[MIPS] kgdb: add arch support for the kernel's kgdb core
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28
29 #include <asm/bootinfo.h>
30 #include <asm/branch.h>
31 #include <asm/break.h>
32 #include <asm/cpu.h>
33 #include <asm/dsp.h>
34 #include <asm/fpu.h>
35 #include <asm/mipsregs.h>
36 #include <asm/mipsmtregs.h>
37 #include <asm/module.h>
38 #include <asm/pgtable.h>
39 #include <asm/ptrace.h>
40 #include <asm/sections.h>
41 #include <asm/system.h>
42 #include <asm/tlbdebug.h>
43 #include <asm/traps.h>
44 #include <asm/uaccess.h>
45 #include <asm/mmu_context.h>
46 #include <asm/types.h>
47 #include <asm/stacktrace.h>
48
49 extern asmlinkage void handle_int(void);
50 extern asmlinkage void handle_tlbm(void);
51 extern asmlinkage void handle_tlbl(void);
52 extern asmlinkage void handle_tlbs(void);
53 extern asmlinkage void handle_adel(void);
54 extern asmlinkage void handle_ades(void);
55 extern asmlinkage void handle_ibe(void);
56 extern asmlinkage void handle_dbe(void);
57 extern asmlinkage void handle_sys(void);
58 extern asmlinkage void handle_bp(void);
59 extern asmlinkage void handle_ri(void);
60 extern asmlinkage void handle_ri_rdhwr_vivt(void);
61 extern asmlinkage void handle_ri_rdhwr(void);
62 extern asmlinkage void handle_cpu(void);
63 extern asmlinkage void handle_ov(void);
64 extern asmlinkage void handle_tr(void);
65 extern asmlinkage void handle_fpe(void);
66 extern asmlinkage void handle_mdmx(void);
67 extern asmlinkage void handle_watch(void);
68 extern asmlinkage void handle_mt(void);
69 extern asmlinkage void handle_dsp(void);
70 extern asmlinkage void handle_mcheck(void);
71 extern asmlinkage void handle_reserved(void);
72
73 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
74 struct mips_fpu_struct *ctx, int has_fpu);
75
76 void (*board_be_init)(void);
77 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
78 void (*board_nmi_handler_setup)(void);
79 void (*board_ejtag_handler_setup)(void);
80 void (*board_bind_eic_interrupt)(int irq, int regset);
81
82
83 static void show_raw_backtrace(unsigned long reg29)
84 {
85 unsigned long *sp = (unsigned long *)(reg29 & ~3);
86 unsigned long addr;
87
88 printk("Call Trace:");
89 #ifdef CONFIG_KALLSYMS
90 printk("\n");
91 #endif
92 while (!kstack_end(sp)) {
93 unsigned long __user *p =
94 (unsigned long __user *)(unsigned long)sp++;
95 if (__get_user(addr, p)) {
96 printk(" (Bad stack address)");
97 break;
98 }
99 if (__kernel_text_address(addr))
100 print_ip_sym(addr);
101 }
102 printk("\n");
103 }
104
105 #ifdef CONFIG_KALLSYMS
106 int raw_show_trace;
107 static int __init set_raw_show_trace(char *str)
108 {
109 raw_show_trace = 1;
110 return 1;
111 }
112 __setup("raw_show_trace", set_raw_show_trace);
113 #endif
114
115 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
116 {
117 unsigned long sp = regs->regs[29];
118 unsigned long ra = regs->regs[31];
119 unsigned long pc = regs->cp0_epc;
120
121 if (raw_show_trace || !__kernel_text_address(pc)) {
122 show_raw_backtrace(sp);
123 return;
124 }
125 printk("Call Trace:\n");
126 do {
127 print_ip_sym(pc);
128 pc = unwind_stack(task, &sp, pc, &ra);
129 } while (pc);
130 printk("\n");
131 }
132
133 /*
134 * This routine abuses get_user()/put_user() to reference pointers
135 * with at least a bit of error checking ...
136 */
137 static void show_stacktrace(struct task_struct *task,
138 const struct pt_regs *regs)
139 {
140 const int field = 2 * sizeof(unsigned long);
141 long stackdata;
142 int i;
143 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
144
145 printk("Stack :");
146 i = 0;
147 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
148 if (i && ((i % (64 / field)) == 0))
149 printk("\n ");
150 if (i > 39) {
151 printk(" ...");
152 break;
153 }
154
155 if (__get_user(stackdata, sp++)) {
156 printk(" (Bad stack address)");
157 break;
158 }
159
160 printk(" %0*lx", field, stackdata);
161 i++;
162 }
163 printk("\n");
164 show_backtrace(task, regs);
165 }
166
167 void show_stack(struct task_struct *task, unsigned long *sp)
168 {
169 struct pt_regs regs;
170 if (sp) {
171 regs.regs[29] = (unsigned long)sp;
172 regs.regs[31] = 0;
173 regs.cp0_epc = 0;
174 } else {
175 if (task && task != current) {
176 regs.regs[29] = task->thread.reg29;
177 regs.regs[31] = 0;
178 regs.cp0_epc = task->thread.reg31;
179 } else {
180 prepare_frametrace(&regs);
181 }
182 }
183 show_stacktrace(task, &regs);
184 }
185
186 /*
187 * The architecture-independent dump_stack generator
188 */
189 void dump_stack(void)
190 {
191 struct pt_regs regs;
192
193 prepare_frametrace(&regs);
194 show_backtrace(current, &regs);
195 }
196
197 EXPORT_SYMBOL(dump_stack);
198
199 static void show_code(unsigned int __user *pc)
200 {
201 long i;
202 unsigned short __user *pc16 = NULL;
203
204 printk("\nCode:");
205
206 if ((unsigned long)pc & 1)
207 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
208 for(i = -3 ; i < 6 ; i++) {
209 unsigned int insn;
210 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
211 printk(" (Bad address in epc)\n");
212 break;
213 }
214 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
215 }
216 }
217
218 static void __show_regs(const struct pt_regs *regs)
219 {
220 const int field = 2 * sizeof(unsigned long);
