Merge master.kernel.org:/home/rmk/linux-2.6-i2c manually
[deliverable/linux.git] / arch / mips / kernel / time.c
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
5 *
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26
27 #include <asm/bootinfo.h>
28 #include <asm/compiler.h>
29 #include <asm/cpu.h>
30 #include <asm/cpu-features.h>
31 #include <asm/div64.h>
32 #include <asm/sections.h>
33 #include <asm/time.h>
34
35 /*
36 * The integer part of the number of usecs per jiffy is taken from tick,
37 * but the fractional part is not recorded, so we calculate it using the
38 * initial value of HZ. This aids systems where tick isn't really an
39 * integer (e.g. for HZ = 128).
40 */
41 #define USECS_PER_JIFFY TICK_SIZE
42 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
43
44 #define TICK_SIZE (tick_nsec / 1000)
45
46 u64 jiffies_64 = INITIAL_JIFFIES;
47
48 EXPORT_SYMBOL(jiffies_64);
49
50 /*
51 * forward reference
52 */
53 extern volatile unsigned long wall_jiffies;
54
55 DEFINE_SPINLOCK(rtc_lock);
56
57 /*
58 * By default we provide the null RTC ops
59 */
60 static unsigned long null_rtc_get_time(void)
61 {
62 return mktime(2000, 1, 1, 0, 0, 0);
63 }
64
65 static int null_rtc_set_time(unsigned long sec)
66 {
67 return 0;
68 }
69
70 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
71 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
72 int (*rtc_set_mmss)(unsigned long);
73
74
75 /* usecs per counter cycle, shifted to left by 32 bits */
76 static unsigned int sll32_usecs_per_cycle;
77
78 /* how many counter cycles in a jiffy */
79 static unsigned long cycles_per_jiffy;
80
81 /* Cycle counter value at the previous timer interrupt.. */
82 static unsigned int timerhi, timerlo;
83
84 /* expirelo is the count value for next CPU timer interrupt */
85 static unsigned int expirelo;
86
87
88 /*
89 * Null timer ack for systems not needing one (e.g. i8254).
90 */
91 static void null_timer_ack(void) { /* nothing */ }
92
93 /*
94 * Null high precision timer functions for systems lacking one.
95 */
96 static unsigned int null_hpt_read(void)
97 {
98 return 0;
99 }
100
101 static void null_hpt_init(unsigned int count) { /* nothing */ }
102
103
104 /*
105 * Timer ack for an R4k-compatible timer of a known frequency.
106 */
107 static void c0_timer_ack(void)
108 {
109 unsigned int count;
110
111 /* Ack this timer interrupt and set the next one. */
112 expirelo += cycles_per_jiffy;
113 write_c0_compare(expirelo);
114
115 /* Check to see if we have missed any timer interrupts. */
116 count = read_c0_count();
117 if ((count - expirelo) < 0x7fffffff) {
118 /* missed_timer_count++; */
119 expirelo = count + cycles_per_jiffy;
120 write_c0_compare(expirelo);
121 }
122 }
123
124 /*
125 * High precision timer functions for a R4k-compatible timer.
126 */
127 static unsigned int c0_hpt_read(void)
128 {
129 return read_c0_count();
130 }
131
132 /* For use solely as a high precision timer. */
133 static void c0_hpt_init(unsigned int count)
134 {
135 write_c0_count(read_c0_count() - count);
136 }
137
138 /* For use both as a high precision timer and an interrupt source. */
139 static void c0_hpt_timer_init(unsigned int count)
140 {
141 count = read_c0_count() - count;
142 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
143 write_c0_count(expirelo - cycles_per_jiffy);
144 write_c0_compare(expirelo);
145 write_c0_count(count);
146 }
147
148 int (*mips_timer_state)(void);
149 void (*mips_timer_ack)(void);
150 unsigned int (*mips_hpt_read)(void);
151 void (*mips_hpt_init)(unsigned int);
152
153
154 /*
155 * This version of gettimeofday has microsecond resolution and better than
156 * microsecond precision on fast machines with cycle counter.
157 */
158 void do_gettimeofday(struct timeval *tv)
159 {
160 unsigned long seq;
161 unsigned long lost;
162 unsigned long usec, sec;
163 unsigned long max_ntp_tick = tick_usec - tickadj;
164
165 do {
166 seq = read_seqbegin(&xtime_lock);
167
168 usec = do_gettimeoffset();
169
170 lost = jiffies - wall_jiffies;
171
172 /*
173 * If time_adjust is negative then NTP is slowing the clock
174 * so make sure not to go into next possible interval.
