081e6ed5bb6222220ddd0c6a39d79da64fa43154
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
13 */
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
44
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_cpu(void);
57 extern asmlinkage void handle_ov(void);
58 extern asmlinkage void handle_tr(void);
59 extern asmlinkage void handle_fpe(void);
60 extern asmlinkage void handle_mdmx(void);
61 extern asmlinkage void handle_watch(void);
62 extern asmlinkage void handle_mt(void);
63 extern asmlinkage void handle_dsp(void);
64 extern asmlinkage void handle_mcheck(void);
65 extern asmlinkage void handle_reserved(void);
66
67 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
68 struct mips_fpu_soft_struct *ctx);
69
70 void (*board_be_init)(void);
71 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
72 void (*board_nmi_handler_setup)(void);
73 void (*board_ejtag_handler_setup)(void);
74 void (*board_bind_eic_interrupt)(int irq, int regset);
75
76 /*
77 * These constant is for searching for possible module text segments.
78 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
79 */
80 #define MODULE_RANGE (8*1024*1024)
81
82 /*
83 * This routine abuses get_user()/put_user() to reference pointers
84 * with at least a bit of error checking ...
85 */
86 void show_stack(struct task_struct *task, unsigned long *sp)
87 {
88 const int field = 2 * sizeof(unsigned long);
89 long stackdata;
90 int i;
91
92 if (!sp) {
93 if (task && task != current)
94 sp = (unsigned long *) task->thread.reg29;
95 else
96 sp = (unsigned long *) &sp;
97 }
98
99 printk("Stack :");
100 i = 0;
101 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
102 if (i && ((i % (64 / field)) == 0))
103 printk("\n ");
104 if (i > 39) {
105 printk(" ...");
106 break;
107 }
108
109 if (__get_user(stackdata, sp++)) {
110 printk(" (Bad stack address)");
111 break;
112 }
113
114 printk(" %0*lx", field, stackdata);
115 i++;
116 }
117 printk("\n");
118 }
119
120 void show_trace(struct task_struct *task, unsigned long *stack)
121 {
122 const int field = 2 * sizeof(unsigned long);
123 unsigned long addr;
124
125 if (!stack) {
126 if (task && task != current)
127 stack = (unsigned long *) task->thread.reg29;
128 else
129 stack = (unsigned long *) &stack;
130 }
131
132 printk("Call Trace:");
133 #ifdef CONFIG_KALLSYMS
134 printk("\n");
135 #endif
136 while (!kstack_end(stack)) {
137 addr = *stack++;
138 if (__kernel_text_address(addr)) {
139 printk(" [<%0*lx>] ", field, addr);
140 print_symbol("%s\n", addr);
141 }
142 }
143 printk("\n");
144 }
145
146 /*
147 * The architecture-independent dump_stack generator
148 */
149 void dump_stack(void)
150 {
151 unsigned long stack;
152
153 show_trace(current, &stack);
154 }
155
156 EXPORT_SYMBOL(dump_stack);
157
158 void show_code(unsigned int *pc)
159 {
160 long i;
161
162 printk("\nCode:");
163
164 for(i = -3 ; i < 6 ; i++) {
165 unsigned int insn;
166 if (__get_user(insn, pc + i)) {
167 printk(" (Bad address in epc)\n");
168 break;
169 }
170 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
171 }
172 }
173
174 void show_regs(struct pt_regs *regs)
175 {
176 const int field = 2 * sizeof(unsigned long);
177 unsigned int cause = regs->cp0_cause;
178 int i;
179
180 printk("Cpu %d\n", smp_processor_id());
181
182 /*
183 * Saved main processor registers
184 */
185 for (i = 0; i < 32; ) {
186 if ((i % 4) == 0)
187 printk("$%2d :", i);
188 if (i == 0)
189 printk(" %0*lx", field, 0UL);
190 else if (i == 26 || i == 27)
191 printk(" %*s", field, "");
192 else
193 printk(" %0*lx", field, regs->regs[i]);
194
195 i++;
196 if ((i % 4) == 0)
197 printk("\n");
198 }
199
200 printk("Hi : %0*lx\n", field, regs->hi);
201 printk("Lo : %0*lx\n", field, regs->lo);
202
203 /*
204 * Saved cp0 registers
205 */
206 printk("epc : %0*lx ", field, regs->cp0_epc);
207 print_symbol("%s ", regs->cp0_epc);
208 printk(" %s\n", print_tainted());
209 printk("ra : %0*lx ", field, regs->regs[31]);
210 print_symbol("%s\n", regs->regs[31]);
211
212 printk("Status: %08x ", (uint32_t) regs->cp0_status);
213
214 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
215 if (regs->cp0_status & ST0_KUO)
216 printk("KUo ");
217 if (regs->cp0_status & ST0_IEO)
218 printk("IEo ");
219 if (regs->cp0_status & ST0_KUP)
220 printk("KUp ");
221 if (regs->cp0_status & ST0_IEP)
222 printk("IEp ");
