MIPS: microMIPS: Floating point support.
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/kexec.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/kallsyms.h>
25 #include <linux/bootmem.h>
26 #include <linux/interrupt.h>
27 #include <linux/ptrace.h>
28 #include <linux/kgdb.h>
29 #include <linux/kdebug.h>
30 #include <linux/kprobes.h>
31 #include <linux/notifier.h>
32 #include <linux/kdb.h>
33 #include <linux/irq.h>
34 #include <linux/perf_event.h>
35
36 #include <asm/bootinfo.h>
37 #include <asm/branch.h>
38 #include <asm/break.h>
39 #include <asm/cop2.h>
40 #include <asm/cpu.h>
41 #include <asm/dsp.h>
42 #include <asm/fpu.h>
43 #include <asm/fpu_emulator.h>
44 #include <asm/mipsregs.h>
45 #include <asm/mipsmtregs.h>
46 #include <asm/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/ptrace.h>
49 #include <asm/sections.h>
50 #include <asm/tlbdebug.h>
51 #include <asm/traps.h>
52 #include <asm/uaccess.h>
53 #include <asm/watch.h>
54 #include <asm/mmu_context.h>
55 #include <asm/types.h>
56 #include <asm/stacktrace.h>
57 #include <asm/uasm.h>
58
59 extern void check_wait(void);
60 extern asmlinkage void r4k_wait(void);
61 extern asmlinkage void rollback_handle_int(void);
62 extern asmlinkage void handle_int(void);
63 extern asmlinkage void handle_tlbm(void);
64 extern asmlinkage void handle_tlbl(void);
65 extern asmlinkage void handle_tlbs(void);
66 extern asmlinkage void handle_adel(void);
67 extern asmlinkage void handle_ades(void);
68 extern asmlinkage void handle_ibe(void);
69 extern asmlinkage void handle_dbe(void);
70 extern asmlinkage void handle_sys(void);
71 extern asmlinkage void handle_bp(void);
72 extern asmlinkage void handle_ri(void);
73 extern asmlinkage void handle_ri_rdhwr_vivt(void);
74 extern asmlinkage void handle_ri_rdhwr(void);
75 extern asmlinkage void handle_cpu(void);
76 extern asmlinkage void handle_ov(void);
77 extern asmlinkage void handle_tr(void);
78 extern asmlinkage void handle_fpe(void);
79 extern asmlinkage void handle_mdmx(void);
80 extern asmlinkage void handle_watch(void);
81 extern asmlinkage void handle_mt(void);
82 extern asmlinkage void handle_dsp(void);
83 extern asmlinkage void handle_mcheck(void);
84 extern asmlinkage void handle_reserved(void);
85
86 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
87 struct mips_fpu_struct *ctx, int has_fpu,
88 void *__user *fault_addr);
89
90 void (*board_be_init)(void);
91 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
92 void (*board_nmi_handler_setup)(void);
93 void (*board_ejtag_handler_setup)(void);
94 void (*board_bind_eic_interrupt)(int irq, int regset);
95 void (*board_ebase_setup)(void);
96 void __cpuinitdata(*board_cache_error_setup)(void);
97
98 static void show_raw_backtrace(unsigned long reg29)
99 {
100 unsigned long *sp = (unsigned long *)(reg29 & ~3);
101 unsigned long addr;
102
103 printk("Call Trace:");
104 #ifdef CONFIG_KALLSYMS
105 printk("\n");
106 #endif
107 while (!kstack_end(sp)) {
108 unsigned long __user *p =
109 (unsigned long __user *)(unsigned long)sp++;
110 if (__get_user(addr, p)) {
111 printk(" (Bad stack address)");
112 break;
113 }
114 if (__kernel_text_address(addr))
115 print_ip_sym(addr);
116 }
117 printk("\n");
118 }
119
120 #ifdef CONFIG_KALLSYMS
121 int raw_show_trace;
122 static int __init set_raw_show_trace(char *str)
123 {
124 raw_show_trace = 1;
125 return 1;
126 }
127 __setup("raw_show_trace", set_raw_show_trace);
128 #endif
129
130 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
131 {
132 unsigned long sp = regs->regs[29];
133 unsigned long ra = regs->regs[31];
134 unsigned long pc = regs->cp0_epc;
135
136 if (!task)
137 task = current;
138
139 if (raw_show_trace || !__kernel_text_address(pc)) {
140 show_raw_backtrace(sp);
141 return;
142 }
143 printk("Call Trace:\n");
144 do {
145 print_ip_sym(pc);
146 pc = unwind_stack(task, &sp, pc, &ra);
147 } while (pc);
148 printk("\n");
149 }
150
151 /*
152 * This routine abuses get_user()/put_user() to reference pointers
153 * with at least a bit of error checking ...
154 */
155 static void show_stacktrace(struct task_struct *task,
156 const struct pt_regs *regs)
157 {
158 const int field = 2 * sizeof(unsigned long);
159 long stackdata;
160 int i;
161 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
162
163 printk("Stack :");
164 i = 0;
165 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
166 if (i && ((i % (64 / field)) == 0))
167 printk("\n ");
168 if (i > 39) {
169 printk(" ...");
170 break;
171 }
172
173 if (__get_user(stackdata, sp++)) {
174 printk(" (Bad stack address)");
175 break;
176 }
177
178 printk(" %0*lx", field, stackdata);
179 i++;
180 }
181 printk("\n");
182 show_backtrace(task, regs);
183 }
184
185 void show_stack(struct task_struct *task, unsigned long *sp)
186 {
187 struct pt_regs regs;
188 if (sp) {
189 regs.regs[29] = (unsigned long)sp;
190 regs.regs[31] = 0;
191 regs.cp0_epc = 0;
192 } else {
193 if (task && task != current) {
194 regs.regs[29] = task->thread.reg29;
195 regs.regs[31] = 0;
196 regs.cp0_epc = task->thread.reg31;
197 #ifdef CONFIG_KGDB_KDB
198 } else if (atomic_read(&kgdb_active) != -1 &&
199 kdb_current_regs) {
200 memcpy(&regs, kdb_current_regs, sizeof(regs));
201 #endif /* CONFIG_KGDB_KDB */
202 } else {
203 prepare_frametrace(&regs);
204 }
205 }
206 show_stacktrace(task, &regs);
207 }
208
209 /*
210 * The architecture-independent dump_stack generator
211 */
212 void dump_stack(void)
213 {
214 struct pt_regs regs;
215
216 prepare_frametrace(&regs);
217 show_backtrace(current, &regs);
218 }
219
220 EXPORT_SYMBOL(dump_stack);
221
222 static void show_code(unsigned int __user *pc)
223 {
224 long i;
225 unsigned short __user *pc16 = NULL;
226
227 printk("\nCode:");
228
229 if ((unsigned long)pc & 1)
230 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
