Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
29 #include <linux/notifier.h>
30 #include <linux/kdb.h>
31 #include <linux/irq.h>
32 #include <linux/perf_event.h>
33
34 #include <asm/bootinfo.h>
35 #include <asm/branch.h>
36 #include <asm/break.h>
37 #include <asm/cop2.h>
38 #include <asm/cpu.h>
39 #include <asm/dsp.h>
40 #include <asm/fpu.h>
41 #include <asm/fpu_emulator.h>
42 #include <asm/mipsregs.h>
43 #include <asm/mipsmtregs.h>
44 #include <asm/module.h>
45 #include <asm/pgtable.h>
46 #include <asm/ptrace.h>
47 #include <asm/sections.h>
48 #include <asm/tlbdebug.h>
49 #include <asm/traps.h>
50 #include <asm/uaccess.h>
51 #include <asm/watch.h>
52 #include <asm/mmu_context.h>
53 #include <asm/types.h>
54 #include <asm/stacktrace.h>
55 #include <asm/uasm.h>
56
57 extern void check_wait(void);
58 extern asmlinkage void r4k_wait(void);
59 extern asmlinkage void rollback_handle_int(void);
60 extern asmlinkage void handle_int(void);
61 extern asmlinkage void handle_tlbm(void);
62 extern asmlinkage void handle_tlbl(void);
63 extern asmlinkage void handle_tlbs(void);
64 extern asmlinkage void handle_adel(void);
65 extern asmlinkage void handle_ades(void);
66 extern asmlinkage void handle_ibe(void);
67 extern asmlinkage void handle_dbe(void);
68 extern asmlinkage void handle_sys(void);
69 extern asmlinkage void handle_bp(void);
70 extern asmlinkage void handle_ri(void);
71 extern asmlinkage void handle_ri_rdhwr_vivt(void);
72 extern asmlinkage void handle_ri_rdhwr(void);
73 extern asmlinkage void handle_cpu(void);
74 extern asmlinkage void handle_ov(void);
75 extern asmlinkage void handle_tr(void);
76 extern asmlinkage void handle_fpe(void);
77 extern asmlinkage void handle_mdmx(void);
78 extern asmlinkage void handle_watch(void);
79 extern asmlinkage void handle_mt(void);
80 extern asmlinkage void handle_dsp(void);
81 extern asmlinkage void handle_mcheck(void);
82 extern asmlinkage void handle_reserved(void);
83
84 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
85 struct mips_fpu_struct *ctx, int has_fpu,
86 void *__user *fault_addr);
87
88 void (*board_be_init)(void);
89 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
90 void (*board_nmi_handler_setup)(void);
91 void (*board_ejtag_handler_setup)(void);
92 void (*board_bind_eic_interrupt)(int irq, int regset);
93 void (*board_ebase_setup)(void);
94
95
96 static void show_raw_backtrace(unsigned long reg29)
97 {
98 unsigned long *sp = (unsigned long *)(reg29 & ~3);
99 unsigned long addr;
100
101 printk("Call Trace:");
102 #ifdef CONFIG_KALLSYMS
103 printk("\n");
104 #endif
105 while (!kstack_end(sp)) {
106 unsigned long __user *p =
107 (unsigned long __user *)(unsigned long)sp++;
108 if (__get_user(addr, p)) {
109 printk(" (Bad stack address)");
110 break;
111 }
112 if (__kernel_text_address(addr))
113 print_ip_sym(addr);
114 }
115 printk("\n");
116 }
117
118 #ifdef CONFIG_KALLSYMS
119 int raw_show_trace;
120 static int __init set_raw_show_trace(char *str)
121 {
122 raw_show_trace = 1;
123 return 1;
124 }
125 __setup("raw_show_trace", set_raw_show_trace);
126 #endif
127
128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
129 {
130 unsigned long sp = regs->regs[29];
131 unsigned long ra = regs->regs[31];
132 unsigned long pc = regs->cp0_epc;
133
134 if (raw_show_trace || !__kernel_text_address(pc)) {
135 show_raw_backtrace(sp);
136 return;
137 }
138 printk("Call Trace:\n");
139 do {
140 print_ip_sym(pc);
141 pc = unwind_stack(task, &sp, pc, &ra);
142 } while (pc);
143 printk("\n");
144 }
145
146 /*
147 * This routine abuses get_user()/put_user() to reference pointers
148 * with at least a bit of error checking ...
149 */
150 static void show_stacktrace(struct task_struct *task,
151 const struct pt_regs *regs)
152 {
153 const int field = 2 * sizeof(unsigned long);
154 long stackdata;
155 int i;
156 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
157
158 printk("Stack :");
159 i = 0;
160 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
161 if (i && ((i % (64 / field)) == 0))
162 printk("\n ");
163 if (i > 39) {
164 printk(" ...");
165 break;
166 }
167
168 if (__get_user(stackdata, sp++)) {
169 printk(" (Bad stack address)");
170 break;
171 }
172
173 printk(" %0*lx", field, stackdata);
174 i++;
175 }
176 printk("\n");
177 show_backtrace(task, regs);
178 }
179
180 void show_stack(struct task_struct *task, unsigned long *sp)
181 {
182 struct pt_regs regs;
183 if (sp) {
184 regs.regs[29] = (unsigned long)sp;
185 regs.regs[31] = 0;
186 regs.cp0_epc = 0;
187 } else {
188 if (task && task != current) {
189 regs.regs[29] = task->thread.reg29;
190 regs.regs[31] = 0;
191 regs.cp0_epc = task->thread.reg31;
192 #ifdef CONFIG_KGDB_KDB
193 } else if (atomic_read(&kgdb_active) != -1 &&
194 kdb_current_regs) {
195 memcpy(&regs, kdb_current_regs, sizeof(regs));
196 #endif /* CONFIG_KGDB_KDB */
197 } else {
198 prepare_frametrace(&regs);
199 }
200 }
201 show_stacktrace(task, &regs);
202 }
203
204 /*
205 * The architecture-independent dump_stack generator
206 */
207 void dump_stack(void)
208 {
209 struct pt_regs regs;
210
211 prepare_frametrace(&regs);
212 show_backtrace(current, &regs);
213 }
214
215 EXPORT_SYMBOL(dump_stack);
216
217 static void show_code(unsigned int __user *pc)
218 {
219 long i;
220 unsigned short __user *pc16 = NULL;
221
222 printk("\nCode:");
223
224 if ((unsigned long)pc & 1)
225 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
226 for(i = -3 ; i < 6 ; i++) {
227 unsigned int insn;
228 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
229 printk(" (Bad address in epc)\n");
230 break;
231 }