223 if (regs->cp0_status & ST0_KUC)
224 printk("KUc ");
225 if (regs->cp0_status & ST0_IEC)
226 printk("IEc ");
227 } else {
228 if (regs->cp0_status & ST0_KX)
229 printk("KX ");
230 if (regs->cp0_status & ST0_SX)
231 printk("SX ");
232 if (regs->cp0_status & ST0_UX)
233 printk("UX ");
234 switch (regs->cp0_status & ST0_KSU) {
235 case KSU_USER:
236 printk("USER ");
237 break;
238 case KSU_SUPERVISOR:
239 printk("SUPERVISOR ");
240 break;
241 case KSU_KERNEL:
242 printk("KERNEL ");
243 break;
244 default:
245 printk("BAD_MODE ");
246 break;
247 }
248 if (regs->cp0_status & ST0_ERL)
249 printk("ERL ");
250 if (regs->cp0_status & ST0_EXL)
251 printk("EXL ");
252 if (regs->cp0_status & ST0_IE)
253 printk("IE ");
254 }
255 printk("\n");
256
257 printk("Cause : %08x\n", cause);
258
259 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
260 if (1 <= cause && cause <= 5)
261 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
262
263 printk("PrId : %08x\n", read_c0_prid());
264 }
265
266 void show_registers(struct pt_regs *regs)
267 {
268 show_regs(regs);
269 print_modules();
270 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
271 current->comm, current->pid, current_thread_info(), current);
272 show_stack(current, (long *) regs->regs[29]);
273 show_trace(current, (long *) regs->regs[29]);
274 show_code((unsigned int *) regs->cp0_epc);
275 printk("\n");
276 }
277
278 static DEFINE_SPINLOCK(die_lock);
279
280 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
281 {
282 static int die_counter;
283
284 console_verbose();
285 spin_lock_irq(&die_lock);
286 printk("%s[#%d]:\n", str, ++die_counter);
287 show_registers(regs);
288 spin_unlock_irq(&die_lock);
289 do_exit(SIGSEGV);
290 }
291
292 extern const struct exception_table_entry __start___dbe_table[];
293 extern const struct exception_table_entry __stop___dbe_table[];
294
295 void __declare_dbe_table(void)
296 {
297 __asm__ __volatile__(
298 ".section\t__dbe_table,\"a\"\n\t"
299 ".previous"
300 );
301 }
302
303 /* Given an address, look for it in the exception tables. */
304 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
305 {
306 const struct exception_table_entry *e;
307
308 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
309 if (!e)
310 e = search_module_dbetables(addr);
311 return e;
312 }
313
314 asmlinkage void do_be(struct pt_regs *regs)
315 {
316 const int field = 2 * sizeof(unsigned long);
317 const struct exception_table_entry *fixup = NULL;
318 int data = regs->cp0_cause & 4;
319 int action = MIPS_BE_FATAL;
320
321 /* XXX For now. Fixme, this searches the wrong table ... */
322 if (data && !user_mode(regs))
323 fixup = search_dbe_tables(exception_epc(regs));
324
325 if (fixup)
326 action = MIPS_BE_FIXUP;
327
328 if (board_be_handler)
329 action = board_be_handler(regs, fixup != 0);
330
331 switch (action) {
332 case MIPS_BE_DISCARD:
333 return;
334 case MIPS_BE_FIXUP:
335 if (fixup) {
336 regs->cp0_epc = fixup->nextinsn;
337 return;
338 }
339 break;
340 default:
341 break;
342 }
343
344 /*
345 * Assume it would be too dangerous to continue ...
346 */
347 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
348 data ? "Data" : "Instruction",
349 field, regs->cp0_epc, field, regs->regs[31]);
350 die_if_kernel("Oops", regs);
351 force_sig(SIGBUS, current);
352 }
353
354 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
355 {
356 unsigned int __user *epc;
357
358 epc = (unsigned int __user *) regs->cp0_epc +
359 ((regs->cp0_cause & CAUSEF_BD) != 0);
360 if (!get_user(*opcode, epc))
361 return 0;
362
363 force_sig(SIGSEGV, current);
364 return 1;
365 }
366
367 /*
368 * ll/sc emulation
369 */
370
371 #define OPCODE 0xfc000000
372 #define BASE 0x03e00000
373 #define RT 0x001f0000
374 #define OFFSET 0x0000ffff
375 #define LL 0xc0000000
376 #define SC 0xe0000000
377 #define SPEC3 0x7c000000
378 #define RD 0x0000f800
379 #define FUNC 0x0000003f
380 #define RDHWR 0x0000003b
381
382 /*
383 * The ll_bit is cleared by r*_switch.S
384 */
385
386 unsigned long ll_bit;
387
388 static struct task_struct *ll_task = NULL;
389
390 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
391 {
392 unsigned long value, __user *vaddr;
393 long offset;
394 int signal = 0;
395
396 /*
397 * analyse the ll instruction that just caused a ri exception
398 * and put the referenced address to addr.