221 unsigned int cause = regs->cp0_cause;
222 int i;
223
224 printk("Cpu %d\n", smp_processor_id());
225
226 /*
227 * Saved main processor registers
228 */
229 for (i = 0; i < 32; ) {
230 if ((i % 4) == 0)
231 printk("$%2d :", i);
232 if (i == 0)
233 printk(" %0*lx", field, 0UL);
234 else if (i == 26 || i == 27)
235 printk(" %*s", field, "");
236 else
237 printk(" %0*lx", field, regs->regs[i]);
238
239 i++;
240 if ((i % 4) == 0)
241 printk("\n");
242 }
243
244 #ifdef CONFIG_CPU_HAS_SMARTMIPS
245 printk("Acx : %0*lx\n", field, regs->acx);
246 #endif
247 printk("Hi : %0*lx\n", field, regs->hi);
248 printk("Lo : %0*lx\n", field, regs->lo);
249
250 /*
251 * Saved cp0 registers
252 */
253 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
254 (void *) regs->cp0_epc);
255 printk(" %s\n", print_tainted());
256 printk("ra : %0*lx %pS\n", field, regs->regs[31],
257 (void *) regs->regs[31]);
258
259 printk("Status: %08x ", (uint32_t) regs->cp0_status);
260
261 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
262 if (regs->cp0_status & ST0_KUO)
263 printk("KUo ");
264 if (regs->cp0_status & ST0_IEO)
265 printk("IEo ");
266 if (regs->cp0_status & ST0_KUP)
267 printk("KUp ");
268 if (regs->cp0_status & ST0_IEP)
269 printk("IEp ");
270 if (regs->cp0_status & ST0_KUC)
271 printk("KUc ");
272 if (regs->cp0_status & ST0_IEC)
273 printk("IEc ");
274 } else {
275 if (regs->cp0_status & ST0_KX)
276 printk("KX ");
277 if (regs->cp0_status & ST0_SX)
278 printk("SX ");
279 if (regs->cp0_status & ST0_UX)
280 printk("UX ");
281 switch (regs->cp0_status & ST0_KSU) {
282 case KSU_USER:
283 printk("USER ");
284 break;
285 case KSU_SUPERVISOR:
286 printk("SUPERVISOR ");
287 break;
288 case KSU_KERNEL:
289 printk("KERNEL ");
290 break;
291 default:
292 printk("BAD_MODE ");
293 break;
294 }
295 if (regs->cp0_status & ST0_ERL)
296 printk("ERL ");
297 if (regs->cp0_status & ST0_EXL)
298 printk("EXL ");
299 if (regs->cp0_status & ST0_IE)
300 printk("IE ");
301 }
302 printk("\n");
303
304 printk("Cause : %08x\n", cause);
305
306 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
307 if (1 <= cause && cause <= 5)
308 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
309
310 printk("PrId : %08x (%s)\n", read_c0_prid(),
311 cpu_name_string());
312 }
313
314 /*
315 * FIXME: really the generic show_regs should take a const pointer argument.
316 */
317 void show_regs(struct pt_regs *regs)
318 {
319 __show_regs((struct pt_regs *)regs);
320 }
321
322 void show_registers(const struct pt_regs *regs)
323 {
324 const int field = 2 * sizeof(unsigned long);
325
326 __show_regs(regs);
327 print_modules();
328 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
329 current->comm, current->pid, current_thread_info(), current,
330 field, current_thread_info()->tp_value);
331 if (cpu_has_userlocal) {
332 unsigned long tls;
333
334 tls = read_c0_userlocal();
335 if (tls != current_thread_info()->tp_value)
336 printk("*HwTLS: %0*lx\n", field, tls);
337 }
338
339 show_stacktrace(current, regs);
340 show_code((unsigned int __user *) regs->cp0_epc);
341 printk("\n");
342 }
343
344 static DEFINE_SPINLOCK(die_lock);
345
346 void __noreturn die(const char * str, const struct pt_regs * regs)
347 {
348 static int die_counter;
349 #ifdef CONFIG_MIPS_MT_SMTC
350 unsigned long dvpret = dvpe();
351 #endif /* CONFIG_MIPS_MT_SMTC */
352
353 console_verbose();
354 spin_lock_irq(&die_lock);
355 bust_spinlocks(1);
356 #ifdef CONFIG_MIPS_MT_SMTC
357 mips_mt_regdump(dvpret);
358 #endif /* CONFIG_MIPS_MT_SMTC */
359 printk("%s[#%d]:\n", str, ++die_counter);
360 show_registers(regs);
361 add_taint(TAINT_DIE);
362 spin_unlock_irq(&die_lock);
363
364 if (in_interrupt())
365 panic("Fatal exception in interrupt");
366
367 if (panic_on_oops) {
368 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
369 ssleep(5);
370 panic("Fatal exception");
371 }
372
373 do_exit(SIGSEGV);
374 }
375
376 extern const struct exception_table_entry __start___dbe_table[];
377 extern const struct exception_table_entry __stop___dbe_table[];
378
379 __asm__(
380 " .section __dbe_table, \"a\"\n"
381 " .previous \n");
382
383 /* Given an address, look for it in the exception tables. */
384 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
385 {
386 const struct exception_table_entry *e;
387
388 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
389 if (!e)
390 e = search_module_dbetables(addr);
391 return e;
392 }
393
394 asmlinkage void do_be(struct pt_regs *regs)
395 {
396 const int field = 2 * sizeof(unsigned long);
397 const struct exception_table_entry *fixup = NULL;
398 int data = regs->cp0_cause & 4;
399 int action = MIPS_BE_FATAL;
400
401 /* XXX For now. Fixme, this searches the wrong table ... */
402 if (data && !user_mode(regs))
403 fixup = search_dbe_tables(exception_epc(regs));
404
405 if (fixup)
406 action = MIPS_BE_FIXUP;
407
408 if (board_be_handler)
409 action = board_be_handler(regs, fixup != NULL);
410
411 switch (action) {
412 case MIPS_BE_DISCARD:
413 return;
414 case MIPS_BE_FIXUP:
415 if (fixup) {
416 regs->cp0_epc = fixup->nextinsn;
417 return;
418 }
419 break;
420 default:
421 break;
422 }
423
424 /*
425 * Assume it would be too dangerous to continue ...