231 for(i = -3 ; i < 6 ; i++) {
232 unsigned int insn;
233 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
234 printk(" (Bad address in epc)\n");
235 break;
236 }
237 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
238 }
239 }
240
241 static void __show_regs(const struct pt_regs *regs)
242 {
243 const int field = 2 * sizeof(unsigned long);
244 unsigned int cause = regs->cp0_cause;
245 int i;
246
247 printk("Cpu %d\n", smp_processor_id());
248
249 /*
250 * Saved main processor registers
251 */
252 for (i = 0; i < 32; ) {
253 if ((i % 4) == 0)
254 printk("$%2d :", i);
255 if (i == 0)
256 printk(" %0*lx", field, 0UL);
257 else if (i == 26 || i == 27)
258 printk(" %*s", field, "");
259 else
260 printk(" %0*lx", field, regs->regs[i]);
261
262 i++;
263 if ((i % 4) == 0)
264 printk("\n");
265 }
266
267 #ifdef CONFIG_CPU_HAS_SMARTMIPS
268 printk("Acx : %0*lx\n", field, regs->acx);
269 #endif
270 printk("Hi : %0*lx\n", field, regs->hi);
271 printk("Lo : %0*lx\n", field, regs->lo);
272
273 /*
274 * Saved cp0 registers
275 */
276 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
277 (void *) regs->cp0_epc);
278 printk(" %s\n", print_tainted());
279 printk("ra : %0*lx %pS\n", field, regs->regs[31],
280 (void *) regs->regs[31]);
281
282 printk("Status: %08x ", (uint32_t) regs->cp0_status);
283
284 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
285 if (regs->cp0_status & ST0_KUO)
286 printk("KUo ");
287 if (regs->cp0_status & ST0_IEO)
288 printk("IEo ");
289 if (regs->cp0_status & ST0_KUP)
290 printk("KUp ");
291 if (regs->cp0_status & ST0_IEP)
292 printk("IEp ");
293 if (regs->cp0_status & ST0_KUC)
294 printk("KUc ");
295 if (regs->cp0_status & ST0_IEC)
296 printk("IEc ");
297 } else {
298 if (regs->cp0_status & ST0_KX)
299 printk("KX ");
300 if (regs->cp0_status & ST0_SX)
301 printk("SX ");
302 if (regs->cp0_status & ST0_UX)
303 printk("UX ");
304 switch (regs->cp0_status & ST0_KSU) {
305 case KSU_USER:
306 printk("USER ");
307 break;
308 case KSU_SUPERVISOR:
309 printk("SUPERVISOR ");
310 break;
311 case KSU_KERNEL:
312 printk("KERNEL ");
313 break;
314 default:
315 printk("BAD_MODE ");
316 break;
317 }
318 if (regs->cp0_status & ST0_ERL)
319 printk("ERL ");
320 if (regs->cp0_status & ST0_EXL)
321 printk("EXL ");
322 if (regs->cp0_status & ST0_IE)
323 printk("IE ");
324 }
325 printk("\n");
326
327 printk("Cause : %08x\n", cause);
328
329 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
330 if (1 <= cause && cause <= 5)
331 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
332
333 printk("PrId : %08x (%s)\n", read_c0_prid(),
334 cpu_name_string());
335 }
336
337 /*
338 * FIXME: really the generic show_regs should take a const pointer argument.
339 */
340 void show_regs(struct pt_regs *regs)
341 {
342 __show_regs((struct pt_regs *)regs);
343 }
344
345 void show_registers(struct pt_regs *regs)
346 {
347 const int field = 2 * sizeof(unsigned long);
348
349 __show_regs(regs);
350 print_modules();
351 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
352 current->comm, current->pid, current_thread_info(), current,
353 field, current_thread_info()->tp_value);
354 if (cpu_has_userlocal) {
355 unsigned long tls;
356
357 tls = read_c0_userlocal();
358 if (tls != current_thread_info()->tp_value)
359 printk("*HwTLS: %0*lx\n", field, tls);
360 }
361
362 show_stacktrace(current, regs);
363 show_code((unsigned int __user *) regs->cp0_epc);
364 printk("\n");
365 }
366
367 static int regs_to_trapnr(struct pt_regs *regs)
368 {
369 return (regs->cp0_cause >> 2) & 0x1f;
370 }
371
372 static DEFINE_RAW_SPINLOCK(die_lock);
373
374 void __noreturn die(const char *str, struct pt_regs *regs)
375 {
376 static int die_counter;
377 int sig = SIGSEGV;
378 #ifdef CONFIG_MIPS_MT_SMTC
379 unsigned long dvpret;
380 #endif /* CONFIG_MIPS_MT_SMTC */
381
382 oops_enter();
383
384 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
385 sig = 0;
386
387 console_verbose();
388 raw_spin_lock_irq(&die_lock);
389 #ifdef CONFIG_MIPS_MT_SMTC
390 dvpret = dvpe();
391 #endif /* CONFIG_MIPS_MT_SMTC */
392 bust_spinlocks(1);
393 #ifdef CONFIG_MIPS_MT_SMTC
394 mips_mt_regdump(dvpret);
395 #endif /* CONFIG_MIPS_MT_SMTC */
396
397 printk("%s[#%d]:\n", str, ++die_counter);
398 show_registers(regs);
399 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400 raw_spin_unlock_irq(&die_lock);
401
402 oops_exit();
403
404 if (in_interrupt())
405 panic("Fatal exception in interrupt");
406
407 if (panic_on_oops) {
408 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
409 ssleep(5);
410 panic("Fatal exception");
411 }
412
413 if (regs && kexec_should_crash(current))
414 crash_kexec(regs);
415
416 do_exit(sig);
417 }
418
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421
422 __asm__(
423 " .section __dbe_table, \"a\"\n"
424 " .previous \n");
425
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 const struct exception_table_entry *e;
430
431 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
432 if (!e)
433 e = search_module_dbetables(addr);
434 return e;
435 }
436
437 asmlinkage void do_be(struct pt_regs *regs)
438 {
439 const int field = 2 * sizeof(unsigned long);
440 const struct exception_table_entry *fixup = NULL;
441 int data = regs->cp0_cause & 4;
442 int action = MIPS_BE_FATAL;
443
444 /* XXX For now. Fixme, this searches the wrong table ... */
445 if (data && !user_mode(regs))
446 fixup = search_dbe_tables(exception_epc(regs));
447
448 if (fixup)
449 action = MIPS_BE_FIXUP;
450
451 if (board_be_handler)
452 action = board_be_handler(regs, fixup != NULL);
453
454 switch (action) {
455 case MIPS_BE_DISCARD:
456 return;
457 case MIPS_BE_FIXUP:
458 if (fixup) {
459 regs->cp0_epc = fixup->nextinsn;
460 return;
461 }
462 break;
463 default:
464 break;
465 }
466
467 /*
468 * Assume it would be too dangerous to continue ...