399 */
400
401 /* sign extend offset */
402 offset = opcode & OFFSET;
403 offset <<= 16;
404 offset >>= 16;
405
406 vaddr = (unsigned long __user *)
407 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
408
409 if ((unsigned long)vaddr & 3) {
410 signal = SIGBUS;
411 goto sig;
412 }
413 if (get_user(value, vaddr)) {
414 signal = SIGSEGV;
415 goto sig;
416 }
417
418 preempt_disable();
419
420 if (ll_task == NULL || ll_task == current) {
421 ll_bit = 1;
422 } else {
423 ll_bit = 0;
424 }
425 ll_task = current;
426
427 preempt_enable();
428
429 compute_return_epc(regs);
430
431 regs->regs[(opcode & RT) >> 16] = value;
432
433 return;
434
435 sig:
436 force_sig(signal, current);
437 }
438
439 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
440 {
441 unsigned long __user *vaddr;
442 unsigned long reg;
443 long offset;
444 int signal = 0;
445
446 /*
447 * analyse the sc instruction that just caused a ri exception
448 * and put the referenced address to addr.
449 */
450
451 /* sign extend offset */
452 offset = opcode & OFFSET;
453 offset <<= 16;
454 offset >>= 16;
455
456 vaddr = (unsigned long __user *)
457 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
458 reg = (opcode & RT) >> 16;
459
460 if ((unsigned long)vaddr & 3) {
461 signal = SIGBUS;
462 goto sig;
463 }
464
465 preempt_disable();
466
467 if (ll_bit == 0 || ll_task != current) {
468 compute_return_epc(regs);
469 regs->regs[reg] = 0;
470 preempt_enable();
471 return;
472 }
473
474 preempt_enable();
475
476 if (put_user(regs->regs[reg], vaddr)) {
477 signal = SIGSEGV;
478 goto sig;
479 }
480
481 compute_return_epc(regs);
482 regs->regs[reg] = 1;
483
484 return;
485
486 sig:
487 force_sig(signal, current);
488 }
489
490 /*
491 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
492 * opcodes are supposed to result in coprocessor unusable exceptions if
493 * executed on ll/sc-less processors. That's the theory. In practice a
494 * few processors such as NEC's VR4100 throw reserved instruction exceptions
495 * instead, so we're doing the emulation thing in both exception handlers.
496 */
497 static inline int simulate_llsc(struct pt_regs *regs)
498 {
499 unsigned int opcode;
500
501 if (unlikely(get_insn_opcode(regs, &opcode)))
502 return -EFAULT;
503
504 if ((opcode & OPCODE) == LL) {
505 simulate_ll(regs, opcode);
506 return 0;
507 }
508 if ((opcode & OPCODE) == SC) {
509 simulate_sc(regs, opcode);
510 return 0;
511 }
512
513 return -EFAULT; /* Strange things going on ... */
514 }
515
516 /*
517 * Simulate trapping 'rdhwr' instructions to provide user accessible
518 * registers not implemented in hardware. The only current use of this
519 * is the thread area pointer.
520 */
521 static inline int simulate_rdhwr(struct pt_regs *regs)
522 {
523 struct thread_info *ti = task_thread_info(current);
524 unsigned int opcode;
525
526 if (unlikely(get_insn_opcode(regs, &opcode)))
527 return -EFAULT;
528
529 if (unlikely(compute_return_epc(regs)))
530 return -EFAULT;
531
532 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
533 int rd = (opcode & RD) >> 11;
534 int rt = (opcode & RT) >> 16;
535 switch (rd) {
536 case 29:
537 regs->regs[rt] = ti->tp_value;
538 return 0;
539 default:
540 return -EFAULT;
541 }
542 }
543
544 /* Not ours. */
545 return -EFAULT;
546 }
547
548 asmlinkage void do_ov(struct pt_regs *regs)
549 {
550 siginfo_t info;
551
552 die_if_kernel("Integer overflow", regs);
553
554 info.si_code = FPE_INTOVF;
555 info.si_signo = SIGFPE;
556 info.si_errno = 0;
557 info.si_addr = (void __user *) regs->cp0_epc;
558 force_sig_info(SIGFPE, &info, current);
559 }
560
561 /*
562 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
563 */
564 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
565 {
566 if (fcr31 & FPU_CSR_UNI_X) {
567 int sig;
568
569 preempt_disable();
570
571 #ifdef CONFIG_PREEMPT
572 if (!is_fpu_owner()) {
573 /* We might lose fpu before disabling preempt... */
574 own_fpu();
575 BUG_ON(!used_math());
576 restore_fp(current);
577 }
578 #endif
579 /*
580 * Unimplemented operation exception. If we've got the full
581 * software emulator on-board, let's use it...