426 */
427 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
428 data ? "Data" : "Instruction",
429 field, regs->cp0_epc, field, regs->regs[31]);
430 if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
431 == NOTIFY_STOP)
432 return;
433
434 die_if_kernel("Oops", regs);
435 force_sig(SIGBUS, current);
436 }
437
438 /*
439 * ll/sc, rdhwr, sync emulation
440 */
441
442 #define OPCODE 0xfc000000
443 #define BASE 0x03e00000
444 #define RT 0x001f0000
445 #define OFFSET 0x0000ffff
446 #define LL 0xc0000000
447 #define SC 0xe0000000
448 #define SPEC0 0x00000000
449 #define SPEC3 0x7c000000
450 #define RD 0x0000f800
451 #define FUNC 0x0000003f
452 #define SYNC 0x0000000f
453 #define RDHWR 0x0000003b
454
455 /*
456 * The ll_bit is cleared by r*_switch.S
457 */
458
459 unsigned long ll_bit;
460
461 static struct task_struct *ll_task = NULL;
462
463 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
464 {
465 unsigned long value, __user *vaddr;
466 long offset;
467
468 /*
469 * analyse the ll instruction that just caused a ri exception
470 * and put the referenced address to addr.
471 */
472
473 /* sign extend offset */
474 offset = opcode & OFFSET;
475 offset <<= 16;
476 offset >>= 16;
477
478 vaddr = (unsigned long __user *)
479 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
480
481 if ((unsigned long)vaddr & 3)
482 return SIGBUS;
483 if (get_user(value, vaddr))
484 return SIGSEGV;
485
486 preempt_disable();
487
488 if (ll_task == NULL || ll_task == current) {
489 ll_bit = 1;
490 } else {
491 ll_bit = 0;
492 }
493 ll_task = current;
494
495 preempt_enable();
496
497 regs->regs[(opcode & RT) >> 16] = value;
498
499 return 0;
500 }
501
502 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
503 {
504 unsigned long __user *vaddr;
505 unsigned long reg;
506 long offset;
507
508 /*
509 * analyse the sc instruction that just caused a ri exception
510 * and put the referenced address to addr.
511 */
512
513 /* sign extend offset */
514 offset = opcode & OFFSET;
515 offset <<= 16;
516 offset >>= 16;
517
518 vaddr = (unsigned long __user *)
519 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
520 reg = (opcode & RT) >> 16;
521
522 if ((unsigned long)vaddr & 3)
523 return SIGBUS;
524
525 preempt_disable();
526
527 if (ll_bit == 0 || ll_task != current) {
528 regs->regs[reg] = 0;
529 preempt_enable();
530 return 0;
531 }
532
533 preempt_enable();
534
535 if (put_user(regs->regs[reg], vaddr))
536 return SIGSEGV;
537
538 regs->regs[reg] = 1;
539
540 return 0;
541 }
542
543 /*
544 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
545 * opcodes are supposed to result in coprocessor unusable exceptions if
546 * executed on ll/sc-less processors. That's the theory. In practice a
547 * few processors such as NEC's VR4100 throw reserved instruction exceptions
548 * instead, so we're doing the emulation thing in both exception handlers.
549 */
550 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
551 {
552 if ((opcode & OPCODE) == LL)
553 return simulate_ll(regs, opcode);
554 if ((opcode & OPCODE) == SC)
555 return simulate_sc(regs, opcode);
556
557 return -1; /* Must be something else ... */
558 }
559
560 /*
561 * Simulate trapping 'rdhwr' instructions to provide user accessible
562 * registers not implemented in hardware.
563 */
564 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
565 {
566 struct thread_info *ti = task_thread_info(current);
567
568 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
569 int rd = (opcode & RD) >> 11;
570 int rt = (opcode & RT) >> 16;
571 switch (rd) {
572 case 0: /* CPU number */
573 regs->regs[rt] = smp_processor_id();
574 return 0;
575 case 1: /* SYNCI length */
576 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
577 current_cpu_data.icache.linesz);
578 return 0;
579 case 2: /* Read count register */
580 regs->regs[rt] = read_c0_count();
581 return 0;
582 case 3: /* Count register resolution */
583 switch (current_cpu_data.cputype) {
584 case CPU_20KC:
585 case CPU_25KF:
586 regs->regs[rt] = 1;
587 break;
588 default:
589 regs->regs[rt] = 2;
590 }
591 return 0;
592 case 29:
593 regs->regs[rt] = ti->tp_value;
594 return 0;
595 default:
596 return -1;
597 }
598 }
599
600 /* Not ours. */
601 return -1;
602 }
603
604 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
605 {
606 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
607 return 0;
608
609 return -1; /* Must be something else ... */
610 }
611
612 asmlinkage void do_ov(struct pt_regs *regs)
613 {
614 siginfo_t info;
615
616 die_if_kernel("Integer overflow", regs);
617
618 info.si_code = FPE_INTOVF;
619 info.si_signo = SIGFPE;
620 info.si_errno = 0;
621 info.si_addr = (void __user *) regs->cp0_epc;
622 force_sig_info(SIGFPE, &info, current);
623 }
624
625 /*
626 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
627 */
628 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
629 {
630 siginfo_t info;
631
632 if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
633 == NOTIFY_STOP)
634 return;
635 die_if_kernel("FP exception in kernel code", regs);
636
637 if (fcr31 & FPU_CSR_UNI_X) {
638 int sig;
639
640 /*
641 * Unimplemented operation exception. If we've got the full
642 * software emulator on-board, let's use it...
643 *
644 * Force FPU to dump state into task/thread context. We're
645 * moving a lot of data here for what is probably a single
646 * instruction, but the alternative is to pre-decode the FP
647 * register operands before invoking the emulator, which seems
648 * a bit extreme for what should be an infrequent event.
649 */
650 /* Ensure 'resume' not overwrite saved fp context again. */
651 lose_fpu(1);
652
653 /* Run the emulator */
654 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
655
656 /*
657 * We can't allow the emulated instruction to leave any of
658 * the cause bit set in $fcr31.