469 */
470 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
471 data ? "Data" : "Instruction",
472 field, regs->cp0_epc, field, regs->regs[31]);
473 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
474 == NOTIFY_STOP)
475 return;
476
477 die_if_kernel("Oops", regs);
478 force_sig(SIGBUS, current);
479 }
480
481 /*
482 * ll/sc, rdhwr, sync emulation
483 */
484
485 #define OPCODE 0xfc000000
486 #define BASE 0x03e00000
487 #define RT 0x001f0000
488 #define OFFSET 0x0000ffff
489 #define LL 0xc0000000
490 #define SC 0xe0000000
491 #define SPEC0 0x00000000
492 #define SPEC3 0x7c000000
493 #define RD 0x0000f800
494 #define FUNC 0x0000003f
495 #define SYNC 0x0000000f
496 #define RDHWR 0x0000003b
497
498 /*
499 * The ll_bit is cleared by r*_switch.S
500 */
501
502 unsigned int ll_bit;
503 struct task_struct *ll_task;
504
505 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
506 {
507 unsigned long value, __user *vaddr;
508 long offset;
509
510 /*
511 * analyse the ll instruction that just caused a ri exception
512 * and put the referenced address to addr.
513 */
514
515 /* sign extend offset */
516 offset = opcode & OFFSET;
517 offset <<= 16;
518 offset >>= 16;
519
520 vaddr = (unsigned long __user *)
521 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
522
523 if ((unsigned long)vaddr & 3)
524 return SIGBUS;
525 if (get_user(value, vaddr))
526 return SIGSEGV;
527
528 preempt_disable();
529
530 if (ll_task == NULL || ll_task == current) {
531 ll_bit = 1;
532 } else {
533 ll_bit = 0;
534 }
535 ll_task = current;
536
537 preempt_enable();
538
539 regs->regs[(opcode & RT) >> 16] = value;
540
541 return 0;
542 }
543
544 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
545 {
546 unsigned long __user *vaddr;
547 unsigned long reg;
548 long offset;
549
550 /*
551 * analyse the sc instruction that just caused a ri exception
552 * and put the referenced address to addr.
553 */
554
555 /* sign extend offset */
556 offset = opcode & OFFSET;
557 offset <<= 16;
558 offset >>= 16;
559
560 vaddr = (unsigned long __user *)
561 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
562 reg = (opcode & RT) >> 16;
563
564 if ((unsigned long)vaddr & 3)
565 return SIGBUS;
566
567 preempt_disable();
568
569 if (ll_bit == 0 || ll_task != current) {
570 regs->regs[reg] = 0;
571 preempt_enable();
572 return 0;
573 }
574
575 preempt_enable();
576
577 if (put_user(regs->regs[reg], vaddr))
578 return SIGSEGV;
579
580 regs->regs[reg] = 1;
581
582 return 0;
583 }
584
585 /*
586 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
587 * opcodes are supposed to result in coprocessor unusable exceptions if
588 * executed on ll/sc-less processors. That's the theory. In practice a
589 * few processors such as NEC's VR4100 throw reserved instruction exceptions
590 * instead, so we're doing the emulation thing in both exception handlers.
591 */
592 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
593 {
594 if ((opcode & OPCODE) == LL) {
595 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
596 1, regs, 0);
597 return simulate_ll(regs, opcode);
598 }
599 if ((opcode & OPCODE) == SC) {
600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
601 1, regs, 0);
602 return simulate_sc(regs, opcode);
603 }
604
605 return -1; /* Must be something else ... */
606 }
607
608 /*
609 * Simulate trapping 'rdhwr' instructions to provide user accessible
610 * registers not implemented in hardware.
611 */
612 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
613 {
614 struct thread_info *ti = task_thread_info(current);
615
616 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
617 int rd = (opcode & RD) >> 11;
618 int rt = (opcode & RT) >> 16;
619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 1, regs, 0);
621 switch (rd) {
622 case 0: /* CPU number */
623 regs->regs[rt] = smp_processor_id();
624 return 0;
625 case 1: /* SYNCI length */
626 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
627 current_cpu_data.icache.linesz);
628 return 0;
629 case 2: /* Read count register */
630 regs->regs[rt] = read_c0_count();
631 return 0;
632 case 3: /* Count register resolution */
633 switch (current_cpu_data.cputype) {
634 case CPU_20KC:
635 case CPU_25KF:
636 regs->regs[rt] = 1;
637 break;
638 default:
639 regs->regs[rt] = 2;
640 }
641 return 0;
642 case 29:
643 regs->regs[rt] = ti->tp_value;
644 return 0;
645 default:
646 return -1;
647 }
648 }
649
650 /* Not ours. */
651 return -1;
652 }
653
654 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
655 {
656 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
657 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
658 1, regs, 0);
659 return 0;
660 }
661
662 return -1; /* Must be something else ... */
663 }
664
665 asmlinkage void do_ov(struct pt_regs *regs)
666 {
667 siginfo_t info;
668
669 die_if_kernel("Integer overflow", regs);
670
671 info.si_code = FPE_INTOVF;
672 info.si_signo = SIGFPE;
673 info.si_errno = 0;
674 info.si_addr = (void __user *) regs->cp0_epc;
675 force_sig_info(SIGFPE, &info, current);
676 }
677
678 int process_fpemu_return(int sig, void __user *fault_addr)
679 {
680 if (sig == SIGSEGV || sig == SIGBUS) {
681 struct siginfo si = {0};
682 si.si_addr = fault_addr;
683 si.si_signo = sig;
684 if (sig == SIGSEGV) {
685 if (find_vma(current->mm, (unsigned long)fault_addr))
686 si.si_code = SEGV_ACCERR;
687 else
688 si.si_code = SEGV_MAPERR;
689 } else {
690 si.si_code = BUS_ADRERR;
691 }
692 force_sig_info(sig, &si, current);
693 return 1;
694 } else if (sig) {
695 force_sig(sig, current);
696 return 1;
697 } else {
698 return 0;
699 }
700 }
701
702 /*
703 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
704 */
705 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
706 {
707 siginfo_t info = {0};
708
709 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
710 == NOTIFY_STOP)
711 return;
712 die_if_kernel("FP exception in kernel code", regs);
713
714 if (fcr31 & FPU_CSR_UNI_X) {
715 int sig;
716 void __user *fault_addr = NULL;
717
718 /*
719 * Unimplemented operation exception. If we've got the full
720 * software emulator on-board, let's use it...
721 *
722 * Force FPU to dump state into task/thread context. We're
723 * moving a lot of data here for what is probably a single
724 * instruction, but the alternative is to pre-decode the FP
725 * register operands before invoking the emulator, which seems
726 * a bit extreme for what should be an infrequent event.
727 */
728 /* Ensure 'resume' not overwrite saved fp context again. */
729 lose_fpu(1);
730
731 /* Run the emulator */
732 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
733 &fault_addr);
734
735 /*
736 * We can't allow the emulated instruction to leave any of
737 * the cause bit set in $fcr31.