582 *
583 * Force FPU to dump state into task/thread context. We're
584 * moving a lot of data here for what is probably a single
585 * instruction, but the alternative is to pre-decode the FP
586 * register operands before invoking the emulator, which seems
587 * a bit extreme for what should be an infrequent event.
588 */
589 save_fp(current);
590 /* Ensure 'resume' not overwrite saved fp context again. */
591 lose_fpu();
592
593 preempt_enable();
594
595 /* Run the emulator */
596 sig = fpu_emulator_cop1Handler (regs,
597 &current->thread.fpu.soft);
598
599 preempt_disable();
600
601 own_fpu(); /* Using the FPU again. */
602 /*
603 * We can't allow the emulated instruction to leave any of
604 * the cause bit set in $fcr31.
605 */
606 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
607
608 /* Restore the hardware register state */
609 restore_fp(current);
610
611 preempt_enable();
612
613 /* If something went wrong, signal */
614 if (sig)
615 force_sig(sig, current);
616
617 return;
618 }
619
620 force_sig(SIGFPE, current);
621 }
622
623 asmlinkage void do_bp(struct pt_regs *regs)
624 {
625 unsigned int opcode, bcode;
626 siginfo_t info;
627
628 die_if_kernel("Break instruction in kernel code", regs);
629
630 if (get_insn_opcode(regs, &opcode))
631 return;
632
633 /*
634 * There is the ancient bug in the MIPS assemblers that the break
635 * code starts left to bit 16 instead to bit 6 in the opcode.
636 * Gas is bug-compatible, but not always, grrr...
637 * We handle both cases with a simple heuristics. --macro
638 */
639 bcode = ((opcode >> 6) & ((1 << 20) - 1));
640 if (bcode < (1 << 10))
641 bcode <<= 10;
642
643 /*
644 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
645 * insns, even for break codes that indicate arithmetic failures.
646 * Weird ...)
647 * But should we continue the brokenness??? --macro
648 */
649 switch (bcode) {
650 case BRK_OVERFLOW << 10:
651 case BRK_DIVZERO << 10:
652 if (bcode == (BRK_DIVZERO << 10))
653 info.si_code = FPE_INTDIV;
654 else
655 info.si_code = FPE_INTOVF;
656 info.si_signo = SIGFPE;
657 info.si_errno = 0;
658 info.si_addr = (void __user *) regs->cp0_epc;
659 force_sig_info(SIGFPE, &info, current);
660 break;
661 default:
662 force_sig(SIGTRAP, current);
663 }
664 }
665
666 asmlinkage void do_tr(struct pt_regs *regs)
667 {
668 unsigned int opcode, tcode = 0;
669 siginfo_t info;
670
671 die_if_kernel("Trap instruction in kernel code", regs);
672
673 if (get_insn_opcode(regs, &opcode))
674 return;
675
676 /* Immediate versions don't provide a code. */
677 if (!(opcode & OPCODE))
678 tcode = ((opcode >> 6) & ((1 << 10) - 1));
679
680 /*
681 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
682 * insns, even for trap codes that indicate arithmetic failures.
683 * Weird ...)
684 * But should we continue the brokenness??? --macro
685 */
686 switch (tcode) {
687 case BRK_OVERFLOW:
688 case BRK_DIVZERO:
689 if (tcode == BRK_DIVZERO)
690 info.si_code = FPE_INTDIV;
691 else
692 info.si_code = FPE_INTOVF;
693 info.si_signo = SIGFPE;
694 info.si_errno = 0;
695 info.si_addr = (void __user *) regs->cp0_epc;
696 force_sig_info(SIGFPE, &info, current);
697 break;
698 default:
699 force_sig(SIGTRAP, current);
700 }
701 }
702
703 asmlinkage void do_ri(struct pt_regs *regs)
704 {
705 die_if_kernel("Reserved instruction in kernel code", regs);
706
707 if (!cpu_has_llsc)
708 if (!simulate_llsc(regs))
709 return;
710
711 if (!simulate_rdhwr(regs))
712 return;
713
714 force_sig(SIGILL, current);
715 }
716
717 asmlinkage void do_cpu(struct pt_regs *regs)
718 {
719 unsigned int cpid;
720
721 die_if_kernel("do_cpu invoked from kernel context!", regs);
722
723 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
724
725 switch (cpid) {
726 case 0:
727 if (!cpu_has_llsc)
728 if (!simulate_llsc(regs))
729 return;
730
731 if (!simulate_rdhwr(regs))
732 return;
733
734 break;
735
736 case 1:
737 preempt_disable();
738
739 own_fpu();
740 if (used_math()) { /* Using the FPU again. */
741 restore_fp(current);
742 } else { /* First time FPU user. */
743 init_fpu();
744 set_used_math();
745 }
746
747 preempt_enable();
748
749 if (!cpu_has_fpu) {
750 int sig = fpu_emulator_cop1Handler(regs,
751 &current->thread.fpu.soft);
752 if (sig)
753 force_sig(sig, current);
754 }
755
756 return;
757
758 case 2:
759 case 3:
760 break;
761 }
762
763 force_sig(SIGILL, current);
764 }
765
766 asmlinkage void do_mdmx(struct pt_regs *regs)
767 {
768 force_sig(SIGILL, current);
769 }
770
771 asmlinkage void do_watch(struct pt_regs *regs)
772 {
773 /*
774 * We use the watch exception where available to detect stack
775 * overflows.