659 */
660 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
661
662 /* Restore the hardware register state */
663 own_fpu(1); /* Using the FPU again. */
664
665 /* If something went wrong, signal */
666 if (sig)
667 force_sig(sig, current);
668
669 return;
670 } else if (fcr31 & FPU_CSR_INV_X)
671 info.si_code = FPE_FLTINV;
672 else if (fcr31 & FPU_CSR_DIV_X)
673 info.si_code = FPE_FLTDIV;
674 else if (fcr31 & FPU_CSR_OVF_X)
675 info.si_code = FPE_FLTOVF;
676 else if (fcr31 & FPU_CSR_UDF_X)
677 info.si_code = FPE_FLTUND;
678 else if (fcr31 & FPU_CSR_INE_X)
679 info.si_code = FPE_FLTRES;
680 else
681 info.si_code = __SI_FAULT;
682 info.si_signo = SIGFPE;
683 info.si_errno = 0;
684 info.si_addr = (void __user *) regs->cp0_epc;
685 force_sig_info(SIGFPE, &info, current);
686 }
687
688 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
689 const char *str)
690 {
691 siginfo_t info;
692 char b[40];
693
694 if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
695 return;
696
697 /*
698 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
699 * insns, even for trap and break codes that indicate arithmetic
700 * failures. Weird ...
701 * But should we continue the brokenness??? --macro
702 */
703 switch (code) {
704 case BRK_OVERFLOW:
705 case BRK_DIVZERO:
706 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
707 die_if_kernel(b, regs);
708 if (code == BRK_DIVZERO)
709 info.si_code = FPE_INTDIV;
710 else
711 info.si_code = FPE_INTOVF;
712 info.si_signo = SIGFPE;
713 info.si_errno = 0;
714 info.si_addr = (void __user *) regs->cp0_epc;
715 force_sig_info(SIGFPE, &info, current);
716 break;
717 case BRK_BUG:
718 die_if_kernel("Kernel bug detected", regs);
719 force_sig(SIGTRAP, current);
720 break;
721 default:
722 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
723 die_if_kernel(b, regs);
724 force_sig(SIGTRAP, current);
725 }
726 }
727
728 asmlinkage void do_bp(struct pt_regs *regs)
729 {
730 unsigned int opcode, bcode;
731
732 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
733 goto out_sigsegv;
734
735 /*
736 * There is the ancient bug in the MIPS assemblers that the break
737 * code starts left to bit 16 instead to bit 6 in the opcode.
738 * Gas is bug-compatible, but not always, grrr...
739 * We handle both cases with a simple heuristics. --macro
740 */
741 bcode = ((opcode >> 6) & ((1 << 20) - 1));
742 if (bcode >= (1 << 10))
743 bcode >>= 10;
744
745 do_trap_or_bp(regs, bcode, "Break");
746 return;
747
748 out_sigsegv:
749 force_sig(SIGSEGV, current);
750 }
751
752 asmlinkage void do_tr(struct pt_regs *regs)
753 {
754 unsigned int opcode, tcode = 0;
755
756 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
757 goto out_sigsegv;
758
759 /* Immediate versions don't provide a code. */
760 if (!(opcode & OPCODE))
761 tcode = ((opcode >> 6) & ((1 << 10) - 1));
762
763 do_trap_or_bp(regs, tcode, "Trap");
764 return;
765
766 out_sigsegv:
767 force_sig(SIGSEGV, current);
768 }
769
770 asmlinkage void do_ri(struct pt_regs *regs)
771 {
772 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
773 unsigned long old_epc = regs->cp0_epc;
774 unsigned int opcode = 0;
775 int status = -1;
776
777 if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
778 == NOTIFY_STOP)
779 return;
780
781 die_if_kernel("Reserved instruction in kernel code", regs);
782
783 if (unlikely(compute_return_epc(regs) < 0))
784 return;
785
786 if (unlikely(get_user(opcode, epc) < 0))
787 status = SIGSEGV;
788
789 if (!cpu_has_llsc && status < 0)
790 status = simulate_llsc(regs, opcode);
791
792 if (status < 0)
793 status = simulate_rdhwr(regs, opcode);
794
795 if (status < 0)
796 status = simulate_sync(regs, opcode);
797
798 if (status < 0)
799 status = SIGILL;
800
801 if (unlikely(status > 0)) {
802 regs->cp0_epc = old_epc; /* Undo skip-over. */
803 force_sig(status, current);
804 }
805 }
806
807 /*
808 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
809 * emulated more than some threshold number of instructions, force migration to
810 * a "CPU" that has FP support.
811 */
812 static void mt_ase_fp_affinity(void)
813 {
814 #ifdef CONFIG_MIPS_MT_FPAFF
815 if (mt_fpemul_threshold > 0 &&
816 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
817 /*
818 * If there's no FPU present, or if the application has already
819 * restricted the allowed set to exclude any CPUs with FPUs,
820 * we'll skip the procedure.
821 */
822 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
823 cpumask_t tmask;
824
825 cpus_and(tmask, current->thread.user_cpus_allowed,
826 mt_fpu_cpumask);
827 set_cpus_allowed(current, tmask);
828 set_thread_flag(TIF_FPUBOUND);
829 }
830 }
831 #endif /* CONFIG_MIPS_MT_FPAFF */
832 }
833
834 asmlinkage void do_cpu(struct pt_regs *regs)
835 {
836 unsigned int __user *epc;
837 unsigned long old_epc;
838 unsigned int opcode;
839 unsigned int cpid;
840 int status;
841
842 die_if_kernel("do_cpu invoked from kernel context!", regs);
843
844 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
845
846 switch (cpid) {
847 case 0:
848 epc = (unsigned int __user *)exception_epc(regs);
849 old_epc = regs->cp0_epc;
850 opcode = 0;
851 status = -1;
852
853 if (unlikely(compute_return_epc(regs) < 0))
854 return;
855
856 if (unlikely(get_user(opcode, epc) < 0))
857 status = SIGSEGV;
858
859 if (!cpu_has_llsc && status < 0)
860 status = simulate_llsc(regs, opcode);
861
862 if (status < 0)
863 status = simulate_rdhwr(regs, opcode);
864
865 if (status < 0)
866 status = SIGILL;
867
868 if (unlikely(status > 0)) {
869 regs->cp0_epc = old_epc; /* Undo skip-over. */
870 force_sig(status, current);
871 }
872
873 return;
874
875 case 1:
876 if (used_math()) /* Using the FPU again. */
877 own_fpu(1);
878 else { /* First time FPU user. */
879 init_fpu();
880 set_used_math();
881 }
882
883 if (!raw_cpu_has_fpu) {
884 int sig;
885 sig = fpu_emulator_cop1Handler(regs,
886 &current->thread.fpu, 0);
887 if (sig)
888 force_sig(sig, current);
889 else
890 mt_ase_fp_affinity();
891 }
892
893 return;
894
895 case 2:
896 case 3:
897 break;
898 }
899
900 force_sig(SIGILL, current);
901 }
902
903 asmlinkage void do_mdmx(struct pt_regs *regs)
904 {
905 force_sig(SIGILL, current);
906 }
907
908 asmlinkage void do_watch(struct pt_regs *regs)
909 {
910 /*
911 * We use the watch exception where available to detect stack
912 * overflows.