232 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
233 }
234 }
235
236 static void __show_regs(const struct pt_regs *regs)
237 {
238 const int field = 2 * sizeof(unsigned long);
239 unsigned int cause = regs->cp0_cause;
240 int i;
241
242 printk("Cpu %d\n", smp_processor_id());
243
244 /*
245 * Saved main processor registers
246 */
247 for (i = 0; i < 32; ) {
248 if ((i % 4) == 0)
249 printk("$%2d :", i);
250 if (i == 0)
251 printk(" %0*lx", field, 0UL);
252 else if (i == 26 || i == 27)
253 printk(" %*s", field, "");
254 else
255 printk(" %0*lx", field, regs->regs[i]);
256
257 i++;
258 if ((i % 4) == 0)
259 printk("\n");
260 }
261
262 #ifdef CONFIG_CPU_HAS_SMARTMIPS
263 printk("Acx : %0*lx\n", field, regs->acx);
264 #endif
265 printk("Hi : %0*lx\n", field, regs->hi);
266 printk("Lo : %0*lx\n", field, regs->lo);
267
268 /*
269 * Saved cp0 registers
270 */
271 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
272 (void *) regs->cp0_epc);
273 printk(" %s\n", print_tainted());
274 printk("ra : %0*lx %pS\n", field, regs->regs[31],
275 (void *) regs->regs[31]);
276
277 printk("Status: %08x ", (uint32_t) regs->cp0_status);
278
279 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
280 if (regs->cp0_status & ST0_KUO)
281 printk("KUo ");
282 if (regs->cp0_status & ST0_IEO)
283 printk("IEo ");
284 if (regs->cp0_status & ST0_KUP)
285 printk("KUp ");
286 if (regs->cp0_status & ST0_IEP)
287 printk("IEp ");
288 if (regs->cp0_status & ST0_KUC)
289 printk("KUc ");
290 if (regs->cp0_status & ST0_IEC)
291 printk("IEc ");
292 } else {
293 if (regs->cp0_status & ST0_KX)
294 printk("KX ");
295 if (regs->cp0_status & ST0_SX)
296 printk("SX ");
297 if (regs->cp0_status & ST0_UX)
298 printk("UX ");
299 switch (regs->cp0_status & ST0_KSU) {
300 case KSU_USER:
301 printk("USER ");
302 break;
303 case KSU_SUPERVISOR:
304 printk("SUPERVISOR ");
305 break;
306 case KSU_KERNEL:
307 printk("KERNEL ");
308 break;
309 default:
310 printk("BAD_MODE ");
311 break;
312 }
313 if (regs->cp0_status & ST0_ERL)
314 printk("ERL ");
315 if (regs->cp0_status & ST0_EXL)
316 printk("EXL ");
317 if (regs->cp0_status & ST0_IE)
318 printk("IE ");
319 }
320 printk("\n");
321
322 printk("Cause : %08x\n", cause);
323
324 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
325 if (1 <= cause && cause <= 5)
326 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
327
328 printk("PrId : %08x (%s)\n", read_c0_prid(),
329 cpu_name_string());
330 }
331
332 /*
333 * FIXME: really the generic show_regs should take a const pointer argument.
334 */
335 void show_regs(struct pt_regs *regs)
336 {
337 __show_regs((struct pt_regs *)regs);
338 }
339
340 void show_registers(struct pt_regs *regs)
341 {
342 const int field = 2 * sizeof(unsigned long);
343
344 __show_regs(regs);
345 print_modules();
346 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
347 current->comm, current->pid, current_thread_info(), current,
348 field, current_thread_info()->tp_value);
349 if (cpu_has_userlocal) {
350 unsigned long tls;
351
352 tls = read_c0_userlocal();
353 if (tls != current_thread_info()->tp_value)
354 printk("*HwTLS: %0*lx\n", field, tls);
355 }
356
357 show_stacktrace(current, regs);
358 show_code((unsigned int __user *) regs->cp0_epc);
359 printk("\n");
360 }
361
362 static int regs_to_trapnr(struct pt_regs *regs)
363 {
364 return (regs->cp0_cause >> 2) & 0x1f;
365 }
366
367 static DEFINE_RAW_SPINLOCK(die_lock);
368
369 void __noreturn die(const char *str, struct pt_regs *regs)
370 {
371 static int die_counter;
372 int sig = SIGSEGV;
373 #ifdef CONFIG_MIPS_MT_SMTC
374 unsigned long dvpret;
375 #endif /* CONFIG_MIPS_MT_SMTC */
376
377 oops_enter();
378
379 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
380 sig = 0;
381
382 console_verbose();
383 raw_spin_lock_irq(&die_lock);
384 #ifdef CONFIG_MIPS_MT_SMTC
385 dvpret = dvpe();
386 #endif /* CONFIG_MIPS_MT_SMTC */
387 bust_spinlocks(1);
388 #ifdef CONFIG_MIPS_MT_SMTC
389 mips_mt_regdump(dvpret);
390 #endif /* CONFIG_MIPS_MT_SMTC */
391
392 printk("%s[#%d]:\n", str, ++die_counter);
393 show_registers(regs);
394 add_taint(TAINT_DIE);
395 raw_spin_unlock_irq(&die_lock);
396
397 oops_exit();
398
399 if (in_interrupt())
400 panic("Fatal exception in interrupt");
401
402 if (panic_on_oops) {
403 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
404 ssleep(5);
405 panic("Fatal exception");
406 }
407
408 do_exit(sig);
409 }
410
411 extern struct exception_table_entry __start___dbe_table[];
412 extern struct exception_table_entry __stop___dbe_table[];
413
414 __asm__(
415 " .section __dbe_table, \"a\"\n"
416 " .previous \n");
417
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
420 {
421 const struct exception_table_entry *e;
422
423 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
424 if (!e)
425 e = search_module_dbetables(addr);
426 return e;
427 }
428
429 asmlinkage void do_be(struct pt_regs *regs)
430 {
431 const int field = 2 * sizeof(unsigned long);
432 const struct exception_table_entry *fixup = NULL;
433 int data = regs->cp0_cause & 4;
434 int action = MIPS_BE_FATAL;
435
436 /* XXX For now. Fixme, this searches the wrong table ... */
437 if (data && !user_mode(regs))
438 fixup = search_dbe_tables(exception_epc(regs));
439
440 if (fixup)
441 action = MIPS_BE_FIXUP;
442
443 if (board_be_handler)
444 action = board_be_handler(regs, fixup != NULL);
445
446 switch (action) {
447 case MIPS_BE_DISCARD:
448 return;
449 case MIPS_BE_FIXUP:
450 if (fixup) {
451 regs->cp0_epc = fixup->nextinsn;
452 return;
453 }
454 break;
455 default:
456 break;
457 }
458
459 /*
460 * Assume it would be too dangerous to continue ...