175 * Better to lose some accuracy than have time go backwards..
176 */
177 if (unlikely(time_adjust < 0)) {
178 usec = min(usec, max_ntp_tick);
179
180 if (lost)
181 usec += lost * max_ntp_tick;
182 } else if (unlikely(lost))
183 usec += lost * tick_usec;
184
185 sec = xtime.tv_sec;
186 usec += (xtime.tv_nsec / 1000);
187
188 } while (read_seqretry(&xtime_lock, seq));
189
190 while (usec >= 1000000) {
191 usec -= 1000000;
192 sec++;
193 }
194
195 tv->tv_sec = sec;
196 tv->tv_usec = usec;
197 }
198
199 EXPORT_SYMBOL(do_gettimeofday);
200
201 int do_settimeofday(struct timespec *tv)
202 {
203 time_t wtm_sec, sec = tv->tv_sec;
204 long wtm_nsec, nsec = tv->tv_nsec;
205
206 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
207 return -EINVAL;
208
209 write_seqlock_irq(&xtime_lock);
210
211 /*
212 * This is revolting. We need to set "xtime" correctly. However,
213 * the value in this location is the value at the most recent update
214 * of wall time. Discover what correction gettimeofday() would have
215 * made, and then undo it!
216 */
217 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
218 nsec -= (jiffies - wall_jiffies) * tick_nsec;
219
220 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
221 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
222
223 set_normalized_timespec(&xtime, sec, nsec);
224 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
225
226 ntp_clear();
227
228 write_sequnlock_irq(&xtime_lock);
229 clock_was_set();
230 return 0;
231 }
232
233 EXPORT_SYMBOL(do_settimeofday);
234
235 /*
236 * Gettimeoffset routines. These routines returns the time duration
237 * since last timer interrupt in usecs.
238 *
239 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
240 * Otherwise use calibrate_gettimeoffset()
241 *
242 * If the CPU does not have the counter register, you can either supply
243 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
244 * gives the same resolution as HZ.
245 */
246
247 static unsigned long null_gettimeoffset(void)
248 {
249 return 0;
250 }
251
252
253 /* The function pointer to one of the gettimeoffset funcs. */
254 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
255
256
257 static unsigned long fixed_rate_gettimeoffset(void)
258 {
259 u32 count;
260 unsigned long res;
261
262 /* Get last timer tick in absolute kernel time */
263 count = mips_hpt_read();
264
265 /* .. relative to previous jiffy (32 bits is enough) */
266 count -= timerlo;
267
268 __asm__("multu %1,%2"
269 : "=h" (res)
270 : "r" (count), "r" (sll32_usecs_per_cycle)
271 : "lo", GCC_REG_ACCUM);
272
273 /*
274 * Due to possible jiffies inconsistencies, we need to check
275 * the result so that we'll get a timer that is monotonic.
276 */
277 if (res >= USECS_PER_JIFFY)
278 res = USECS_PER_JIFFY - 1;
279
280 return res;
281 }
282
283
284 /*
285 * Cached "1/(clocks per usec) * 2^32" value.
286 * It has to be recalculated once each jiffy.
287 */
288 static unsigned long cached_quotient;
289
290 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
291 static unsigned long last_jiffies;
292
293 /*
294 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
295 */
296 static unsigned long calibrate_div32_gettimeoffset(void)
297 {
298 u32 count;
299 unsigned long res, tmp;
300 unsigned long quotient;
301
302 tmp = jiffies;
303
304 quotient = cached_quotient;
305
306 if (last_jiffies != tmp) {
307 last_jiffies = tmp;
308 if (last_jiffies != 0) {
309 unsigned long r0;
310 do_div64_32(r0, timerhi, timerlo, tmp);
311 do_div64_32(quotient, USECS_PER_JIFFY,
312 USECS_PER_JIFFY_FRAC, r0);
313 cached_quotient = quotient;
314 }
315 }
316
317 /* Get last timer tick in absolute kernel time */
318 count = mips_hpt_read();
319
320 /* .. relative to previous jiffy (32 bits is enough) */
321 count -= timerlo;
322
323 __asm__("multu %1,%2"
324 : "=h" (res)
325 : "r" (count), "r" (quotient)
326 : "lo", GCC_REG_ACCUM);
327
328 /*
329 * Due to possible jiffies inconsistencies, we need to check
330 * the result so that we'll get a timer that is monotonic.