776 */
777 dump_tlb_all();
778 show_regs(regs);
779 panic("Caught WATCH exception - probably caused by stack overflow.");
780 }
781
782 asmlinkage void do_mcheck(struct pt_regs *regs)
783 {
784 show_regs(regs);
785 dump_tlb_all();
786 /*
787 * Some chips may have other causes of machine check (e.g. SB1
788 * graduation timer)
789 */
790 panic("Caught Machine Check exception - %scaused by multiple "
791 "matching entries in the TLB.",
792 (regs->cp0_status & ST0_TS) ? "" : "not ");
793 }
794
795 asmlinkage void do_mt(struct pt_regs *regs)
796 {
797 die_if_kernel("MIPS MT Thread exception in kernel", regs);
798
799 force_sig(SIGILL, current);
800 }
801
802
803 asmlinkage void do_dsp(struct pt_regs *regs)
804 {
805 if (cpu_has_dsp)
806 panic("Unexpected DSP exception\n");
807
808 force_sig(SIGILL, current);
809 }
810
811 asmlinkage void do_reserved(struct pt_regs *regs)
812 {
813 /*
814 * Game over - no way to handle this if it ever occurs. Most probably
815 * caused by a new unknown cpu type or after another deadly
816 * hard/software error.
817 */
818 show_regs(regs);
819 panic("Caught reserved exception %ld - should not happen.",
820 (regs->cp0_cause & 0x7f) >> 2);
821 }
822
823 asmlinkage void do_default_vi(struct pt_regs *regs)
824 {
825 show_regs(regs);
826 panic("Caught unexpected vectored interrupt.");
827 }
828
829 /*
830 * Some MIPS CPUs can enable/disable for cache parity detection, but do
831 * it different ways.
832 */
833 static inline void parity_protection_init(void)
834 {
835 switch (current_cpu_data.cputype) {
836 case CPU_24K:
837 case CPU_5KC:
838 write_c0_ecc(0x80000000);
839 back_to_back_c0_hazard();
840 /* Set the PE bit (bit 31) in the c0_errctl register. */
841 printk(KERN_INFO "Cache parity protection %sabled\n",
842 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
843 break;
844 case CPU_20KC:
845 case CPU_25KF:
846 /* Clear the DE bit (bit 16) in the c0_status register. */
847 printk(KERN_INFO "Enable cache parity protection for "
848 "MIPS 20KC/25KF CPUs.\n");
849 clear_c0_status(ST0_DE);
850 break;
851 default:
852 break;
853 }
854 }
855
856 asmlinkage void cache_parity_error(void)
857 {
858 const int field = 2 * sizeof(unsigned long);
859 unsigned int reg_val;
860
861 /* For the moment, report the problem and hang. */
862 printk("Cache error exception:\n");
863 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
864 reg_val = read_c0_cacheerr();
865 printk("c0_cacheerr == %08x\n", reg_val);
866
867 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
868 reg_val & (1<<30) ? "secondary" : "primary",
869 reg_val & (1<<31) ? "data" : "insn");
870 printk("Error bits: %s%s%s%s%s%s%s\n",
871 reg_val & (1<<29) ? "ED " : "",
872 reg_val & (1<<28) ? "ET " : "",
873 reg_val & (1<<26) ? "EE " : "",
874 reg_val & (1<<25) ? "EB " : "",
875 reg_val & (1<<24) ? "EI " : "",
876 reg_val & (1<<23) ? "E1 " : "",
877 reg_val & (1<<22) ? "E0 " : "");
878 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
879
880 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
881 if (reg_val & (1<<22))
882 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
883
884 if (reg_val & (1<<23))
885 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
886 #endif
887
888 panic("Can't handle the cache error!");
889 }
890
891 /*
892 * SDBBP EJTAG debug exception handler.