461 */
462 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
463 data ? "Data" : "Instruction",
464 field, regs->cp0_epc, field, regs->regs[31]);
465 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
466 == NOTIFY_STOP)
467 return;
468
469 die_if_kernel("Oops", regs);
470 force_sig(SIGBUS, current);
471 }
472
473 /*
474 * ll/sc, rdhwr, sync emulation
475 */
476
477 #define OPCODE 0xfc000000
478 #define BASE 0x03e00000
479 #define RT 0x001f0000
480 #define OFFSET 0x0000ffff
481 #define LL 0xc0000000
482 #define SC 0xe0000000
483 #define SPEC0 0x00000000
484 #define SPEC3 0x7c000000
485 #define RD 0x0000f800
486 #define FUNC 0x0000003f
487 #define SYNC 0x0000000f
488 #define RDHWR 0x0000003b
489
490 /*
491 * The ll_bit is cleared by r*_switch.S
492 */
493
494 unsigned int ll_bit;
495 struct task_struct *ll_task;
496
497 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
498 {
499 unsigned long value, __user *vaddr;
500 long offset;
501
502 /*
503 * analyse the ll instruction that just caused a ri exception
504 * and put the referenced address to addr.
505 */
506
507 /* sign extend offset */
508 offset = opcode & OFFSET;
509 offset <<= 16;
510 offset >>= 16;
511
512 vaddr = (unsigned long __user *)
513 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
514
515 if ((unsigned long)vaddr & 3)
516 return SIGBUS;
517 if (get_user(value, vaddr))
518 return SIGSEGV;
519
520 preempt_disable();
521
522 if (ll_task == NULL || ll_task == current) {
523 ll_bit = 1;
524 } else {
525 ll_bit = 0;
526 }
527 ll_task = current;
528
529 preempt_enable();
530
531 regs->regs[(opcode & RT) >> 16] = value;
532
533 return 0;
534 }
535
536 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
537 {
538 unsigned long __user *vaddr;
539 unsigned long reg;
540 long offset;
541
542 /*
543 * analyse the sc instruction that just caused a ri exception
544 * and put the referenced address to addr.
545 */
546
547 /* sign extend offset */
548 offset = opcode & OFFSET;
549 offset <<= 16;
550 offset >>= 16;
551
552 vaddr = (unsigned long __user *)
553 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
554 reg = (opcode & RT) >> 16;
555
556 if ((unsigned long)vaddr & 3)
557 return SIGBUS;
558
559 preempt_disable();
560
561 if (ll_bit == 0 || ll_task != current) {
562 regs->regs[reg] = 0;
563 preempt_enable();
564 return 0;
565 }
566
567 preempt_enable();
568
569 if (put_user(regs->regs[reg], vaddr))
570 return SIGSEGV;
571
572 regs->regs[reg] = 1;
573
574 return 0;
575 }
576
577 /*
578 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
579 * opcodes are supposed to result in coprocessor unusable exceptions if
580 * executed on ll/sc-less processors. That's the theory. In practice a
581 * few processors such as NEC's VR4100 throw reserved instruction exceptions
582 * instead, so we're doing the emulation thing in both exception handlers.
583 */
584 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
585 {
586 if ((opcode & OPCODE) == LL) {
587 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
588 1, regs, 0);
589 return simulate_ll(regs, opcode);
590 }
591 if ((opcode & OPCODE) == SC) {
592 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
593 1, regs, 0);
594 return simulate_sc(regs, opcode);
595 }
596
597 return -1; /* Must be something else ... */
598 }
599
600 /*
601 * Simulate trapping 'rdhwr' instructions to provide user accessible
602 * registers not implemented in hardware.
603 */
604 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
605 {
606 struct thread_info *ti = task_thread_info(current);
607
608 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
609 int rd = (opcode & RD) >> 11;
610 int rt = (opcode & RT) >> 16;
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 1, regs, 0);
613 switch (rd) {
614 case 0: /* CPU number */
615 regs->regs[rt] = smp_processor_id();
616 return 0;
617 case 1: /* SYNCI length */
618 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
619 current_cpu_data.icache.linesz);
620 return 0;
621 case 2: /* Read count register */
622 regs->regs[rt] = read_c0_count();
623 return 0;
624 case 3: /* Count register resolution */
625 switch (current_cpu_data.cputype) {
626 case CPU_20KC:
627 case CPU_25KF:
628 regs->regs[rt] = 1;
629 break;
630 default:
631 regs->regs[rt] = 2;
632 }
633 return 0;
634 case 29:
635 regs->regs[rt] = ti->tp_value;
636 return 0;
637 default:
638 return -1;
639 }
640 }
641
642 /* Not ours. */
643 return -1;
644 }
645
646 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
647 {
648 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
649 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
650 1, regs, 0);
651 return 0;
652 }
653
654 return -1; /* Must be something else ... */
655 }
656
657 asmlinkage void do_ov(struct pt_regs *regs)
658 {
659 siginfo_t info;
660
661 die_if_kernel("Integer overflow", regs);
662
663 info.si_code = FPE_INTOVF;
664 info.si_signo = SIGFPE;
665 info.si_errno = 0;
666 info.si_addr = (void __user *) regs->cp0_epc;
667 force_sig_info(SIGFPE, &info, current);
668 }
669
670 static int process_fpemu_return(int sig, void __user *fault_addr)
671 {
672 if (sig == SIGSEGV || sig == SIGBUS) {
673 struct siginfo si = {0};
674 si.si_addr = fault_addr;
675 si.si_signo = sig;
676 if (sig == SIGSEGV) {
677 if (find_vma(current->mm, (unsigned long)fault_addr))
678 si.si_code = SEGV_ACCERR;
679 else
680 si.si_code = SEGV_MAPERR;
681 } else {
682 si.si_code = BUS_ADRERR;
683 }
684 force_sig_info(sig, &si, current);
685 return 1;
686 } else if (sig) {
687 force_sig(sig, current);
688 return 1;
689 } else {
690 return 0;
691 }
692 }
693
694 /*
695 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
696 */
697 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
698 {
699 siginfo_t info = {0};
700
701 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
702 == NOTIFY_STOP)
703 return;
704 die_if_kernel("FP exception in kernel code", regs);
705
706 if (fcr31 & FPU_CSR_UNI_X) {
707 int sig;
708 void __user *fault_addr = NULL;
709
710 /*
711 * Unimplemented operation exception. If we've got the full
712 * software emulator on-board, let's use it...