913 */
914 dump_tlb_all();
915 show_regs(regs);
916 panic("Caught WATCH exception - probably caused by stack overflow.");
917 }
918
919 asmlinkage void do_mcheck(struct pt_regs *regs)
920 {
921 const int field = 2 * sizeof(unsigned long);
922 int multi_match = regs->cp0_status & ST0_TS;
923
924 show_regs(regs);
925
926 if (multi_match) {
927 printk("Index : %0x\n", read_c0_index());
928 printk("Pagemask: %0x\n", read_c0_pagemask());
929 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
930 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
931 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
932 printk("\n");
933 dump_tlb_all();
934 }
935
936 show_code((unsigned int __user *) regs->cp0_epc);
937
938 /*
939 * Some chips may have other causes of machine check (e.g. SB1
940 * graduation timer)
941 */
942 panic("Caught Machine Check exception - %scaused by multiple "
943 "matching entries in the TLB.",
944 (multi_match) ? "" : "not ");
945 }
946
947 asmlinkage void do_mt(struct pt_regs *regs)
948 {
949 int subcode;
950
951 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
952 >> VPECONTROL_EXCPT_SHIFT;
953 switch (subcode) {
954 case 0:
955 printk(KERN_DEBUG "Thread Underflow\n");
956 break;
957 case 1:
958 printk(KERN_DEBUG "Thread Overflow\n");
959 break;
960 case 2:
961 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
962 break;
963 case 3:
964 printk(KERN_DEBUG "Gating Storage Exception\n");
965 break;
966 case 4:
967 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
968 break;
969 case 5:
970 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
971 break;
972 default:
973 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
974 subcode);
975 break;
976 }
977 die_if_kernel("MIPS MT Thread exception in kernel", regs);
978
979 force_sig(SIGILL, current);
980 }
981
982
983 asmlinkage void do_dsp(struct pt_regs *regs)
984 {
985 if (cpu_has_dsp)
986 panic("Unexpected DSP exception\n");
987
988 force_sig(SIGILL, current);
989 }
990
991 asmlinkage void do_reserved(struct pt_regs *regs)
992 {
993 /*
994 * Game over - no way to handle this if it ever occurs. Most probably
995 * caused by a new unknown cpu type or after another deadly
996 * hard/software error.
997 */
998 show_regs(regs);
999 panic("Caught reserved exception %ld - should not happen.",
1000 (regs->cp0_cause & 0x7f) >> 2);
1001 }
1002
1003 static int __initdata l1parity = 1;
1004 static int __init nol1parity(char *s)
1005 {
1006 l1parity = 0;
1007 return 1;
1008 }
1009 __setup("nol1par", nol1parity);
1010 static int __initdata l2parity = 1;
1011 static int __init nol2parity(char *s)
1012 {
1013 l2parity = 0;
1014 return 1;
1015 }
1016 __setup("nol2par", nol2parity);
1017
1018 /*
1019 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1020 * it different ways.
1021 */
1022 static inline void parity_protection_init(void)
1023 {
1024 switch (current_cpu_type()) {
1025 case CPU_24K:
1026 case CPU_34K:
1027 case CPU_74K:
1028 case CPU_1004K:
1029 {
1030 #define ERRCTL_PE 0x80000000
1031 #define ERRCTL_L2P 0x00800000
1032 unsigned long errctl;
1033 unsigned int l1parity_present, l2parity_present;
1034
1035 errctl = read_c0_ecc();
1036 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1037
1038 /* probe L1 parity support */
1039 write_c0_ecc(errctl | ERRCTL_PE);
1040 back_to_back_c0_hazard();
1041 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1042
1043 /* probe L2 parity support */
1044 write_c0_ecc(errctl|ERRCTL_L2P);
1045 back_to_back_c0_hazard();
1046 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1047
1048 if (l1parity_present && l2parity_present) {
1049 if (l1parity)
1050 errctl |= ERRCTL_PE;
1051 if (l1parity ^ l2parity)
1052 errctl |= ERRCTL_L2P;
1053 } else if (l1parity_present) {
1054 if (l1parity)
1055 errctl |= ERRCTL_PE;
1056 } else if (l2parity_present) {
1057 if (l2parity)
1058 errctl |= ERRCTL_L2P;
1059 } else {
1060 /* No parity available */
1061 }
1062
1063 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1064
1065 write_c0_ecc(errctl);
1066 back_to_back_c0_hazard();
1067 errctl = read_c0_ecc();
1068 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1069
1070 if (l1parity_present)
1071 printk(KERN_INFO "Cache parity protection %sabled\n",
1072 (errctl & ERRCTL_PE) ? "en" : "dis");
1073
1074 if (l2parity_present) {
1075 if (l1parity_present && l1parity)
1076 errctl ^= ERRCTL_L2P;
1077 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1078 (errctl & ERRCTL_L2P) ? "en" : "dis");
1079 }
1080 }
1081 break;
1082
1083 case CPU_5KC:
1084 write_c0_ecc(0x80000000);
1085 back_to_back_c0_hazard();
1086 /* Set the PE bit (bit 31) in the c0_errctl register. */
1087 printk(KERN_INFO "Cache parity protection %sabled\n",
1088 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1089 break;
1090 case CPU_20KC:
1091 case CPU_25KF:
1092 /* Clear the DE bit (bit 16) in the c0_status register. */
1093 printk(KERN_INFO "Enable cache parity protection for "
1094 "MIPS 20KC/25KF CPUs.\n");
1095 clear_c0_status(ST0_DE);
1096 break;
1097 default:
1098 break;
1099 }
1100 }
1101
1102 asmlinkage void cache_parity_error(void)
1103 {
1104 const int field = 2 * sizeof(unsigned long);
1105 unsigned int reg_val;
1106
1107 /* For the moment, report the problem and hang. */
1108 printk("Cache error exception:\n");
1109 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1110 reg_val = read_c0_cacheerr();
1111 printk("c0_cacheerr == %08x\n", reg_val);
1112
1113 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1114 reg_val & (1<<30) ? "secondary" : "primary",
1115 reg_val & (1<<31) ? "data" : "insn");
1116 printk("Error bits: %s%s%s%s%s%s%s\n",
1117 reg_val & (1<<29) ? "ED " : "",
1118 reg_val & (1<<28) ? "ET " : "",
1119 reg_val & (1<<26) ? "EE " : "",
1120 reg_val & (1<<25) ? "EB " : "",
1121 reg_val & (1<<24) ? "EI " : "",
1122 reg_val & (1<<23) ? "E1 " : "",
1123 reg_val & (1<<22) ? "E0 " : "");
1124 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1125
1126 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1127 if (reg_val & (1<<22))
1128 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1129
1130 if (reg_val & (1<<23))
1131 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1132 #endif
1133
1134 panic("Can't handle the cache error!");
1135 }
1136
1137 /*
1138 * SDBBP EJTAG debug exception handler.