893 * We skip the instruction and return to the next instruction.
894 */
895 void ejtag_exception_handler(struct pt_regs *regs)
896 {
897 const int field = 2 * sizeof(unsigned long);
898 unsigned long depc, old_epc;
899 unsigned int debug;
900
901 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
902 depc = read_c0_depc();
903 debug = read_c0_debug();
904 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
905 if (debug & 0x80000000) {
906 /*
907 * In branch delay slot.
908 * We cheat a little bit here and use EPC to calculate the
909 * debug return address (DEPC). EPC is restored after the
910 * calculation.
911 */
912 old_epc = regs->cp0_epc;
913 regs->cp0_epc = depc;
914 __compute_return_epc(regs);
915 depc = regs->cp0_epc;
916 regs->cp0_epc = old_epc;
917 } else
918 depc += 4;
919 write_c0_depc(depc);
920
921 #if 0
922 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
923 write_c0_debug(debug | 0x100);
924 #endif
925 }
926
927 /*
928 * NMI exception handler.
929 */
930 void nmi_exception_handler(struct pt_regs *regs)
931 {
932 printk("NMI taken!!!!\n");
933 die("NMI", regs);
934 while(1) ;
935 }
936
937 #define VECTORSPACING 0x100 /* for EI/VI mode */
938
939 unsigned long ebase;
940 unsigned long exception_handlers[32];
941 unsigned long vi_handlers[64];
942
943 /*
944 * As a side effect of the way this is implemented we're limited
945 * to interrupt handlers in the address range from
946 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
947 */
948 void *set_except_vector(int n, void *addr)
949 {
950 unsigned long handler = (unsigned long) addr;
951 unsigned long old_handler = exception_handlers[n];
952
953 exception_handlers[n] = handler;
954 if (n == 0 && cpu_has_divec) {
955 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
956 (0x03ffffff & (handler >> 2));
957 flush_icache_range(ebase + 0x200, ebase + 0x204);
958 }
959 return (void *)old_handler;
960 }
961
962 #ifdef CONFIG_CPU_MIPSR2
963 /*
964 * MIPSR2 shadow register set allocation
965 * FIXME: SMP...
966 */
967
968 static struct shadow_registers {
969 /*
970 * Number of shadow register sets supported
971 */
972 unsigned long sr_supported;
973 /*
974 * Bitmap of allocated shadow registers
975 */
976 unsigned long sr_allocated;
977 } shadow_registers;
978
979 void mips_srs_init(void)
980 {
981 #ifdef CONFIG_CPU_MIPSR2_SRS
982 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
983 printk(KERN_INFO "%d MIPSR2 register sets available\n",
984 shadow_registers.sr_supported);
985 #endif
986 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
987 }
988
989 int mips_srs_max(void)
990 {
991 return shadow_registers.sr_supported;
992 }
993
994 int mips_srs_alloc(void)
995 {
996 struct shadow_registers *sr = &shadow_registers;
997 int set;
998
999 again:
1000 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1001 if (set >= sr->sr_supported)
1002 return -1;
1003
1004 if (test_and_set_bit(set, &sr->sr_allocated))
1005 goto again;
1006
1007 return set;
1008 }
1009
1010 void mips_srs_free (int set)
1011 {
1012 struct shadow_registers *sr = &shadow_registers;
1013
1014 clear_bit(set, &sr->sr_allocated);
1015 }
1016
1017 static void *set_vi_srs_handler(int n, void *addr, int srs)
1018 {
1019 unsigned long handler;
1020 unsigned long old_handler = vi_handlers[n];
1021 u32 *w;
1022 unsigned char *b;
1023
1024 if (!cpu_has_veic && !cpu_has_vint)
1025 BUG();
1026
1027 if (addr == NULL) {
1028 handler = (unsigned long) do_default_vi;
1029 srs = 0;
1030 }
1031 else
1032 handler = (unsigned long) addr;
1033 vi_handlers[n] = (unsigned long) addr;
1034
1035 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1036
1037 if (srs >= mips_srs_max())
1038 panic("Shadow register set %d not supported", srs);
1039
1040 if (cpu_has_veic) {
1041 if (board_bind_eic_interrupt)
1042 board_bind_eic_interrupt (n, srs);
1043 }
1044 else if (cpu_has_vint) {
1045 /* SRSMap is only defined if shadow sets are implemented */
1046 if (mips_srs_max() > 1)
1047 change_c0_srsmap (0xf << n*4, srs << n*4);
1048 }
1049
1050 if (srs == 0) {
1051 /*
1052 * If no shadow set is selected then use the default handler
1053 * that does normal register saving and a standard interrupt exit
1054 */
1055
1056 extern char except_vec_vi, except_vec_vi_lui;
1057 extern char except_vec_vi_ori, except_vec_vi_end;
1058 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1059 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1060 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1061
1062 if (handler_len > VECTORSPACING) {
1063 /*
1064 * Sigh... panicing won't help as the console
1065 * is probably not configured :(
1066 */
1067 panic ("VECTORSPACING too small");
1068 }
1069
1070 memcpy (b, &except_vec_vi, handler_len);
1071 w = (u32 *)(b + lui_offset);
1072 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1073 w = (u32 *)(b + ori_offset);