713 *
714 * Force FPU to dump state into task/thread context. We're
715 * moving a lot of data here for what is probably a single
716 * instruction, but the alternative is to pre-decode the FP
717 * register operands before invoking the emulator, which seems
718 * a bit extreme for what should be an infrequent event.
719 */
720 /* Ensure 'resume' not overwrite saved fp context again. */
721 lose_fpu(1);
722
723 /* Run the emulator */
724 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
725 &fault_addr);
726
727 /*
728 * We can't allow the emulated instruction to leave any of
729 * the cause bit set in $fcr31.
730 */
731 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
732
733 /* Restore the hardware register state */
734 own_fpu(1); /* Using the FPU again. */
735
736 /* If something went wrong, signal */
737 process_fpemu_return(sig, fault_addr);
738
739 return;
740 } else if (fcr31 & FPU_CSR_INV_X)
741 info.si_code = FPE_FLTINV;
742 else if (fcr31 & FPU_CSR_DIV_X)
743 info.si_code = FPE_FLTDIV;
744 else if (fcr31 & FPU_CSR_OVF_X)
745 info.si_code = FPE_FLTOVF;
746 else if (fcr31 & FPU_CSR_UDF_X)
747 info.si_code = FPE_FLTUND;
748 else if (fcr31 & FPU_CSR_INE_X)
749 info.si_code = FPE_FLTRES;
750 else
751 info.si_code = __SI_FAULT;
752 info.si_signo = SIGFPE;
753 info.si_errno = 0;
754 info.si_addr = (void __user *) regs->cp0_epc;
755 force_sig_info(SIGFPE, &info, current);
756 }
757
758 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
759 const char *str)
760 {
761 siginfo_t info;
762 char b[40];
763
764 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
765 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
766 return;
767 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
768
769 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
770 return;
771
772 /*
773 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
774 * insns, even for trap and break codes that indicate arithmetic
775 * failures. Weird ...
776 * But should we continue the brokenness??? --macro
777 */
778 switch (code) {
779 case BRK_OVERFLOW:
780 case BRK_DIVZERO:
781 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
782 die_if_kernel(b, regs);
783 if (code == BRK_DIVZERO)
784 info.si_code = FPE_INTDIV;
785 else
786 info.si_code = FPE_INTOVF;
787 info.si_signo = SIGFPE;
788 info.si_errno = 0;
789 info.si_addr = (void __user *) regs->cp0_epc;
790 force_sig_info(SIGFPE, &info, current);
791 break;
792 case BRK_BUG:
793 die_if_kernel("Kernel bug detected", regs);
794 force_sig(SIGTRAP, current);
795 break;
796 case BRK_MEMU:
797 /*
798 * Address errors may be deliberately induced by the FPU
799 * emulator to retake control of the CPU after executing the
800 * instruction in the delay slot of an emulated branch.
801 *
802 * Terminate if exception was recognized as a delay slot return
803 * otherwise handle as normal.
804 */
805 if (do_dsemulret(regs))
806 return;
807
808 die_if_kernel("Math emu break/trap", regs);
809 force_sig(SIGTRAP, current);
810 break;
811 default:
812 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
813 die_if_kernel(b, regs);
814 force_sig(SIGTRAP, current);
815 }
816 }
817
818 asmlinkage void do_bp(struct pt_regs *regs)
819 {
820 unsigned int opcode, bcode;
821
822 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
823 goto out_sigsegv;
824
825 /*
826 * There is the ancient bug in the MIPS assemblers that the break
827 * code starts left to bit 16 instead to bit 6 in the opcode.
828 * Gas is bug-compatible, but not always, grrr...
829 * We handle both cases with a simple heuristics. --macro
830 */
831 bcode = ((opcode >> 6) & ((1 << 20) - 1));
832 if (bcode >= (1 << 10))
833 bcode >>= 10;
834
835 /*
836 * notify the kprobe handlers, if instruction is likely to
837 * pertain to them.
838 */
839 switch (bcode) {
840 case BRK_KPROBE_BP:
841 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
842 return;
843 else
844 break;
845 case BRK_KPROBE_SSTEPBP:
846 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
847 return;
848 else
849 break;
850 default:
851 break;
852 }
853
854 do_trap_or_bp(regs, bcode, "Break");
855 return;
856
857 out_sigsegv:
858 force_sig(SIGSEGV, current);
859 }
860
861 asmlinkage void do_tr(struct pt_regs *regs)
862 {
863 unsigned int opcode, tcode = 0;
864
865 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
866 goto out_sigsegv;
867
868 /* Immediate versions don't provide a code. */
869 if (!(opcode & OPCODE))
870 tcode = ((opcode >> 6) & ((1 << 10) - 1));
871
872 do_trap_or_bp(regs, tcode, "Trap");
873 return;
874
875 out_sigsegv:
876 force_sig(SIGSEGV, current);
877 }
878
879 asmlinkage void do_ri(struct pt_regs *regs)
880 {
881 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
882 unsigned long old_epc = regs->cp0_epc;
883 unsigned int opcode = 0;
884 int status = -1;
885
886 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
887 == NOTIFY_STOP)
888 return;
889
890 die_if_kernel("Reserved instruction in kernel code", regs);
891
892 if (unlikely(compute_return_epc(regs) < 0))
893 return;
894
895 if (unlikely(get_user(opcode, epc) < 0))
896 status = SIGSEGV;
897
898 if (!cpu_has_llsc && status < 0)
899 status = simulate_llsc(regs, opcode);
900
901 if (status < 0)
902 status = simulate_rdhwr(regs, opcode);
903
904 if (status < 0)
905 status = simulate_sync(regs, opcode);
906
907 if (status < 0)
908 status = SIGILL;
909
910 if (unlikely(status > 0)) {
911 regs->cp0_epc = old_epc; /* Undo skip-over. */
912 force_sig(status, current);
913 }
914 }
915
916 /*
917 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
918 * emulated more than some threshold number of instructions, force migration to
919 * a "CPU" that has FP support.
920 */
921 static void mt_ase_fp_affinity(void)
922 {
923 #ifdef CONFIG_MIPS_MT_FPAFF
924 if (mt_fpemul_threshold > 0 &&
925 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
926 /*
927 * If there's no FPU present, or if the application has already
928 * restricted the allowed set to exclude any CPUs with FPUs,
929 * we'll skip the procedure.