738 */
739 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
740
741 /* Restore the hardware register state */
742 own_fpu(1); /* Using the FPU again. */
743
744 /* If something went wrong, signal */
745 process_fpemu_return(sig, fault_addr);
746
747 return;
748 } else if (fcr31 & FPU_CSR_INV_X)
749 info.si_code = FPE_FLTINV;
750 else if (fcr31 & FPU_CSR_DIV_X)
751 info.si_code = FPE_FLTDIV;
752 else if (fcr31 & FPU_CSR_OVF_X)
753 info.si_code = FPE_FLTOVF;
754 else if (fcr31 & FPU_CSR_UDF_X)
755 info.si_code = FPE_FLTUND;
756 else if (fcr31 & FPU_CSR_INE_X)
757 info.si_code = FPE_FLTRES;
758 else
759 info.si_code = __SI_FAULT;
760 info.si_signo = SIGFPE;
761 info.si_errno = 0;
762 info.si_addr = (void __user *) regs->cp0_epc;
763 force_sig_info(SIGFPE, &info, current);
764 }
765
766 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
767 const char *str)
768 {
769 siginfo_t info;
770 char b[40];
771
772 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
773 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
774 return;
775 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
776
777 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
778 return;
779
780 /*
781 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
782 * insns, even for trap and break codes that indicate arithmetic
783 * failures. Weird ...
784 * But should we continue the brokenness??? --macro
785 */
786 switch (code) {
787 case BRK_OVERFLOW:
788 case BRK_DIVZERO:
789 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
790 die_if_kernel(b, regs);
791 if (code == BRK_DIVZERO)
792 info.si_code = FPE_INTDIV;
793 else
794 info.si_code = FPE_INTOVF;
795 info.si_signo = SIGFPE;
796 info.si_errno = 0;
797 info.si_addr = (void __user *) regs->cp0_epc;
798 force_sig_info(SIGFPE, &info, current);
799 break;
800 case BRK_BUG:
801 die_if_kernel("Kernel bug detected", regs);
802 force_sig(SIGTRAP, current);
803 break;
804 case BRK_MEMU:
805 /*
806 * Address errors may be deliberately induced by the FPU
807 * emulator to retake control of the CPU after executing the
808 * instruction in the delay slot of an emulated branch.
809 *
810 * Terminate if exception was recognized as a delay slot return
811 * otherwise handle as normal.
812 */
813 if (do_dsemulret(regs))
814 return;
815
816 die_if_kernel("Math emu break/trap", regs);
817 force_sig(SIGTRAP, current);
818 break;
819 default:
820 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
821 die_if_kernel(b, regs);
822 force_sig(SIGTRAP, current);
823 }
824 }
825
826 asmlinkage void do_bp(struct pt_regs *regs)
827 {
828 unsigned int opcode, bcode;
829
830 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
831 goto out_sigsegv;
832
833 /*
834 * There is the ancient bug in the MIPS assemblers that the break
835 * code starts left to bit 16 instead to bit 6 in the opcode.
836 * Gas is bug-compatible, but not always, grrr...
837 * We handle both cases with a simple heuristics. --macro
838 */
839 bcode = ((opcode >> 6) & ((1 << 20) - 1));
840 if (bcode >= (1 << 10))
841 bcode >>= 10;
842
843 /*
844 * notify the kprobe handlers, if instruction is likely to
845 * pertain to them.
846 */
847 switch (bcode) {
848 case BRK_KPROBE_BP:
849 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
850 return;
851 else
852 break;
853 case BRK_KPROBE_SSTEPBP:
854 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
855 return;
856 else
857 break;
858 default:
859 break;
860 }
861
862 do_trap_or_bp(regs, bcode, "Break");
863 return;
864
865 out_sigsegv:
866 force_sig(SIGSEGV, current);
867 }
868
869 asmlinkage void do_tr(struct pt_regs *regs)
870 {
871 unsigned int opcode, tcode = 0;
872
873 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
874 goto out_sigsegv;
875
876 /* Immediate versions don't provide a code. */
877 if (!(opcode & OPCODE))
878 tcode = ((opcode >> 6) & ((1 << 10) - 1));
879
880 do_trap_or_bp(regs, tcode, "Trap");
881 return;
882
883 out_sigsegv:
884 force_sig(SIGSEGV, current);
885 }
886
887 asmlinkage void do_ri(struct pt_regs *regs)
888 {
889 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
890 unsigned long old_epc = regs->cp0_epc;
891 unsigned int opcode = 0;
892 int status = -1;
893
894 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
895 == NOTIFY_STOP)
896 return;
897
898 die_if_kernel("Reserved instruction in kernel code", regs);
899
900 if (unlikely(compute_return_epc(regs) < 0))
901 return;
902
903 if (unlikely(get_user(opcode, epc) < 0))
904 status = SIGSEGV;
905
906 if (!cpu_has_llsc && status < 0)
907 status = simulate_llsc(regs, opcode);
908
909 if (status < 0)
910 status = simulate_rdhwr(regs, opcode);
911
912 if (status < 0)
913 status = simulate_sync(regs, opcode);
914
915 if (status < 0)
916 status = SIGILL;
917
918 if (unlikely(status > 0)) {
919 regs->cp0_epc = old_epc; /* Undo skip-over. */
920 force_sig(status, current);
921 }
922 }
923
924 /*
925 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
926 * emulated more than some threshold number of instructions, force migration to
927 * a "CPU" that has FP support.
928 */
929 static void mt_ase_fp_affinity(void)
930 {
931 #ifdef CONFIG_MIPS_MT_FPAFF
932 if (mt_fpemul_threshold > 0 &&
933 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
934 /*
935 * If there's no FPU present, or if the application has already
936 * restricted the allowed set to exclude any CPUs with FPUs,
937 * we'll skip the procedure.
938 */
939 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
940 cpumask_t tmask;
941
942 current->thread.user_cpus_allowed
943 = current->cpus_allowed;
944 cpus_and(tmask, current->cpus_allowed,
945 mt_fpu_cpumask);
946 set_cpus_allowed_ptr(current, &tmask);
947 set_thread_flag(TIF_FPUBOUND);
948 }
949 }
950 #endif /* CONFIG_MIPS_MT_FPAFF */
951 }
952
953 /*
954 * No lock; only written during early bootup by CPU 0.