1074 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1075 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1076 }
1077 else {
1078 /*
1079 * In other cases jump directly to the interrupt handler
1080 *
1081 * It is the handlers responsibility to save registers if required
1082 * (eg hi/lo) and return from the exception using "eret"
1083 */
1084 w = (u32 *)b;
1085 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1086 *w = 0;
1087 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1088 }
1089
1090 return (void *)old_handler;
1091 }
1092
1093 void *set_vi_handler (int n, void *addr)
1094 {
1095 return set_vi_srs_handler(n, addr, 0);
1096 }
1097 #endif
1098
1099 /*
1100 * This is used by native signal handling
1101 */
1102 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1103 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1104
1105 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1106 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1107
1108 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1109 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1110
1111 static inline void signal_init(void)
1112 {
1113 if (cpu_has_fpu) {
1114 save_fp_context = _save_fp_context;
1115 restore_fp_context = _restore_fp_context;
1116 } else {
1117 save_fp_context = fpu_emulator_save_context;
1118 restore_fp_context = fpu_emulator_restore_context;
1119 }
1120 }
1121
1122 #ifdef CONFIG_MIPS32_COMPAT
1123
1124 /*
1125 * This is used by 32-bit signal stuff on the 64-bit kernel
1126 */
1127 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1128 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1129
1130 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1131 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1132
1133 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1134 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1135
1136 static inline void signal32_init(void)
1137 {
1138 if (cpu_has_fpu) {
1139 save_fp_context32 = _save_fp_context32;
1140 restore_fp_context32 = _restore_fp_context32;
1141 } else {
1142 save_fp_context32 = fpu_emulator_save_context32;
1143 restore_fp_context32 = fpu_emulator_restore_context32;
1144 }
1145 }
1146 #endif
1147
1148 extern void cpu_cache_init(void);
1149 extern void tlb_init(void);
1150 extern void flush_tlb_handlers(void);
1151
1152 void __init per_cpu_trap_init(void)
1153 {
1154 unsigned int cpu = smp_processor_id();
1155 unsigned int status_set = ST0_CU0;
1156
1157 /*
1158 * Disable coprocessors and select 32-bit or 64-bit addressing
1159 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1160 * flag that some firmware may have left set and the TS bit (for
1161 * IP27). Set XX for ISA IV code to work.
1162 */
1163 #ifdef CONFIG_64BIT
1164 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1165 #endif
1166 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1167 status_set |= ST0_XX;
1168 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1169 status_set);
1170
1171 if (cpu_has_dsp)
1172 set_c0_status(ST0_MX);
1173
1174 #ifdef CONFIG_CPU_MIPSR2
1175 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1176 #endif
1177
1178 /*
1179 * Interrupt handling.
1180 */
1181 if (cpu_has_veic || cpu_has_vint) {
1182 write_c0_ebase (ebase);
1183 /* Setting vector spacing enables EI/VI mode */
1184 change_c0_intctl (0x3e0, VECTORSPACING);
1185 }
1186 if (cpu_has_divec) {
1187 if (cpu_has_mipsmt) {
1188 unsigned int vpflags = dvpe();
1189 set_c0_cause(CAUSEF_IV);
1190 evpe(vpflags);
1191 } else
1192 set_c0_cause(CAUSEF_IV);
1193 }
1194
1195 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1196 TLBMISS_HANDLER_SETUP();
1197
1198 atomic_inc(&init_mm.mm_count);
1199 current->active_mm = &init_mm;
1200 BUG_ON(current->mm);
1201 enter_lazy_tlb(&init_mm, current);
1202
1203 cpu_cache_init();
1204 tlb_init();
1205 }
1206
1207 /* Install CPU exception handler */
1208 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1209 {
1210 memcpy((void *)(ebase + offset), addr, size);
1211 flush_icache_range(ebase + offset, ebase + offset + size);
1212 }
1213
1214 /* Install uncached CPU exception handler */
1215 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1216 {
1217 #ifdef CONFIG_32BIT
1218 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1219 #endif
1220 #ifdef CONFIG_64BIT
1221 unsigned long uncached_ebase = TO_UNCAC(ebase);
1222 #endif
1223
1224 memcpy((void *)(uncached_ebase + offset), addr, size);
1225 }
1226
1227 void __init trap_init(void)
1228 {
1229 extern char except_vec3_generic, except_vec3_r4000;
1230 extern char except_vec4;
1231 unsigned long i;
1232
1233 if (cpu_has_veic || cpu_has_vint)
1234 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1235 else
1236 ebase = CAC_BASE;
1237
1238 #ifdef CONFIG_CPU_MIPSR2
1239 mips_srs_init();
1240 #endif
1241
1242 per_cpu_trap_init();
1243
1244 /*
1245 * Copy the generic exception handlers to their final destination.