930 */
931 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
932 cpumask_t tmask;
933
934 current->thread.user_cpus_allowed
935 = current->cpus_allowed;
936 cpus_and(tmask, current->cpus_allowed,
937 mt_fpu_cpumask);
938 set_cpus_allowed_ptr(current, &tmask);
939 set_thread_flag(TIF_FPUBOUND);
940 }
941 }
942 #endif /* CONFIG_MIPS_MT_FPAFF */
943 }
944
945 /*
946 * No lock; only written during early bootup by CPU 0.
947 */
948 static RAW_NOTIFIER_HEAD(cu2_chain);
949
950 int __ref register_cu2_notifier(struct notifier_block *nb)
951 {
952 return raw_notifier_chain_register(&cu2_chain, nb);
953 }
954
955 int cu2_notifier_call_chain(unsigned long val, void *v)
956 {
957 return raw_notifier_call_chain(&cu2_chain, val, v);
958 }
959
960 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
961 void *data)
962 {
963 struct pt_regs *regs = data;
964
965 switch (action) {
966 default:
967 die_if_kernel("Unhandled kernel unaligned access or invalid "
968 "instruction", regs);
969 /* Fall through */
970
971 case CU2_EXCEPTION:
972 force_sig(SIGILL, current);
973 }
974
975 return NOTIFY_OK;
976 }
977
978 asmlinkage void do_cpu(struct pt_regs *regs)
979 {
980 unsigned int __user *epc;
981 unsigned long old_epc;
982 unsigned int opcode;
983 unsigned int cpid;
984 int status;
985 unsigned long __maybe_unused flags;
986
987 die_if_kernel("do_cpu invoked from kernel context!", regs);
988
989 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
990
991 switch (cpid) {
992 case 0:
993 epc = (unsigned int __user *)exception_epc(regs);
994 old_epc = regs->cp0_epc;
995 opcode = 0;
996 status = -1;
997
998 if (unlikely(compute_return_epc(regs) < 0))
999 return;
1000
1001 if (unlikely(get_user(opcode, epc) < 0))
1002 status = SIGSEGV;
1003
1004 if (!cpu_has_llsc && status < 0)
1005 status = simulate_llsc(regs, opcode);
1006
1007 if (status < 0)
1008 status = simulate_rdhwr(regs, opcode);
1009
1010 if (status < 0)
1011 status = SIGILL;
1012
1013 if (unlikely(status > 0)) {
1014 regs->cp0_epc = old_epc; /* Undo skip-over. */
1015 force_sig(status, current);
1016 }
1017
1018 return;
1019
1020 case 1:
1021 if (used_math()) /* Using the FPU again. */
1022 own_fpu(1);
1023 else { /* First time FPU user. */
1024 init_fpu();
1025 set_used_math();
1026 }
1027
1028 if (!raw_cpu_has_fpu) {
1029 int sig;
1030 void __user *fault_addr = NULL;
1031 sig = fpu_emulator_cop1Handler(regs,
1032 &current->thread.fpu,
1033 0, &fault_addr);
1034 if (!process_fpemu_return(sig, fault_addr))
1035 mt_ase_fp_affinity();
1036 }
1037
1038 return;
1039
1040 case 2:
1041 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1042 return;
1043
1044 case 3:
1045 break;
1046 }
1047
1048 force_sig(SIGILL, current);
1049 }
1050
1051 asmlinkage void do_mdmx(struct pt_regs *regs)
1052 {
1053 force_sig(SIGILL, current);
1054 }
1055
1056 /*
1057 * Called with interrupts disabled.
1058 */
1059 asmlinkage void do_watch(struct pt_regs *regs)
1060 {
1061 u32 cause;
1062
1063 /*
1064 * Clear WP (bit 22) bit of cause register so we don't loop
1065 * forever.
1066 */
1067 cause = read_c0_cause();
1068 cause &= ~(1 << 22);
1069 write_c0_cause(cause);
1070
1071 /*
1072 * If the current thread has the watch registers loaded, save
1073 * their values and send SIGTRAP. Otherwise another thread
1074 * left the registers set, clear them and continue.
1075 */
1076 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1077 mips_read_watch_registers();
1078 local_irq_enable();
1079 force_sig(SIGTRAP, current);
1080 } else {
1081 mips_clear_watch_registers();
1082 local_irq_enable();
1083 }
1084 }
1085
1086 asmlinkage void do_mcheck(struct pt_regs *regs)
1087 {
1088 const int field = 2 * sizeof(unsigned long);
1089 int multi_match = regs->cp0_status & ST0_TS;
1090
1091 show_regs(regs);
1092
1093 if (multi_match) {
1094 printk("Index : %0x\n", read_c0_index());
1095 printk("Pagemask: %0x\n", read_c0_pagemask());
1096 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1097 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1098 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1099 printk("\n");
1100 dump_tlb_all();
1101 }
1102
1103 show_code((unsigned int __user *) regs->cp0_epc);
1104
1105 /*
1106 * Some chips may have other causes of machine check (e.g. SB1
1107 * graduation timer)
1108 */
1109 panic("Caught Machine Check exception - %scaused by multiple "
1110 "matching entries in the TLB.",
1111 (multi_match) ? "" : "not ");
1112 }
1113
1114 asmlinkage void do_mt(struct pt_regs *regs)
1115 {
1116 int subcode;
1117
1118 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1119 >> VPECONTROL_EXCPT_SHIFT;
1120 switch (subcode) {
1121 case 0:
1122 printk(KERN_DEBUG "Thread Underflow\n");
1123 break;
1124 case 1:
1125 printk(KERN_DEBUG "Thread Overflow\n");
1126 break;
1127 case 2:
1128 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1129 break;
1130 case 3:
1131 printk(KERN_DEBUG "Gating Storage Exception\n");
1132 break;
1133 case 4:
1134 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1135 break;
1136 case 5:
1137 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1138 break;
1139 default:
1140 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1141 subcode);
1142 break;
1143 }
1144 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1145
1146 force_sig(SIGILL, current);
1147 }
1148
1149
1150 asmlinkage void do_dsp(struct pt_regs *regs)
1151 {
1152 if (cpu_has_dsp)
1153 panic("Unexpected DSP exception");
1154
1155 force_sig(SIGILL, current);
1156 }
1157
1158 asmlinkage void do_reserved(struct pt_regs *regs)
1159 {
1160 /*
1161 * Game over - no way to handle this if it ever occurs. Most probably
1162 * caused by a new unknown cpu type or after another deadly
1163 * hard/software error.