955 */
956 static RAW_NOTIFIER_HEAD(cu2_chain);
957
958 int __ref register_cu2_notifier(struct notifier_block *nb)
959 {
960 return raw_notifier_chain_register(&cu2_chain, nb);
961 }
962
963 int cu2_notifier_call_chain(unsigned long val, void *v)
964 {
965 return raw_notifier_call_chain(&cu2_chain, val, v);
966 }
967
968 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
969 void *data)
970 {
971 struct pt_regs *regs = data;
972
973 switch (action) {
974 default:
975 die_if_kernel("Unhandled kernel unaligned access or invalid "
976 "instruction", regs);
977 /* Fall through */
978
979 case CU2_EXCEPTION:
980 force_sig(SIGILL, current);
981 }
982
983 return NOTIFY_OK;
984 }
985
986 asmlinkage void do_cpu(struct pt_regs *regs)
987 {
988 unsigned int __user *epc;
989 unsigned long old_epc;
990 unsigned int opcode;
991 unsigned int cpid;
992 int status;
993 unsigned long __maybe_unused flags;
994
995 die_if_kernel("do_cpu invoked from kernel context!", regs);
996
997 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
998
999 switch (cpid) {
1000 case 0:
1001 epc = (unsigned int __user *)exception_epc(regs);
1002 old_epc = regs->cp0_epc;
1003 opcode = 0;
1004 status = -1;
1005
1006 if (unlikely(compute_return_epc(regs) < 0))
1007 return;
1008
1009 if (unlikely(get_user(opcode, epc) < 0))
1010 status = SIGSEGV;
1011
1012 if (!cpu_has_llsc && status < 0)
1013 status = simulate_llsc(regs, opcode);
1014
1015 if (status < 0)
1016 status = simulate_rdhwr(regs, opcode);
1017
1018 if (status < 0)
1019 status = SIGILL;
1020
1021 if (unlikely(status > 0)) {
1022 regs->cp0_epc = old_epc; /* Undo skip-over. */
1023 force_sig(status, current);
1024 }
1025
1026 return;
1027
1028 case 3:
1029 /*
1030 * Old (MIPS I and MIPS II) processors will set this code
1031 * for COP1X opcode instructions that replaced the original
1032 * COP3 space. We don't limit COP1 space instructions in
1033 * the emulator according to the CPU ISA, so we want to
1034 * treat COP1X instructions consistently regardless of which
1035 * code the CPU chose. Therefore we redirect this trap to
1036 * the FP emulator too.
1037 *
1038 * Then some newer FPU-less processors use this code
1039 * erroneously too, so they are covered by this choice
1040 * as well.
1041 */
1042 if (raw_cpu_has_fpu)
1043 break;
1044 /* Fall through. */
1045
1046 case 1:
1047 if (used_math()) /* Using the FPU again. */
1048 own_fpu(1);
1049 else { /* First time FPU user. */
1050 init_fpu();
1051 set_used_math();
1052 }
1053
1054 if (!raw_cpu_has_fpu) {
1055 int sig;
1056 void __user *fault_addr = NULL;
1057 sig = fpu_emulator_cop1Handler(regs,
1058 &current->thread.fpu,
1059 0, &fault_addr);
1060 if (!process_fpemu_return(sig, fault_addr))
1061 mt_ase_fp_affinity();
1062 }
1063
1064 return;
1065
1066 case 2:
1067 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1068 return;
1069 }
1070
1071 force_sig(SIGILL, current);
1072 }
1073
1074 asmlinkage void do_mdmx(struct pt_regs *regs)
1075 {
1076 force_sig(SIGILL, current);
1077 }
1078
1079 /*
1080 * Called with interrupts disabled.
1081 */
1082 asmlinkage void do_watch(struct pt_regs *regs)
1083 {
1084 u32 cause;
1085
1086 /*
1087 * Clear WP (bit 22) bit of cause register so we don't loop
1088 * forever.
1089 */
1090 cause = read_c0_cause();
1091 cause &= ~(1 << 22);
1092 write_c0_cause(cause);
1093
1094 /*
1095 * If the current thread has the watch registers loaded, save
1096 * their values and send SIGTRAP. Otherwise another thread
1097 * left the registers set, clear them and continue.
1098 */
1099 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1100 mips_read_watch_registers();
1101 local_irq_enable();
1102 force_sig(SIGTRAP, current);
1103 } else {
1104 mips_clear_watch_registers();
1105 local_irq_enable();
1106 }
1107 }
1108
1109 asmlinkage void do_mcheck(struct pt_regs *regs)
1110 {
1111 const int field = 2 * sizeof(unsigned long);
1112 int multi_match = regs->cp0_status & ST0_TS;
1113
1114 show_regs(regs);
1115
1116 if (multi_match) {
1117 printk("Index : %0x\n", read_c0_index());
1118 printk("Pagemask: %0x\n", read_c0_pagemask());
1119 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1120 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1121 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1122 printk("\n");
1123 dump_tlb_all();
1124 }
1125
1126 show_code((unsigned int __user *) regs->cp0_epc);
1127
1128 /*
1129 * Some chips may have other causes of machine check (e.g. SB1
1130 * graduation timer)
1131 */
1132 panic("Caught Machine Check exception - %scaused by multiple "
1133 "matching entries in the TLB.",
1134 (multi_match) ? "" : "not ");
1135 }
1136
1137 asmlinkage void do_mt(struct pt_regs *regs)
1138 {
1139 int subcode;
1140
1141 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1142 >> VPECONTROL_EXCPT_SHIFT;
1143 switch (subcode) {
1144 case 0:
1145 printk(KERN_DEBUG "Thread Underflow\n");
1146 break;
1147 case 1:
1148 printk(KERN_DEBUG "Thread Overflow\n");
1149 break;
1150 case 2:
1151 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1152 break;
1153 case 3:
1154 printk(KERN_DEBUG "Gating Storage Exception\n");
1155 break;
1156 case 4:
1157 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1158 break;
1159 case 5:
1160 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1161 break;
1162 default:
1163 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1164 subcode);
1165 break;
1166 }
1167 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1168
1169 force_sig(SIGILL, current);
1170 }
1171
1172
1173 asmlinkage void do_dsp(struct pt_regs *regs)
1174 {
1175 if (cpu_has_dsp)
1176 panic("Unexpected DSP exception");
1177
1178 force_sig(SIGILL, current);
1179 }
1180
1181 asmlinkage void do_reserved(struct pt_regs *regs)
1182 {
1183 /*
1184 * Game over - no way to handle this if it ever occurs. Most probably
1185 * caused by a new unknown cpu type or after another deadly
1186 * hard/software error.
1187 */
1188 show_regs(regs);
1189 panic("Caught reserved exception %ld - should not happen.",
1190 (regs->cp0_cause & 0x7f) >> 2);
1191 }
1192
1193 static int __initdata l1parity = 1;
1194 static int __init nol1parity(char *s)
1195 {
1196 l1parity = 0;
1197 return 1;
1198 }
1199 __setup("nol1par", nol1parity);
1200 static int __initdata l2parity = 1;
1201 static int __init nol2parity(char *s)
1202 {
1203 l2parity = 0;
1204 return 1;
1205 }
1206 __setup("nol2par", nol2parity);
1207
1208 /*
1209 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1210 * it different ways.