1246 * This will be overriden later as suitable for a particular
1247 * configuration.
1248 */
1249 set_handler(0x180, &except_vec3_generic, 0x80);
1250
1251 /*
1252 * Setup default vectors
1253 */
1254 for (i = 0; i <= 31; i++)
1255 set_except_vector(i, handle_reserved);
1256
1257 /*
1258 * Copy the EJTAG debug exception vector handler code to it's final
1259 * destination.
1260 */
1261 if (cpu_has_ejtag && board_ejtag_handler_setup)
1262 board_ejtag_handler_setup ();
1263
1264 /*
1265 * Only some CPUs have the watch exceptions.
1266 */
1267 if (cpu_has_watch)
1268 set_except_vector(23, handle_watch);
1269
1270 /*
1271 * Initialise interrupt handlers
1272 */
1273 if (cpu_has_veic || cpu_has_vint) {
1274 int nvec = cpu_has_veic ? 64 : 8;
1275 for (i = 0; i < nvec; i++)
1276 set_vi_handler(i, NULL);
1277 }
1278 else if (cpu_has_divec)
1279 set_handler(0x200, &except_vec4, 0x8);
1280
1281 /*
1282 * Some CPUs can enable/disable for cache parity detection, but does
1283 * it different ways.
1284 */
1285 parity_protection_init();
1286
1287 /*
1288 * The Data Bus Errors / Instruction Bus Errors are signaled
1289 * by external hardware. Therefore these two exceptions
1290 * may have board specific handlers.
1291 */
1292 if (board_be_init)
1293 board_be_init();
1294
1295 set_except_vector(0, handle_int);
1296 set_except_vector(1, handle_tlbm);
1297 set_except_vector(2, handle_tlbl);
1298 set_except_vector(3, handle_tlbs);
1299
1300 set_except_vector(4, handle_adel);
1301 set_except_vector(5, handle_ades);
1302
1303 set_except_vector(6, handle_ibe);
1304 set_except_vector(7, handle_dbe);
1305
1306 set_except_vector(8, handle_sys);
1307 set_except_vector(9, handle_bp);
1308 set_except_vector(10, handle_ri);
1309 set_except_vector(11, handle_cpu);
1310 set_except_vector(12, handle_ov);
1311 set_except_vector(13, handle_tr);
1312
1313 if (current_cpu_data.cputype == CPU_R6000 ||
1314 current_cpu_data.cputype == CPU_R6000A) {
1315 /*
1316 * The R6000 is the only R-series CPU that features a machine
1317 * check exception (similar to the R4000 cache error) and
1318 * unaligned ldc1/sdc1 exception. The handlers have not been
1319 * written yet. Well, anyway there is no R6000 machine on the
1320 * current list of targets for Linux/MIPS.
1321 * (Duh, crap, there is someone with a triple R6k machine)
1322 */
1323 //set_except_vector(14, handle_mc);
1324 //set_except_vector(15, handle_ndc);
1325 }
1326
1327
1328 if (board_nmi_handler_setup)
1329 board_nmi_handler_setup();
1330
1331 if (cpu_has_fpu && !cpu_has_nofpuex)
1332 set_except_vector(15, handle_fpe);
1333
1334 set_except_vector(22, handle_mdmx);
1335
1336 if (cpu_has_mcheck)
1337 set_except_vector(24, handle_mcheck);
1338
1339 if (cpu_has_mipsmt)
1340 set_except_vector(25, handle_mt);
1341
1342 if (cpu_has_dsp)
1343 set_except_vector(26, handle_dsp);
1344
1345 if (cpu_has_vce)
1346 /* Special exception: R4[04]00 uses also the divec space. */
1347 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1348 else if (cpu_has_4kex)
1349 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1350 else
1351 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1352
1353 signal_init();
1354 #ifdef CONFIG_MIPS32_COMPAT
1355 signal32_init();
1356 #endif
1357
1358 flush_icache_range(ebase, ebase + 0x400);
1359 flush_tlb_handlers();
1360 }
This page took 0.107082 seconds and 4 git commands to generate.