1139 * We skip the instruction and return to the next instruction.
1140 */
1141 void ejtag_exception_handler(struct pt_regs *regs)
1142 {
1143 const int field = 2 * sizeof(unsigned long);
1144 unsigned long depc, old_epc;
1145 unsigned int debug;
1146
1147 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1148 depc = read_c0_depc();
1149 debug = read_c0_debug();
1150 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1151 if (debug & 0x80000000) {
1152 /*
1153 * In branch delay slot.
1154 * We cheat a little bit here and use EPC to calculate the
1155 * debug return address (DEPC). EPC is restored after the
1156 * calculation.
1157 */
1158 old_epc = regs->cp0_epc;
1159 regs->cp0_epc = depc;
1160 __compute_return_epc(regs);
1161 depc = regs->cp0_epc;
1162 regs->cp0_epc = old_epc;
1163 } else
1164 depc += 4;
1165 write_c0_depc(depc);
1166
1167 #if 0
1168 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1169 write_c0_debug(debug | 0x100);
1170 #endif
1171 }
1172
1173 /*
1174 * NMI exception handler.
1175 */
1176 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1177 {
1178 bust_spinlocks(1);
1179 printk("NMI taken!!!!\n");
1180 die("NMI", regs);
1181 }
1182
1183 #define VECTORSPACING 0x100 /* for EI/VI mode */
1184
1185 unsigned long ebase;
1186 unsigned long exception_handlers[32];
1187 unsigned long vi_handlers[64];
1188
1189 /*
1190 * As a side effect of the way this is implemented we're limited
1191 * to interrupt handlers in the address range from
1192 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1193 */
1194 void *set_except_vector(int n, void *addr)
1195 {
1196 unsigned long handler = (unsigned long) addr;
1197 unsigned long old_handler = exception_handlers[n];
1198
1199 exception_handlers[n] = handler;
1200 if (n == 0 && cpu_has_divec) {
1201 *(u32 *)(ebase + 0x200) = 0x08000000 |
1202 (0x03ffffff & (handler >> 2));
1203 flush_icache_range(ebase + 0x200, ebase + 0x204);
1204 }
1205 return (void *)old_handler;
1206 }
1207
1208 static asmlinkage void do_default_vi(void)
1209 {
1210 show_regs(get_irq_regs());
1211 panic("Caught unexpected vectored interrupt.");
1212 }
1213
1214 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1215 {
1216 unsigned long handler;
1217 unsigned long old_handler = vi_handlers[n];
1218 int srssets = current_cpu_data.srsets;
1219 u32 *w;
1220 unsigned char *b;
1221
1222 if (!cpu_has_veic && !cpu_has_vint)
1223 BUG();
1224
1225 if (addr == NULL) {
1226 handler = (unsigned long) do_default_vi;
1227 srs = 0;
1228 } else
1229 handler = (unsigned long) addr;
1230 vi_handlers[n] = (unsigned long) addr;
1231
1232 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1233
1234 if (srs >= srssets)
1235 panic("Shadow register set %d not supported", srs);
1236
1237 if (cpu_has_veic) {
1238 if (board_bind_eic_interrupt)
1239 board_bind_eic_interrupt(n, srs);
1240 } else if (cpu_has_vint) {
1241 /* SRSMap is only defined if shadow sets are implemented */
1242 if (srssets > 1)
1243 change_c0_srsmap(0xf << n*4, srs << n*4);
1244 }
1245
1246 if (srs == 0) {
1247 /*
1248 * If no shadow set is selected then use the default handler
1249 * that does normal register saving and a standard interrupt exit
1250 */
1251
1252 extern char except_vec_vi, except_vec_vi_lui;
1253 extern char except_vec_vi_ori, except_vec_vi_end;
1254 #ifdef CONFIG_MIPS_MT_SMTC
1255 /*
1256 * We need to provide the SMTC vectored interrupt handler
1257 * not only with the address of the handler, but with the
1258 * Status.IM bit to be masked before going there.