1211 */
1212 static inline void parity_protection_init(void)
1213 {
1214 switch (current_cpu_type()) {
1215 case CPU_24K:
1216 case CPU_34K:
1217 case CPU_74K:
1218 case CPU_1004K:
1219 {
1220 #define ERRCTL_PE 0x80000000
1221 #define ERRCTL_L2P 0x00800000
1222 unsigned long errctl;
1223 unsigned int l1parity_present, l2parity_present;
1224
1225 errctl = read_c0_ecc();
1226 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1227
1228 /* probe L1 parity support */
1229 write_c0_ecc(errctl | ERRCTL_PE);
1230 back_to_back_c0_hazard();
1231 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1232
1233 /* probe L2 parity support */
1234 write_c0_ecc(errctl|ERRCTL_L2P);
1235 back_to_back_c0_hazard();
1236 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1237
1238 if (l1parity_present && l2parity_present) {
1239 if (l1parity)
1240 errctl |= ERRCTL_PE;
1241 if (l1parity ^ l2parity)
1242 errctl |= ERRCTL_L2P;
1243 } else if (l1parity_present) {
1244 if (l1parity)
1245 errctl |= ERRCTL_PE;
1246 } else if (l2parity_present) {
1247 if (l2parity)
1248 errctl |= ERRCTL_L2P;
1249 } else {
1250 /* No parity available */
1251 }
1252
1253 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1254
1255 write_c0_ecc(errctl);
1256 back_to_back_c0_hazard();
1257 errctl = read_c0_ecc();
1258 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1259
1260 if (l1parity_present)
1261 printk(KERN_INFO "Cache parity protection %sabled\n",
1262 (errctl & ERRCTL_PE) ? "en" : "dis");
1263
1264 if (l2parity_present) {
1265 if (l1parity_present && l1parity)
1266 errctl ^= ERRCTL_L2P;
1267 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1268 (errctl & ERRCTL_L2P) ? "en" : "dis");
1269 }
1270 }
1271 break;
1272
1273 case CPU_5KC:
1274 case CPU_5KE:
1275 case CPU_LOONGSON1:
1276 write_c0_ecc(0x80000000);
1277 back_to_back_c0_hazard();
1278 /* Set the PE bit (bit 31) in the c0_errctl register. */
1279 printk(KERN_INFO "Cache parity protection %sabled\n",
1280 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1281 break;
1282 case CPU_20KC:
1283 case CPU_25KF:
1284 /* Clear the DE bit (bit 16) in the c0_status register. */
1285 printk(KERN_INFO "Enable cache parity protection for "
1286 "MIPS 20KC/25KF CPUs.\n");
1287 clear_c0_status(ST0_DE);
1288 break;
1289 default:
1290 break;
1291 }
1292 }
1293
1294 asmlinkage void cache_parity_error(void)
1295 {
1296 const int field = 2 * sizeof(unsigned long);
1297 unsigned int reg_val;
1298
1299 /* For the moment, report the problem and hang. */
1300 printk("Cache error exception:\n");
1301 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1302 reg_val = read_c0_cacheerr();
1303 printk("c0_cacheerr == %08x\n", reg_val);
1304
1305 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1306 reg_val & (1<<30) ? "secondary" : "primary",
1307 reg_val & (1<<31) ? "data" : "insn");
1308 printk("Error bits: %s%s%s%s%s%s%s\n",
1309 reg_val & (1<<29) ? "ED " : "",
1310 reg_val & (1<<28) ? "ET " : "",
1311 reg_val & (1<<26) ? "EE " : "",
1312 reg_val & (1<<25) ? "EB " : "",
1313 reg_val & (1<<24) ? "EI " : "",
1314 reg_val & (1<<23) ? "E1 " : "",
1315 reg_val & (1<<22) ? "E0 " : "");
1316 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1317
1318 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1319 if (reg_val & (1<<22))
1320 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1321
1322 if (reg_val & (1<<23))
1323 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1324 #endif
1325
1326 panic("Can't handle the cache error!");
1327 }
1328
1329 /*
1330 * SDBBP EJTAG debug exception handler.
1331 * We skip the instruction and return to the next instruction.
1332 */
1333 void ejtag_exception_handler(struct pt_regs *regs)
1334 {
1335 const int field = 2 * sizeof(unsigned long);
1336 unsigned long depc, old_epc;
1337 unsigned int debug;
1338
1339 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1340 depc = read_c0_depc();
1341 debug = read_c0_debug();
1342 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1343 if (debug & 0x80000000) {
1344 /*
1345 * In branch delay slot.
1346 * We cheat a little bit here and use EPC to calculate the
1347 * debug return address (DEPC). EPC is restored after the
1348 * calculation.
1349 */
1350 old_epc = regs->cp0_epc;
1351 regs->cp0_epc = depc;
1352 __compute_return_epc(regs);
1353 depc = regs->cp0_epc;
1354 regs->cp0_epc = old_epc;
1355 } else
1356 depc += 4;
1357 write_c0_depc(depc);
1358
1359 #if 0
1360 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1361 write_c0_debug(debug | 0x100);
1362 #endif
1363 }
1364
1365 /*
1366 * NMI exception handler.
1367 * No lock; only written during early bootup by CPU 0.
1368 */
1369 static RAW_NOTIFIER_HEAD(nmi_chain);
1370
1371 int register_nmi_notifier(struct notifier_block *nb)
1372 {
1373 return raw_notifier_chain_register(&nmi_chain, nb);
1374 }
1375
1376 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1377 {
1378 raw_notifier_call_chain(&nmi_chain, 0, regs);
1379 bust_spinlocks(1);
1380 printk("NMI taken!!!!\n");
1381 die("NMI", regs);
1382 }
1383
1384 #define VECTORSPACING 0x100 /* for EI/VI mode */
1385
1386 unsigned long ebase;
1387 unsigned long exception_handlers[32];
1388 unsigned long vi_handlers[64];
1389
1390 void __init *set_except_vector(int n, void *addr)
1391 {
1392 unsigned long handler = (unsigned long) addr;
1393 unsigned long old_handler = exception_handlers[n];
1394
1395 exception_handlers[n] = handler;
1396 if (n == 0 && cpu_has_divec) {
1397 unsigned long jump_mask = ~((1 << 28) - 1);
1398 u32 *buf = (u32 *)(ebase + 0x200);
1399 unsigned int k0 = 26;
1400 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1401 uasm_i_j(&buf, handler & ~jump_mask);
1402 uasm_i_nop(&buf);
1403 } else {
1404 UASM_i_LA(&buf, k0, handler);
1405 uasm_i_jr(&buf, k0);
1406 uasm_i_nop(&buf);
1407 }
1408 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1409 }
1410 return (void *)old_handler;
1411 }
1412
1413 static asmlinkage void do_default_vi(void)
1414 {
1415 show_regs(get_irq_regs());
1416 panic("Caught unexpected vectored interrupt.");
1417 }
1418
1419 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1420 {
1421 unsigned long handler;
1422 unsigned long old_handler = vi_handlers[n];
1423 int srssets = current_cpu_data.srsets;
1424 u32 *w;
1425 unsigned char *b;
1426
1427 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1428
1429 if (addr == NULL) {
1430 handler = (unsigned long) do_default_vi;
1431 srs = 0;
1432 } else
1433 handler = (unsigned long) addr;
1434 vi_handlers[n] = (unsigned long) addr;
1435
1436 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1437
1438 if (srs >= srssets)
1439 panic("Shadow register set %d not supported", srs);
1440
1441 if (cpu_has_veic) {
1442 if (board_bind_eic_interrupt)
1443 board_bind_eic_interrupt(n, srs);
1444 } else if (cpu_has_vint) {
1445 /* SRSMap is only defined if shadow sets are implemented */
1446 if (srssets > 1)
1447 change_c0_srsmap(0xf << n*4, srs << n*4);
1448 }
1449
1450 if (srs == 0) {
1451 /*
1452 * If no shadow set is selected then use the default handler
1453 * that does normal register saving and a standard interrupt exit
1454 */
1455
1456 extern char except_vec_vi, except_vec_vi_lui;
1457 extern char except_vec_vi_ori, except_vec_vi_end;
1458 extern char rollback_except_vec_vi;
1459 char *vec_start = (cpu_wait == r4k_wait) ?