331 */
332 if (res >= USECS_PER_JIFFY)
333 res = USECS_PER_JIFFY - 1;
334
335 return res;
336 }
337
338 static unsigned long calibrate_div64_gettimeoffset(void)
339 {
340 u32 count;
341 unsigned long res, tmp;
342 unsigned long quotient;
343
344 tmp = jiffies;
345
346 quotient = cached_quotient;
347
348 if (last_jiffies != tmp) {
349 last_jiffies = tmp;
350 if (last_jiffies) {
351 unsigned long r0;
352 __asm__(".set push\n\t"
353 ".set mips3\n\t"
354 "lwu %0,%3\n\t"
355 "dsll32 %1,%2,0\n\t"
356 "or %1,%1,%0\n\t"
357 "ddivu $0,%1,%4\n\t"
358 "mflo %1\n\t"
359 "dsll32 %0,%5,0\n\t"
360 "or %0,%0,%6\n\t"
361 "ddivu $0,%0,%1\n\t"
362 "mflo %0\n\t"
363 ".set pop"
364 : "=&r" (quotient), "=&r" (r0)
365 : "r" (timerhi), "m" (timerlo),
366 "r" (tmp), "r" (USECS_PER_JIFFY),
367 "r" (USECS_PER_JIFFY_FRAC)
368 : "hi", "lo", GCC_REG_ACCUM);
369 cached_quotient = quotient;
370 }
371 }
372
373 /* Get last timer tick in absolute kernel time */
374 count = mips_hpt_read();
375
376 /* .. relative to previous jiffy (32 bits is enough) */
377 count -= timerlo;
378
379 __asm__("multu %1,%2"
380 : "=h" (res)
381 : "r" (count), "r" (quotient)
382 : "lo", GCC_REG_ACCUM);
383
384 /*
385 * Due to possible jiffies inconsistencies, we need to check
386 * the result so that we'll get a timer that is monotonic.
387 */
388 if (res >= USECS_PER_JIFFY)
389 res = USECS_PER_JIFFY - 1;
390
391 return res;
392 }
393
394
395 /* last time when xtime and rtc are sync'ed up */
396 static long last_rtc_update;
397
398 /*
399 * local_timer_interrupt() does profiling and process accounting
400 * on a per-CPU basis.
401 *
402 * In UP mode, it is invoked from the (global) timer_interrupt.
403 *
404 * In SMP mode, it might invoked by per-CPU timer interrupt, or
405 * a broadcasted inter-processor interrupt which itself is triggered
406 * by the global timer interrupt.
407 */
408 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
409 {
410 if (current->pid)
411 profile_tick(CPU_PROFILING, regs);
412 update_process_times(user_mode(regs));
413 }
414
415 /*
416 * High-level timer interrupt service routines. This function
417 * is set as irqaction->handler and is invoked through do_IRQ.
418 */
419 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
420 {
421 unsigned long j;
422 unsigned int count;
423
424 count = mips_hpt_read();
425 mips_timer_ack();
426
427 /* Update timerhi/timerlo for intra-jiffy calibration. */
428 timerhi += count < timerlo; /* Wrap around */
429 timerlo = count;
430
431 /*
432 * call the generic timer interrupt handling
433 */
434 do_timer(regs);
435
436 /*
437 * If we have an externally synchronized Linux clock, then update
438 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
439 * called as close as possible to 500 ms before the new second starts.
440 */
441 write_seqlock(&xtime_lock);
442 if (ntp_synced() &&
443 xtime.tv_sec > last_rtc_update + 660 &&
444 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
445 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
446 if (rtc_set_mmss(xtime.tv_sec) == 0) {
447 last_rtc_update = xtime.tv_sec;
448 } else {
449 /* do it again in 60 s */
450 last_rtc_update = xtime.tv_sec - 600;
451 }
452 }
453 write_sequnlock(&xtime_lock);
454
455 /*
456 * If jiffies has overflown in this timer_interrupt, we must
457 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
458 * quotient calc still valid. -arca
459 *
460 * The first timer interrupt comes late as interrupts are
461 * enabled long after timers are initialized. Therefore the
462 * high precision timer is fast, leading to wrong gettimeoffset()
463 * calculations. We deal with it by setting it based on the
464 * number of its ticks between the second and the third interrupt.
465 * That is still somewhat imprecise, but it's a good estimate.