1259 */
1260 extern char except_vec_vi_mori;
1261 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1262 #endif /* CONFIG_MIPS_MT_SMTC */
1263 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1264 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1265 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1266
1267 if (handler_len > VECTORSPACING) {
1268 /*
1269 * Sigh... panicing won't help as the console
1270 * is probably not configured :(
1271 */
1272 panic("VECTORSPACING too small");
1273 }
1274
1275 memcpy(b, &except_vec_vi, handler_len);
1276 #ifdef CONFIG_MIPS_MT_SMTC
1277 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1278
1279 w = (u32 *)(b + mori_offset);
1280 *w = (*w & 0xffff0000) | (0x100 << n);
1281 #endif /* CONFIG_MIPS_MT_SMTC */
1282 w = (u32 *)(b + lui_offset);
1283 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1284 w = (u32 *)(b + ori_offset);
1285 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1286 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1287 }
1288 else {
1289 /*
1290 * In other cases jump directly to the interrupt handler
1291 *
1292 * It is the handlers responsibility to save registers if required
1293 * (eg hi/lo) and return from the exception using "eret"
1294 */
1295 w = (u32 *)b;
1296 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1297 *w = 0;
1298 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1299 }
1300
1301 return (void *)old_handler;
1302 }
1303
1304 void *set_vi_handler(int n, vi_handler_t addr)
1305 {
1306 return set_vi_srs_handler(n, addr, 0);
1307 }
1308
1309 /*
1310 * This is used by native signal handling
1311 */
1312 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1313 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1314
1315 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1316 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1317
1318 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1319 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1320
1321 #ifdef CONFIG_SMP
1322 static int smp_save_fp_context(struct sigcontext __user *sc)
1323 {
1324 return raw_cpu_has_fpu
1325 ? _save_fp_context(sc)
1326 : fpu_emulator_save_context(sc);
1327 }
1328
1329 static int smp_restore_fp_context(struct sigcontext __user *sc)
1330 {
1331 return raw_cpu_has_fpu
1332 ? _restore_fp_context(sc)
1333 : fpu_emulator_restore_context(sc);
1334 }
1335 #endif
1336
1337 static inline void signal_init(void)
1338 {
1339 #ifdef CONFIG_SMP
1340 /* For now just do the cpu_has_fpu check when the functions are invoked */
1341 save_fp_context = smp_save_fp_context;
1342 restore_fp_context = smp_restore_fp_context;
1343 #else
1344 if (cpu_has_fpu) {
1345 save_fp_context = _save_fp_context;
1346 restore_fp_context = _restore_fp_context;
1347 } else {
1348 save_fp_context = fpu_emulator_save_context;
1349 restore_fp_context = fpu_emulator_restore_context;
1350 }
1351 #endif
1352 }
1353
1354 #ifdef CONFIG_MIPS32_COMPAT
1355
1356 /*
1357 * This is used by 32-bit signal stuff on the 64-bit kernel
1358 */
1359 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1360 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1361
1362 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1363 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1364
1365 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1366 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1367
1368 static inline void signal32_init(void)
1369 {
1370 if (cpu_has_fpu) {
1371 save_fp_context32 = _save_fp_context32;
1372 restore_fp_context32 = _restore_fp_context32;
1373 } else {
1374 save_fp_context32 = fpu_emulator_save_context32;
1375 restore_fp_context32 = fpu_emulator_restore_context32;
1376 }
1377 }
1378 #endif
1379
1380 extern void cpu_cache_init(void);
1381 extern void tlb_init(void);
1382 extern void flush_tlb_handlers(void);
1383
1384 /*
1385 * Timer interrupt
1386 */
1387 int cp0_compare_irq;
1388
1389 /*
1390 * Performance counter IRQ or -1 if shared with timer
1391 */
1392 int cp0_perfcount_irq;
1393 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1394
1395 static int __cpuinitdata noulri;
1396
1397 static int __init ulri_disable(char *s)
1398 {
1399 pr_info("Disabling ulri\n");
1400 noulri = 1;
1401
1402 return 1;
1403 }
1404 __setup("noulri", ulri_disable);
1405
1406 void __cpuinit per_cpu_trap_init(void)
1407 {
1408 unsigned int cpu = smp_processor_id();
1409 unsigned int status_set = ST0_CU0;
1410 #ifdef CONFIG_MIPS_MT_SMTC
1411 int secondaryTC = 0;
1412 int bootTC = (cpu == 0);
1413
1414 /*
1415 * Only do per_cpu_trap_init() for first TC of Each VPE.
1416 * Note that this hack assumes that the SMTC init code
1417 * assigns TCs consecutively and in ascending order.
1418 */
1419
1420 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1421 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1422 secondaryTC = 1;
1423 #endif /* CONFIG_MIPS_MT_SMTC */
1424
1425 /*
1426 * Disable coprocessors and select 32-bit or 64-bit addressing
1427 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1428 * flag that some firmware may have left set and the TS bit (for
1429 * IP27). Set XX for ISA IV code to work.
1430 */
1431 #ifdef CONFIG_64BIT
1432 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1433 #endif
1434 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1435 status_set |= ST0_XX;
1436 if (cpu_has_dsp)
1437 status_set |= ST0_MX;
1438
1439 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1440 status_set);
1441
1442 if (cpu_has_mips_r2) {
1443 unsigned int enable = 0x0000000f;
1444
1445 if (!noulri && cpu_has_userlocal)
1446 enable |= (1 << 29);
1447
1448 write_c0_hwrena(enable);
1449 }
1450
1451 #ifdef CONFIG_MIPS_MT_SMTC
1452 if (!secondaryTC) {
1453 #endif /* CONFIG_MIPS_MT_SMTC */
1454
1455 if (cpu_has_veic || cpu_has_vint) {
1456 write_c0_ebase(ebase);
1457 /* Setting vector spacing enables EI/VI mode */
1458 change_c0_intctl(0x3e0, VECTORSPACING);
1459 }
1460 if (cpu_has_divec) {
1461 if (cpu_has_mipsmt) {
1462 unsigned int vpflags = dvpe();
1463 set_c0_cause(CAUSEF_IV);
1464 evpe(vpflags);
1465 } else
1466 set_c0_cause(CAUSEF_IV);
1467 }
1468
1469 /*
1470 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1471 *
1472 * o read IntCtl.IPTI to determine the timer interrupt
1473 * o read IntCtl.IPPCI to determine the performance counter interrupt
1474 */
1475 if (cpu_has_mips_r2) {
1476 cp0_compare_irq = (read_c0_intctl() >> 29) & 7;
1477 cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7;
1478 if (cp0_perfcount_irq == cp0_compare_irq)
1479 cp0_perfcount_irq = -1;
1480 } else {
1481 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1482 cp0_perfcount_irq = -1;
1483 }
1484
1485 #ifdef CONFIG_MIPS_MT_SMTC
1486 }
1487 #endif /* CONFIG_MIPS_MT_SMTC */
1488
1489 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1490 TLBMISS_HANDLER_SETUP();
1491
1492 atomic_inc(&init_mm.mm_count);
1493 current->active_mm = &init_mm;
1494 BUG_ON(current->mm);
1495 enter_lazy_tlb(&init_mm, current);
1496
1497 #ifdef CONFIG_MIPS_MT_SMTC
1498 if (bootTC) {
1499 #endif /* CONFIG_MIPS_MT_SMTC */
1500 cpu_cache_init();
1501 tlb_init();
1502 #ifdef CONFIG_MIPS_MT_SMTC
1503 } else if (!secondaryTC) {
1504 /*
1505 * First TC in non-boot VPE must do subset of tlb_init()
1506 * for MMU countrol registers.