1460 &rollback_except_vec_vi : &except_vec_vi;
1461 #ifdef CONFIG_MIPS_MT_SMTC
1462 /*
1463 * We need to provide the SMTC vectored interrupt handler
1464 * not only with the address of the handler, but with the
1465 * Status.IM bit to be masked before going there.
1466 */
1467 extern char except_vec_vi_mori;
1468 const int mori_offset = &except_vec_vi_mori - vec_start;
1469 #endif /* CONFIG_MIPS_MT_SMTC */
1470 const int handler_len = &except_vec_vi_end - vec_start;
1471 const int lui_offset = &except_vec_vi_lui - vec_start;
1472 const int ori_offset = &except_vec_vi_ori - vec_start;
1473
1474 if (handler_len > VECTORSPACING) {
1475 /*
1476 * Sigh... panicing won't help as the console
1477 * is probably not configured :(
1478 */
1479 panic("VECTORSPACING too small");
1480 }
1481
1482 memcpy(b, vec_start, handler_len);
1483 #ifdef CONFIG_MIPS_MT_SMTC
1484 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1485
1486 w = (u32 *)(b + mori_offset);
1487 *w = (*w & 0xffff0000) | (0x100 << n);
1488 #endif /* CONFIG_MIPS_MT_SMTC */
1489 w = (u32 *)(b + lui_offset);
1490 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1491 w = (u32 *)(b + ori_offset);
1492 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1493 local_flush_icache_range((unsigned long)b,
1494 (unsigned long)(b+handler_len));
1495 }
1496 else {
1497 /*
1498 * In other cases jump directly to the interrupt handler
1499 *
1500 * It is the handlers responsibility to save registers if required
1501 * (eg hi/lo) and return from the exception using "eret"
1502 */
1503 w = (u32 *)b;
1504 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1505 *w = 0;
1506 local_flush_icache_range((unsigned long)b,
1507 (unsigned long)(b+8));
1508 }
1509
1510 return (void *)old_handler;
1511 }
1512
1513 void *set_vi_handler(int n, vi_handler_t addr)
1514 {
1515 return set_vi_srs_handler(n, addr, 0);
1516 }
1517
1518 extern void tlb_init(void);
1519 extern void flush_tlb_handlers(void);
1520
1521 /*
1522 * Timer interrupt
1523 */
1524 int cp0_compare_irq;
1525 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1526 int cp0_compare_irq_shift;
1527
1528 /*
1529 * Performance counter IRQ or -1 if shared with timer
1530 */
1531 int cp0_perfcount_irq;
1532 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1533
1534 static int __cpuinitdata noulri;
1535
1536 static int __init ulri_disable(char *s)
1537 {
1538 pr_info("Disabling ulri\n");
1539 noulri = 1;
1540
1541 return 1;
1542 }
1543 __setup("noulri", ulri_disable);
1544
1545 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1546 {
1547 unsigned int cpu = smp_processor_id();
1548 unsigned int status_set = ST0_CU0;
1549 unsigned int hwrena = cpu_hwrena_impl_bits;
1550 unsigned long asid = 0;
1551 #ifdef CONFIG_MIPS_MT_SMTC
1552 int secondaryTC = 0;
1553 int bootTC = (cpu == 0);
1554
1555 /*
1556 * Only do per_cpu_trap_init() for first TC of Each VPE.
1557 * Note that this hack assumes that the SMTC init code
1558 * assigns TCs consecutively and in ascending order.
1559 */
1560
1561 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1562 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1563 secondaryTC = 1;
1564 #endif /* CONFIG_MIPS_MT_SMTC */
1565
1566 /*
1567 * Disable coprocessors and select 32-bit or 64-bit addressing
1568 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1569 * flag that some firmware may have left set and the TS bit (for
1570 * IP27). Set XX for ISA IV code to work.
1571 */
1572 #ifdef CONFIG_64BIT
1573 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1574 #endif
1575 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1576 status_set |= ST0_XX;
1577 if (cpu_has_dsp)
1578 status_set |= ST0_MX;
1579
1580 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1581 status_set);
1582
1583 if (cpu_has_mips_r2)
1584 hwrena |= 0x0000000f;
1585
1586 if (!noulri && cpu_has_userlocal)
1587 hwrena |= (1 << 29);
1588
1589 if (hwrena)
1590 write_c0_hwrena(hwrena);
1591
1592 #ifdef CONFIG_MIPS_MT_SMTC
1593 if (!secondaryTC) {
1594 #endif /* CONFIG_MIPS_MT_SMTC */
1595
1596 if (cpu_has_veic || cpu_has_vint) {
1597 unsigned long sr = set_c0_status(ST0_BEV);
1598 write_c0_ebase(ebase);
1599 write_c0_status(sr);
1600 /* Setting vector spacing enables EI/VI mode */
1601 change_c0_intctl(0x3e0, VECTORSPACING);
1602 }
1603 if (cpu_has_divec) {
1604 if (cpu_has_mipsmt) {
1605 unsigned int vpflags = dvpe();
1606 set_c0_cause(CAUSEF_IV);
1607 evpe(vpflags);
1608 } else
1609 set_c0_cause(CAUSEF_IV);
1610 }
1611
1612 /*
1613 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1614 *
1615 * o read IntCtl.IPTI to determine the timer interrupt
1616 * o read IntCtl.IPPCI to determine the performance counter interrupt
1617 */
1618 if (cpu_has_mips_r2) {
1619 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1620 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1621 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1622 if (cp0_perfcount_irq == cp0_compare_irq)
1623 cp0_perfcount_irq = -1;
1624 } else {
1625 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1626 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1627 cp0_perfcount_irq = -1;
1628 }
1629
1630 #ifdef CONFIG_MIPS_MT_SMTC
1631 }
1632 #endif /* CONFIG_MIPS_MT_SMTC */
1633
1634 asid = ASID_FIRST_VERSION;
1635 cpu_data[cpu].asid_cache = asid;
1636 TLBMISS_HANDLER_SETUP();
1637
1638 atomic_inc(&init_mm.mm_count);
1639 current->active_mm = &init_mm;
1640 BUG_ON(current->mm);
1641 enter_lazy_tlb(&init_mm, current);
1642
1643 #ifdef CONFIG_MIPS_MT_SMTC
1644 if (bootTC) {
1645 #endif /* CONFIG_MIPS_MT_SMTC */
1646 /* Boot CPU's cache setup in setup_arch(). */
1647 if (!is_boot_cpu)
1648 cpu_cache_init();
1649 tlb_init();
1650 #ifdef CONFIG_MIPS_MT_SMTC
1651 } else if (!secondaryTC) {
1652 /*
1653 * First TC in non-boot VPE must do subset of tlb_init()
1654 * for MMU countrol registers.
