struct flush_tlb_data *fd = info;
379
380 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
381 }
382
383 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
384 {
385 struct flush_tlb_data fd = {
386 .addr1 = start,
387 .addr2 = end,
388 };
389
390 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
391 }
392
393 static void flush_tlb_page_ipi(void *info)
394 {
395 struct flush_tlb_data *fd = info;
396
397 local_flush_tlb_page(fd->vma, fd->addr1);
398 }
399
400 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
401 {
402 preempt_disable();
403 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
404 struct flush_tlb_data fd = {
405 .vma = vma,
406 .addr1 = page,
407 };
408
409 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
410 } else {
411 unsigned int cpu;
412
413 for_each_online_cpu(cpu) {
414 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
415 cpu_context(cpu, vma->vm_mm) = 0;
416 }
417 }
418 local_flush_tlb_page(vma, page);
419 preempt_enable();
420 }
421
422 static void flush_tlb_one_ipi(void *info)
423 {
424 unsigned long vaddr = (unsigned long) info;
425
426 local_flush_tlb_one(vaddr);
427 }
428
429 void flush_tlb_one(unsigned long vaddr)
430 {
431 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
432 }
433
434 EXPORT_SYMBOL(flush_tlb_page);
435 EXPORT_SYMBOL(flush_tlb_one);
436
437 #if defined(CONFIG_KEXEC)
438 void (*dump_ipi_function_ptr)(void *) = NULL;
439 void dump_send_ipi(void (*dump_ipi_callback)(void *))
440 {
441 int i;
442 int cpu = smp_processor_id();
443
444 dump_ipi_function_ptr = dump_ipi_callback;
445 smp_mb();
446 for_each_online_cpu(i)
447 if (i != cpu)
448 mp_ops->send_ipi_single(i, SMP_DUMP);
449
450 }
451 EXPORT_SYMBOL(dump_send_ipi);
452 #endif
453
454 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
455
456 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
457 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
458
459 void tick_broadcast(const struct cpumask *mask)
460 {
461 atomic_t *count;
462 struct call_single_data *csd;
463 int cpu;
464
465 for_each_cpu(cpu, mask) {
466 count = &per_cpu(tick_broadcast_count, cpu);
467 csd = &per_cpu(tick_broadcast_csd, cpu);
468
469 if (atomic_inc_return(count) == 1)
470 smp_call_function_single_async(cpu, csd);
471 }
472 }
473
474 static void tick_broadcast_callee(void *info)
475 {
476 int cpu = smp_processor_id();
477 tick_receive_broadcast();
478 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
479 }
480
481 static int __init tick_broadcast_init(void)
482 {
483 struct call_single_data *csd;
484 int cpu;
485
486 for (cpu = 0; cpu < NR_CPUS; cpu++) {
487 csd = &per_cpu(tick_broadcast_csd, cpu);
488 csd->func = tick_broadcast_callee;
489 }
490
491 return 0;
492 }
493 early_initcall(tick_broadcast_init);
494
495 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
This page took 0.050143 seconds and 5 git commands to generate.