466 * --macro
467 */
468 j = jiffies;
469 if (j < 4) {
470 static unsigned int prev_count;
471 static int hpt_initialized;
472
473 switch (j) {
474 case 0:
475 timerhi = timerlo = 0;
476 mips_hpt_init(count);
477 break;
478 case 2:
479 prev_count = count;
480 break;
481 case 3:
482 if (!hpt_initialized) {
483 unsigned int c3 = 3 * (count - prev_count);
484
485 timerhi = 0;
486 timerlo = c3;
487 mips_hpt_init(count - c3);
488 hpt_initialized = 1;
489 }
490 break;
491 default:
492 break;
493 }
494 }
495
496 /*
497 * In UP mode, we call local_timer_interrupt() to do profiling
498 * and process accouting.
499 *
500 * In SMP mode, local_timer_interrupt() is invoked by appropriate
501 * low-level local timer interrupt handler.
502 */
503 local_timer_interrupt(irq, dev_id, regs);
504
505 return IRQ_HANDLED;
506 }
507
508 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
509 {
510 irq_enter();
511 kstat_this_cpu.irqs[irq]++;
512
513 /* we keep interrupt disabled all the time */
514 timer_interrupt(irq, NULL, regs);
515
516 irq_exit();
517 }
518
519 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
520 {
521 irq_enter();
522 if (smp_processor_id() != 0)
523 kstat_this_cpu.irqs[irq]++;
524
525 /* we keep interrupt disabled all the time */
526 local_timer_interrupt(irq, NULL, regs);
527
528 irq_exit();
529 }
530
531 /*
532 * time_init() - it does the following things.
533 *
534 * 1) board_time_init() -
535 * a) (optional) set up RTC routines,
536 * b) (optional) calibrate and set the mips_hpt_frequency
537 * (only needed if you intended to use fixed_rate_gettimeoffset
538 * or use cpu counter as timer interrupt source)
539 * 2) setup xtime based on rtc_get_time().
540 * 3) choose a appropriate gettimeoffset routine.
541 * 4) calculate a couple of cached variables for later usage
542 * 5) board_timer_setup() -
543 * a) (optional) over-write any choices made above by time_init().
544 * b) machine specific code should setup the timer irqaction.
545 * c) enable the timer interrupt
546 */
547
548 void (*board_time_init)(void);
549 void (*board_timer_setup)(struct irqaction *irq);
550
551 unsigned int mips_hpt_frequency;
552
553 static struct irqaction timer_irqaction = {
554 .handler = timer_interrupt,
555 .flags = SA_INTERRUPT,
556 .name = "timer",
557 };
558
559 static unsigned int __init calibrate_hpt(void)
560 {
561 u64 frequency;
562 u32 hpt_start, hpt_end, hpt_count, hz;
563
564 const int loops = HZ / 10;
565 int log_2_loops = 0;
566 int i;
567
568 /*
569 * We want to calibrate for 0.1s, but to avoid a 64-bit
570 * division we round the number of loops up to the nearest
571 * power of 2.
572 */
573 while (loops > 1 << log_2_loops)
574 log_2_loops++;
575 i = 1 << log_2_loops;
576
577 /*
578 * Wait for a rising edge of the timer interrupt.
579 */
580 while (mips_timer_state());
581 while (!mips_timer_state());
582
583 /*
584 * Now see how many high precision timer ticks happen
585 * during the calculated number of periods between timer
586 * interrupts.
587 */
588 hpt_start = mips_hpt_read();
589 do {
590 while (mips_timer_state());
591 while (!mips_timer_state());
592 } while (--i);
593 hpt_end = mips_hpt_read();
594
595 hpt_count = hpt_end - hpt_start;
596 hz = HZ;
597 frequency = (u64)hpt_count * (u64)hz;
598
599 return frequency >> log_2_loops;
600 }
601
602 void __init time_init(void)
603 {
604 if (board_time_init)
605 board_time_init();
606
607 if (!rtc_set_mmss)
608 rtc_set_mmss = rtc_set_time;
609
610 xtime.tv_sec = rtc_get_time();
611 xtime.tv_nsec = 0;
612
613 set_normalized_timespec(&wall_to_monotonic,
614 -xtime.tv_sec, -xtime.tv_nsec);
615
616 /* Choose appropriate high precision timer routines. */
617 if (!cpu_has_counter && !mips_hpt_read) {
618 /* No high precision timer -- sorry. */
619 mips_hpt_read = null_hpt_read;
620 mips_hpt_init = null_hpt_init;
621 } else if (!mips_hpt_frequency && !mips_timer_state) {
622 /* A high precision timer of unknown frequency. */
623 if (!mips_hpt_read) {
624 /* No external high precision timer -- use R4k. */
625 mips_hpt_read = c0_hpt_read;
626 mips_hpt_init = c0_hpt_init;
627 }
628
629 if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
630 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
631 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
632 /*
633 * We need to calibrate the counter but we don't have
634 * 64-bit division.