1507 */
1508 write_c0_pagemask(PM_DEFAULT_MASK);
1509 write_c0_wired(0);
1510 }
1511 #endif /* CONFIG_MIPS_MT_SMTC */
1512 }
1513
1514 /* Install CPU exception handler */
1515 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1516 {
1517 memcpy((void *)(ebase + offset), addr, size);
1518 flush_icache_range(ebase + offset, ebase + offset + size);
1519 }
1520
1521 static char panic_null_cerr[] __cpuinitdata =
1522 "Trying to set NULL cache error exception handler";
1523
1524 /* Install uncached CPU exception handler */
1525 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1526 unsigned long size)
1527 {
1528 #ifdef CONFIG_32BIT
1529 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1530 #endif
1531 #ifdef CONFIG_64BIT
1532 unsigned long uncached_ebase = TO_UNCAC(ebase);
1533 #endif
1534
1535 if (!addr)
1536 panic(panic_null_cerr);
1537
1538 memcpy((void *)(uncached_ebase + offset), addr, size);
1539 }
1540
1541 static int __initdata rdhwr_noopt;
1542 static int __init set_rdhwr_noopt(char *str)
1543 {
1544 rdhwr_noopt = 1;
1545 return 1;
1546 }
1547
1548 __setup("rdhwr_noopt", set_rdhwr_noopt);
1549
1550 void __init trap_init(void)
1551 {
1552 extern char except_vec3_generic, except_vec3_r4000;
1553 extern char except_vec4;
1554 unsigned long i;
1555
1556 #if defined(CONFIG_KGDB)
1557 if (kgdb_early_setup)
1558 return; /* Already done */
1559 #endif
1560
1561 if (cpu_has_veic || cpu_has_vint)
1562 ebase = (unsigned long) alloc_bootmem_low_pages(0x200 + VECTORSPACING*64);
1563 else
1564 ebase = CAC_BASE;
1565
1566 per_cpu_trap_init();
1567
1568 /*
1569 * Copy the generic exception handlers to their final destination.
1570 * This will be overriden later as suitable for a particular
1571 * configuration.
1572 */
1573 set_handler(0x180, &except_vec3_generic, 0x80);
1574
1575 /*
1576 * Setup default vectors
1577 */
1578 for (i = 0; i <= 31; i++)
1579 set_except_vector(i, handle_reserved);
1580
1581 /*
1582 * Copy the EJTAG debug exception vector handler code to it's final
1583 * destination.
1584 */
1585 if (cpu_has_ejtag && board_ejtag_handler_setup)
1586 board_ejtag_handler_setup();
1587
1588 /*
1589 * Only some CPUs have the watch exceptions.
1590 */
1591 if (cpu_has_watch)
1592 set_except_vector(23, handle_watch);
1593
1594 /*
1595 * Initialise interrupt handlers
1596 */
1597 if (cpu_has_veic || cpu_has_vint) {
1598 int nvec = cpu_has_veic ? 64 : 8;
1599 for (i = 0; i < nvec; i++)
1600 set_vi_handler(i, NULL);
1601 }
1602 else if (cpu_has_divec)
1603 set_handler(0x200, &except_vec4, 0x8);
1604
1605 /*
1606 * Some CPUs can enable/disable for cache parity detection, but does
1607 * it different ways.
1608 */
1609 parity_protection_init();
1610
1611 /*
1612 * The Data Bus Errors / Instruction Bus Errors are signaled
1613 * by external hardware. Therefore these two exceptions
1614 * may have board specific handlers.
1615 */
1616 if (board_be_init)
1617 board_be_init();
1618
1619 set_except_vector(0, handle_int);
1620 set_except_vector(1, handle_tlbm);
1621 set_except_vector(2, handle_tlbl);
1622 set_except_vector(3, handle_tlbs);
1623
1624 set_except_vector(4, handle_adel);
1625 set_except_vector(5, handle_ades);
1626
1627 set_except_vector(6, handle_ibe);
1628 set_except_vector(7, handle_dbe);
1629
1630 set_except_vector(8, handle_sys);
1631 set_except_vector(9, handle_bp);
1632 set_except_vector(10, rdhwr_noopt ? handle_ri :
1633 (cpu_has_vtag_icache ?
1634 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1635 set_except_vector(11, handle_cpu);
1636 set_except_vector(12, handle_ov);
1637 set_except_vector(13, handle_tr);
1638
1639 if (current_cpu_type() == CPU_R6000 ||
1640 current_cpu_type() == CPU_R6000A) {
1641 /*
1642 * The R6000 is the only R-series CPU that features a machine
1643 * check exception (similar to the R4000 cache error) and
1644 * unaligned ldc1/sdc1 exception. The handlers have not been
1645 * written yet. Well, anyway there is no R6000 machine on the
1646 * current list of targets for Linux/MIPS.
1647 * (Duh, crap, there is someone with a triple R6k machine)
1648 */
1649 //set_except_vector(14, handle_mc);
1650 //set_except_vector(15, handle_ndc);
1651 }
1652
1653
1654 if (board_nmi_handler_setup)
1655 board_nmi_handler_setup();
1656
1657 if (cpu_has_fpu && !cpu_has_nofpuex)
1658 set_except_vector(15, handle_fpe);
1659
1660 set_except_vector(22, handle_mdmx);
1661
1662 if (cpu_has_mcheck)
1663 set_except_vector(24, handle_mcheck);
1664
1665 if (cpu_has_mipsmt)
1666 set_except_vector(25, handle_mt);
1667
1668 set_except_vector(26, handle_dsp);
1669
1670 if (cpu_has_vce)
1671 /* Special exception: R4[04]00 uses also the divec space. */
1672 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1673 else if (cpu_has_4kex)
1674 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1675 else
1676 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1677
1678 signal_init();
1679 #ifdef CONFIG_MIPS32_COMPAT
1680 signal32_init();
1681 #endif
1682
1683 flush_icache_range(ebase, ebase + 0x400);
1684 flush_tlb_handlers();
1685 }
This page took 0.067054 seconds and 5 git commands to generate.