1164 */
1165 show_regs(regs);
1166 panic("Caught reserved exception %ld - should not happen.",
1167 (regs->cp0_cause & 0x7f) >> 2);
1168 }
1169
1170 static int __initdata l1parity = 1;
1171 static int __init nol1parity(char *s)
1172 {
1173 l1parity = 0;
1174 return 1;
1175 }
1176 __setup("nol1par", nol1parity);
1177 static int __initdata l2parity = 1;
1178 static int __init nol2parity(char *s)
1179 {
1180 l2parity = 0;
1181 return 1;
1182 }
1183 __setup("nol2par", nol2parity);
1184
1185 /*
1186 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1187 * it different ways.
1188 */
1189 static inline void parity_protection_init(void)
1190 {
1191 switch (current_cpu_type()) {
1192 case CPU_24K:
1193 case CPU_34K:
1194 case CPU_74K:
1195 case CPU_1004K:
1196 {
1197 #define ERRCTL_PE 0x80000000
1198 #define ERRCTL_L2P 0x00800000
1199 unsigned long errctl;
1200 unsigned int l1parity_present, l2parity_present;
1201
1202 errctl = read_c0_ecc();
1203 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1204
1205 /* probe L1 parity support */
1206 write_c0_ecc(errctl | ERRCTL_PE);
1207 back_to_back_c0_hazard();
1208 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1209
1210 /* probe L2 parity support */
1211 write_c0_ecc(errctl|ERRCTL_L2P);
1212 back_to_back_c0_hazard();
1213 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1214
1215 if (l1parity_present && l2parity_present) {
1216 if (l1parity)
1217 errctl |= ERRCTL_PE;
1218 if (l1parity ^ l2parity)
1219 errctl |= ERRCTL_L2P;
1220 } else if (l1parity_present) {
1221 if (l1parity)
1222 errctl |= ERRCTL_PE;
1223 } else if (l2parity_present) {
1224 if (l2parity)
1225 errctl |= ERRCTL_L2P;
1226 } else {
1227 /* No parity available */
1228 }
1229
1230 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1231
1232 write_c0_ecc(errctl);
1233 back_to_back_c0_hazard();
1234 errctl = read_c0_ecc();
1235 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1236
1237 if (l1parity_present)
1238 printk(KERN_INFO "Cache parity protection %sabled\n",
1239 (errctl & ERRCTL_PE) ? "en" : "dis");
1240
1241 if (l2parity_present) {
1242 if (l1parity_present && l1parity)
1243 errctl ^= ERRCTL_L2P;
1244 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1245 (errctl & ERRCTL_L2P) ? "en" : "dis");
1246 }
1247 }
1248 break;
1249
1250 case CPU_5KC:
1251 write_c0_ecc(0x80000000);
1252 back_to_back_c0_hazard();
1253 /* Set the PE bit (bit 31) in the c0_errctl register. */
1254 printk(KERN_INFO "Cache parity protection %sabled\n",
1255 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1256 break;
1257 case CPU_20KC:
1258 case CPU_25KF:
1259 /* Clear the DE bit (bit 16) in the c0_status register. */
1260 printk(KERN_INFO "Enable cache parity protection for "
1261 "MIPS 20KC/25KF CPUs.\n");
1262 clear_c0_status(ST0_DE);
1263 break;
1264 default:
1265 break;
1266 }
1267 }
1268
1269 asmlinkage void cache_parity_error(void)
1270 {
1271 const int field = 2 * sizeof(unsigned long);
1272 unsigned int reg_val;
1273
1274 /* For the moment, report the problem and hang. */
1275 printk("Cache error exception:\n");
1276 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1277 reg_val = read_c0_cacheerr();
1278 printk("c0_cacheerr == %08x\n", reg_val);
1279
1280 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1281 reg_val & (1<<30) ? "secondary" : "primary",
1282 reg_val & (1<<31) ? "data" : "insn");
1283 printk("Error bits: %s%s%s%s%s%s%s\n",
1284 reg_val & (1<<29) ? "ED " : "",
1285 reg_val & (1<<28) ? "ET " : "",
1286 reg_val & (1<<26) ? "EE " : "",
1287 reg_val & (1<<25) ? "EB " : "",
1288 reg_val & (1<<24) ? "EI " : "",
1289 reg_val & (1<<23) ? "E1 " : "",
1290 reg_val & (1<<22) ? "E0 " : "");
1291 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1292
1293 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1294 if (reg_val & (1<<22))
1295 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1296
1297 if (reg_val & (1<<23))
1298 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1299 #endif
1300
1301 panic("Can't handle the cache error!");
1302 }
1303
1304 /*
1305 * SDBBP EJTAG debug exception handler.
1306 * We skip the instruction and return to the next instruction.
1307 */
1308 void ejtag_exception_handler(struct pt_regs *regs)
1309 {
1310 const int field = 2 * sizeof(unsigned long);
1311 unsigned long depc, old_epc;
1312 unsigned int debug;
1313
1314 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1315 depc = read_c0_depc();
1316 debug = read_c0_debug();
1317 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1318 if (debug & 0x80000000) {
1319 /*
1320 * In branch delay slot.
1321 * We cheat a little bit here and use EPC to calculate the
1322 * debug return address (DEPC). EPC is restored after the
1323 * calculation.
1324 */
1325 old_epc = regs->cp0_epc;
1326 regs->cp0_epc = depc;
1327 __compute_return_epc(regs);
1328 depc = regs->cp0_epc;
1329 regs->cp0_epc = old_epc;
1330 } else
1331 depc += 4;
1332 write_c0_depc(depc);
1333
1334 #if 0
1335 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1336 write_c0_debug(debug | 0x100);
1337 #endif
1338 }
1339
1340 /*
1341 * NMI exception handler.
1342 * No lock; only written during early bootup by CPU 0.