635 */
636 do_gettimeoffset = calibrate_div32_gettimeoffset;
637 else
638 /*
639 * We need to calibrate the counter but we *do* have
640 * 64-bit division.
641 */
642 do_gettimeoffset = calibrate_div64_gettimeoffset;
643 } else {
644 /* We know counter frequency. Or we can get it. */
645 if (!mips_hpt_read) {
646 /* No external high precision timer -- use R4k. */
647 mips_hpt_read = c0_hpt_read;
648
649 if (mips_timer_state)
650 mips_hpt_init = c0_hpt_init;
651 else {
652 /* No external timer interrupt -- use R4k. */
653 mips_hpt_init = c0_hpt_timer_init;
654 mips_timer_ack = c0_timer_ack;
655 }
656 }
657 if (!mips_hpt_frequency)
658 mips_hpt_frequency = calibrate_hpt();
659
660 do_gettimeoffset = fixed_rate_gettimeoffset;
661
662 /* Calculate cache parameters. */
663 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
664
665 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
666 do_div64_32(sll32_usecs_per_cycle,
667 1000000, mips_hpt_frequency / 2,
668 mips_hpt_frequency);
669
670 /* Report the high precision timer rate for a reference. */
671 printk("Using %u.%03u MHz high precision timer.\n",
672 ((mips_hpt_frequency + 500) / 1000) / 1000,
673 ((mips_hpt_frequency + 500) / 1000) % 1000);
674 }
675
676 if (!mips_timer_ack)
677 /* No timer interrupt ack (e.g. i8254). */
678 mips_timer_ack = null_timer_ack;
679
680 /* This sets up the high precision timer for the first interrupt. */
681 mips_hpt_init(mips_hpt_read());
682
683 /*
684 * Call board specific timer interrupt setup.
685 *
686 * this pointer must be setup in machine setup routine.
687 *
688 * Even if a machine chooses to use a low-level timer interrupt,
689 * it still needs to setup the timer_irqaction.
690 * In that case, it might be better to set timer_irqaction.handler
691 * to be NULL function so that we are sure the high-level code
692 * is not invoked accidentally.
693 */
694 board_timer_setup(&timer_irqaction);
695 }
696
697 #define FEBRUARY 2
698 #define STARTOFTIME 1970
699 #define SECDAY 86400L
700 #define SECYR (SECDAY * 365)
701 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
702 #define days_in_year(y) (leapyear(y) ? 366 : 365)
703 #define days_in_month(m) (month_days[(m) - 1])
704
705 static int month_days[12] = {
706 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
707 };
708
709 void to_tm(unsigned long tim, struct rtc_time *tm)
710 {
711 long hms, day, gday;
712 int i;
713
714 gday = day = tim / SECDAY;
715 hms = tim % SECDAY;
716
717 /* Hours, minutes, seconds are easy */
718 tm->tm_hour = hms / 3600;
719 tm->tm_min = (hms % 3600) / 60;
720 tm->tm_sec = (hms % 3600) % 60;
721
722 /* Number of years in days */
723 for (i = STARTOFTIME; day >= days_in_year(i); i++)
724 day -= days_in_year(i);
725 tm->tm_year = i;
726
727 /* Number of months in days left */
728 if (leapyear(tm->tm_year))
729 days_in_month(FEBRUARY) = 29;
730 for (i = 1; day >= days_in_month(i); i++)
731 day -= days_in_month(i);
732 days_in_month(FEBRUARY) = 28;
733 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
734
735 /* Days are what is left over (+1) from all that. */
736 tm->tm_mday = day + 1;
737
738 /*
739 * Determine the day of week
740 */
741 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
742 }
743
744 EXPORT_SYMBOL(rtc_lock);
745 EXPORT_SYMBOL(to_tm);
746 EXPORT_SYMBOL(rtc_set_time);
747 EXPORT_SYMBOL(rtc_get_time);
748
749 unsigned long long sched_clock(void)
750 {
751 return (unsigned long long)jiffies*(1000000000/HZ);
752 }
This page took 0.075571 seconds and 5 git commands to generate.