1655 */
1656 write_c0_pagemask(PM_DEFAULT_MASK);
1657 write_c0_wired(0);
1658 }
1659 #endif /* CONFIG_MIPS_MT_SMTC */
1660 TLBMISS_HANDLER_SETUP();
1661 }
1662
1663 /* Install CPU exception handler */
1664 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1665 {
1666 memcpy((void *)(ebase + offset), addr, size);
1667 local_flush_icache_range(ebase + offset, ebase + offset + size);
1668 }
1669
1670 static char panic_null_cerr[] __cpuinitdata =
1671 "Trying to set NULL cache error exception handler";
1672
1673 /*
1674 * Install uncached CPU exception handler.
1675 * This is suitable only for the cache error exception which is the only
1676 * exception handler that is being run uncached.
1677 */
1678 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1679 unsigned long size)
1680 {
1681 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1682
1683 if (!addr)
1684 panic(panic_null_cerr);
1685
1686 memcpy((void *)(uncached_ebase + offset), addr, size);
1687 }
1688
1689 static int __initdata rdhwr_noopt;
1690 static int __init set_rdhwr_noopt(char *str)
1691 {
1692 rdhwr_noopt = 1;
1693 return 1;
1694 }
1695
1696 __setup("rdhwr_noopt", set_rdhwr_noopt);
1697
1698 void __init trap_init(void)
1699 {
1700 extern char except_vec3_generic, except_vec3_r4000;
1701 extern char except_vec4;
1702 unsigned long i;
1703 int rollback;
1704
1705 check_wait();
1706 rollback = (cpu_wait == r4k_wait);
1707
1708 #if defined(CONFIG_KGDB)
1709 if (kgdb_early_setup)
1710 return; /* Already done */
1711 #endif
1712
1713 if (cpu_has_veic || cpu_has_vint) {
1714 unsigned long size = 0x200 + VECTORSPACING*64;
1715 ebase = (unsigned long)
1716 __alloc_bootmem(size, 1 << fls(size), 0);
1717 } else {
1718 ebase = CKSEG0;
1719 if (cpu_has_mips_r2)
1720 ebase += (read_c0_ebase() & 0x3ffff000);
1721 }
1722
1723 if (board_ebase_setup)
1724 board_ebase_setup();
1725 per_cpu_trap_init(true);
1726
1727 /*
1728 * Copy the generic exception handlers to their final destination.
1729 * This will be overriden later as suitable for a particular
1730 * configuration.
1731 */
1732 set_handler(0x180, &except_vec3_generic, 0x80);
1733
1734 /*
1735 * Setup default vectors
1736 */
1737 for (i = 0; i <= 31; i++)
1738 set_except_vector(i, handle_reserved);
1739
1740 /*
1741 * Copy the EJTAG debug exception vector handler code to it's final
1742 * destination.
1743 */
1744 if (cpu_has_ejtag && board_ejtag_handler_setup)
1745 board_ejtag_handler_setup();
1746
1747 /*
1748 * Only some CPUs have the watch exceptions.
1749 */
1750 if (cpu_has_watch)
1751 set_except_vector(23, handle_watch);
1752
1753 /*
1754 * Initialise interrupt handlers
1755 */
1756 if (cpu_has_veic || cpu_has_vint) {
1757 int nvec = cpu_has_veic ? 64 : 8;
1758 for (i = 0; i < nvec; i++)
1759 set_vi_handler(i, NULL);
1760 }
1761 else if (cpu_has_divec)
1762 set_handler(0x200, &except_vec4, 0x8);
1763
1764 /*
1765 * Some CPUs can enable/disable for cache parity detection, but does
1766 * it different ways.
1767 */
1768 parity_protection_init();
1769
1770 /*
1771 * The Data Bus Errors / Instruction Bus Errors are signaled
1772 * by external hardware. Therefore these two exceptions
1773 * may have board specific handlers.
1774 */
1775 if (board_be_init)
1776 board_be_init();
1777
1778 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1779 set_except_vector(1, handle_tlbm);
1780 set_except_vector(2, handle_tlbl);
1781 set_except_vector(3, handle_tlbs);
1782
1783 set_except_vector(4, handle_adel);
1784 set_except_vector(5, handle_ades);
1785
1786 set_except_vector(6, handle_ibe);
1787 set_except_vector(7, handle_dbe);
1788
1789 set_except_vector(8, handle_sys);
1790 set_except_vector(9, handle_bp);
1791 set_except_vector(10, rdhwr_noopt ? handle_ri :
1792 (cpu_has_vtag_icache ?
1793 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1794 set_except_vector(11, handle_cpu);
1795 set_except_vector(12, handle_ov);
1796 set_except_vector(13, handle_tr);
1797
1798 if (current_cpu_type() == CPU_R6000 ||
1799 current_cpu_type() == CPU_R6000A) {
1800 /*
1801 * The R6000 is the only R-series CPU that features a machine
1802 * check exception (similar to the R4000 cache error) and
1803 * unaligned ldc1/sdc1 exception. The handlers have not been
1804 * written yet. Well, anyway there is no R6000 machine on the
1805 * current list of targets for Linux/MIPS.
1806 * (Duh, crap, there is someone with a triple R6k machine)
1807 */
1808 //set_except_vector(14, handle_mc);
1809 //set_except_vector(15, handle_ndc);
1810 }
1811
1812
1813 if (board_nmi_handler_setup)
1814 board_nmi_handler_setup();
1815
1816 if (cpu_has_fpu && !cpu_has_nofpuex)
1817 set_except_vector(15, handle_fpe);
1818
1819 set_except_vector(22, handle_mdmx);
1820
1821 if (cpu_has_mcheck)
1822 set_except_vector(24, handle_mcheck);
1823
1824 if (cpu_has_mipsmt)
1825 set_except_vector(25, handle_mt);
1826
1827 set_except_vector(26, handle_dsp);
1828
1829 if (board_cache_error_setup)
1830 board_cache_error_setup();
1831
1832 if (cpu_has_vce)
1833 /* Special exception: R4[04]00 uses also the divec space. */
1834 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1835 else if (cpu_has_4kex)
1836 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1837 else
1838 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1839
1840 local_flush_icache_range(ebase, ebase + 0x400);
1841 flush_tlb_handlers();
1842
1843 sort_extable(__start___dbe_table, __stop___dbe_table);
1844
1845 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1846 }
This page took 0.120507 seconds and 5 git commands to generate.