1343 */
1344 static RAW_NOTIFIER_HEAD(nmi_chain);
1345
1346 int register_nmi_notifier(struct notifier_block *nb)
1347 {
1348 return raw_notifier_chain_register(&nmi_chain, nb);
1349 }
1350
1351 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1352 {
1353 raw_notifier_call_chain(&nmi_chain, 0, regs);
1354 bust_spinlocks(1);
1355 printk("NMI taken!!!!\n");
1356 die("NMI", regs);
1357 }
1358
1359 #define VECTORSPACING 0x100 /* for EI/VI mode */
1360
1361 unsigned long ebase;
1362 unsigned long exception_handlers[32];
1363 unsigned long vi_handlers[64];
1364
1365 void __init *set_except_vector(int n, void *addr)
1366 {
1367 unsigned long handler = (unsigned long) addr;
1368 unsigned long old_handler = exception_handlers[n];
1369
1370 exception_handlers[n] = handler;
1371 if (n == 0 && cpu_has_divec) {
1372 unsigned long jump_mask = ~((1 << 28) - 1);
1373 u32 *buf = (u32 *)(ebase + 0x200);
1374 unsigned int k0 = 26;
1375 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1376 uasm_i_j(&buf, handler & ~jump_mask);
1377 uasm_i_nop(&buf);
1378 } else {
1379 UASM_i_LA(&buf, k0, handler);
1380 uasm_i_jr(&buf, k0);
1381 uasm_i_nop(&buf);
1382 }
1383 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1384 }
1385 return (void *)old_handler;
1386 }
1387
1388 static asmlinkage void do_default_vi(void)
1389 {
1390 show_regs(get_irq_regs());
1391 panic("Caught unexpected vectored interrupt.");
1392 }
1393
1394 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1395 {
1396 unsigned long handler;
1397 unsigned long old_handler = vi_handlers[n];
1398 int srssets = current_cpu_data.srsets;
1399 u32 *w;
1400 unsigned char *b;
1401
1402 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1403
1404 if (addr == NULL) {
1405 handler = (unsigned long) do_default_vi;
1406 srs = 0;
1407 } else
1408 handler = (unsigned long) addr;
1409 vi_handlers[n] = (unsigned long) addr;
1410
1411 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1412
1413 if (srs >= srssets)
1414 panic("Shadow register set %d not supported", srs);
1415
1416 if (cpu_has_veic) {
1417 if (board_bind_eic_interrupt)
1418 board_bind_eic_interrupt(n, srs);
1419 } else if (cpu_has_vint) {
1420 /* SRSMap is only defined if shadow sets are implemented */
1421 if (srssets > 1)
1422 change_c0_srsmap(0xf << n*4, srs << n*4);
1423 }
1424
1425 if (srs == 0) {
1426 /*
1427 * If no shadow set is selected then use the default handler
1428 * that does normal register saving and a standard interrupt exit
1429 */
1430
1431 extern char except_vec_vi, except_vec_vi_lui;
1432 extern char except_vec_vi_ori, except_vec_vi_end;
1433 extern char rollback_except_vec_vi;
1434 char *vec_start = (cpu_wait == r4k_wait) ?
1435 &rollback_except_vec_vi : &except_vec_vi;
1436 #ifdef CONFIG_MIPS_MT_SMTC
1437 /*
1438 * We need to provide the SMTC vectored interrupt handler
1439 * not only with the address of the handler, but with the
1440 * Status.IM bit to be masked before going there.
1441 */
1442 extern char except_vec_vi_mori;
1443 const int mori_offset = &except_vec_vi_mori - vec_start;
1444 #endif /* CONFIG_MIPS_MT_SMTC */
1445 const int handler_len = &except_vec_vi_end - vec_start;
1446 const int lui_offset = &except_vec_vi_lui - vec_start;
1447 const int ori_offset = &except_vec_vi_ori - vec_start;
1448
1449 if (handler_len > VECTORSPACING) {
1450 /*
1451 * Sigh... panicing won't help as the console
1452 * is probably not configured :(
1453 */
1454 panic("VECTORSPACING too small");
1455 }
1456
1457 memcpy(b, vec_start, handler_len);
1458 #ifdef CONFIG_MIPS_MT_SMTC
1459 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1460
1461 w = (u32 *)(b + mori_offset);
1462 *w = (*w & 0xffff0000) | (0x100 << n);
1463 #endif /* CONFIG_MIPS_MT_SMTC */
1464 w = (u32 *)(b + lui_offset);
1465 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1466 w = (u32 *)(b + ori_offset);
1467 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1468 local_flush_icache_range((unsigned long)b,
1469 (unsigned long)(b+handler_len));
1470 }
1471 else {
1472 /*
1473 * In other cases jump directly to the interrupt handler
1474 *
1475 * It is the handlers responsibility to save registers if required
1476 * (eg hi/lo) and return from the exception using "eret"
1477 */
1478 w = (u32 *)b;
1479 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1480 *w = 0;
1481 local_flush_icache_range((unsigned long)b,
1482 (unsigned long)(b+8));
1483 }
1484
1485 return (void *)old_handler;
1486 }
1487
1488 void *set_vi_handler(int n, vi_handler_t addr)
1489 {
1490 return set_vi_srs_handler(n, addr, 0);
1491 }
1492
1493 extern void cpu_cache_init(void);
1494 extern void tlb_init(void);
1495 extern void flush_tlb_handlers(void);
1496
1497 /*
1498 * Timer interrupt
1499 */
1500 int cp0_compare_irq;
1501 int cp0_compare_irq_shift;
1502
1503 /*
1504 * Performance counter IRQ or -1 if shared with timer
1505 */
1506 int cp0_perfcount_irq;
1507 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1508
1509 static int __cpuinitdata noulri;
1510
1511 static int __init ulri_disable(char *s)
1512 {
1513 pr_info("Disabling ulri\n");
1514 noulri = 1;
1515
1516 return 1;
1517 }
1518 __setup("noulri", ulri_disable);
1519
1520 void __cpuinit per_cpu_trap_init(void)
1521 {
1522 unsigned int cpu = smp_processor_id();
1523 unsigned int status_set = ST0_CU0;
1524 unsigned int hwrena = cpu_hwrena_impl_bits;
1525 #ifdef CONFIG_MIPS_MT_SMTC
1526 int secondaryTC = 0;
1527 int bootTC = (cpu == 0);
1528
1529 /*
1530 * Only do per_cpu_trap_init() for first TC of Each VPE.
1531 * Note that this hack assumes that the SMTC init code
1532 * assigns TCs consecutively and in ascending order.
1533 */
1534
1535 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1536 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1537 secondaryTC = 1;
1538 #endif /* CONFIG_MIPS_MT_SMTC */
1539
1540 /*
1541 * Disable coprocessors and select 32-bit or 64-bit addressing
1542 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1543 * flag that some firmware may have left set and the TS bit (for
1544 * IP27). Set XX for ISA IV code to work.
1545 */
1546 #ifdef CONFIG_64BIT
1547 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1548 #endif
1549 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1550 status_set |= ST0_XX;
1551 if (cpu_has_dsp)
1552 status_set |= ST0_MX;
1553
1554 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1555 status_set);
1556
1557 if (cpu_has_mips_r2)
1558 hwrena |= 0x0000000f;
1559
1560 if (!noulri && cpu_has_userlocal)
1561 hwrena |= (1 << 29);
1562
1563 if (hwrena)
1564 write_c0_hwrena(hwrena);
1565
1566 #ifdef CONFIG_MIPS_MT_SMTC
1567 if (!secondaryTC) {
1568 #endif /* CONFIG_MIPS_MT_SMTC */
1569
1570 if (cpu_has_veic || cpu_has_vint) {
1571 unsigned long sr = set_c0_status(ST0_BEV);
1572 write_c0_ebase(ebase);
1573 write_c0_status(sr);
1574 /* Setting vector spacing enables EI/VI mode */
1575 change_c0_intctl(0x3e0, VECTORSPACING);
1576 }
1577 if (cpu_has_divec) {
1578 if (cpu_has_mipsmt) {
1579 unsigned int vpflags = dvpe();
1580 set_c0_cause(CAUSEF_IV);
1581 evpe(vpflags);
1582 } else
1583 set_c0_cause(CAUSEF_IV);
1584 }
1585
1586 /*
1587 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1588 *
1589 * o read IntCtl.IPTI to determine the timer interrupt
1590 * o read IntCtl.IPPCI to determine the performance counter interrupt
1591 */
1592 if (cpu_has_mips_r2) {
1593 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1594 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1595 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1596 if (cp0_perfcount_irq == cp0_compare_irq)
1597 cp0_perfcount_irq = -1;
1598 } else {
1599 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1600 cp0_compare_irq_shift = cp0_compare_irq;
1601 cp0_perfcount_irq = -1;
1602 }
1603
1604 #ifdef CONFIG_MIPS_MT_SMTC
1605 }
1606 #endif /* CONFIG_MIPS_MT_SMTC */
1607
1608 if (!cpu_data[cpu].asid_cache)
1609 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1610
1611 atomic_inc(&init_mm.mm_count);
1612 current->active_mm = &init_mm;
1613 BUG_ON(current->mm);
1614 enter_lazy_tlb(&init_mm, current);
1615
1616 #ifdef CONFIG_MIPS_MT_SMTC
1617 if (bootTC) {
1618 #endif /* CONFIG_MIPS_MT_SMTC */
1619 cpu_cache_init();
1620 tlb_init();
1621 #ifdef CONFIG_MIPS_MT_SMTC
1622 } else if (!secondaryTC) {
1623 /*
1624 * First TC in non-boot VPE must do subset of tlb_init()
1625 * for MMU countrol registers.
1626 */
1627 write_c0_pagemask(PM_DEFAULT_MASK);
1628 write_c0_wired(0);
1629 }
1630 #endif /* CONFIG_MIPS_MT_SMTC */
1631 TLBMISS_HANDLER_SETUP();
1632 }
1633
1634 /* Install CPU exception handler */
1635 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1636 {
1637 memcpy((void *)(ebase + offset), addr, size);
1638 local_flush_icache_range(ebase + offset, ebase + offset + size);
1639 }
1640
1641 static char panic_null_cerr[] __cpuinitdata =
1642 "Trying to set NULL cache error exception handler";
1643
1644 /*
1645 * Install uncached CPU exception handler.
1646 * This is suitable only for the cache error exception which is the only
1647 * exception handler that is being run uncached.
1648 */
1649 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1650 unsigned long size)
1651 {
1652 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1653
1654 if (!addr)
1655 panic(panic_null_cerr);
1656
1657 memcpy((void *)(uncached_ebase + offset), addr, size);
1658 }
1659
1660 static int __initdata rdhwr_noopt;
1661 static int __init set_rdhwr_noopt(char *str)
1662 {
1663 rdhwr_noopt = 1;
1664 return 1;
1665 }
1666
1667 __setup("rdhwr_noopt", set_rdhwr_noopt);
1668
1669 void __init trap_init(void)
1670 {
1671 extern char except_vec3_generic, except_vec3_r4000;
1672 extern char except_vec4;
1673 unsigned long i;
1674 int rollback;
1675
1676 check_wait();
1677 rollback = (cpu_wait == r4k_wait);
1678
1679 #if defined(CONFIG_KGDB)
1680 if (kgdb_early_setup)
1681 return; /* Already done */
1682 #endif
1683
1684 if (cpu_has_veic || cpu_has_vint) {
1685 unsigned long size = 0x200 + VECTORSPACING*64;
1686 ebase = (unsigned long)
1687 __alloc_bootmem(size, 1 << fls(size), 0);
1688 } else {
1689 ebase = CKSEG0;
1690 if (cpu_has_mips_r2)
1691 ebase += (read_c0_ebase() & 0x3ffff000);
1692 }
1693
1694 if (board_ebase_setup)
1695 board_ebase_setup();
1696 per_cpu_trap_init();
1697
1698 /*
1699 * Copy the generic exception handlers to their final destination.
1700 * This will be overriden later as suitable for a particular
1701 * configuration.
1702 */
1703 set_handler(0x180, &except_vec3_generic, 0x80);
1704
1705 /*
1706 * Setup default vectors
1707 */
1708 for (i = 0; i <= 31; i++)
1709 set_except_vector(i, handle_reserved);
1710
1711 /*
1712 * Copy the EJTAG debug exception vector handler code to it's final
1713 * destination.
1714 */
1715 if (cpu_has_ejtag && board_ejtag_handler_setup)
1716 board_ejtag_handler_setup();
1717
1718 /*
1719 * Only some CPUs have the watch exceptions.
1720 */
1721 if (cpu_has_watch)
1722 set_except_vector(23, handle_watch);
1723
1724 /*
1725 * Initialise interrupt handlers
1726 */
1727 if (cpu_has_veic || cpu_has_vint) {
1728 int nvec = cpu_has_veic ? 64 : 8;
1729 for (i = 0; i < nvec; i++)
1730 set_vi_handler(i, NULL);
1731 }
1732 else if (cpu_has_divec)
1733 set_handler(0x200, &except_vec4, 0x8);
1734
1735 /*
1736 * Some CPUs can enable/disable for cache parity detection, but does
1737 * it different ways.
1738 */
1739 parity_protection_init();
1740
1741 /*
1742 * The Data Bus Errors / Instruction Bus Errors are signaled
1743 * by external hardware. Therefore these two exceptions
1744 * may have board specific handlers.
1745 */
1746 if (board_be_init)
1747 board_be_init();
1748
1749 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1750 set_except_vector(1, handle_tlbm);
1751 set_except_vector(2, handle_tlbl);
1752 set_except_vector(3, handle_tlbs);
1753
1754 set_except_vector(4, handle_adel);
1755 set_except_vector(5, handle_ades);
1756
1757 set_except_vector(6, handle_ibe);
1758 set_except_vector(7, handle_dbe);
1759
1760 set_except_vector(8, handle_sys);
1761 set_except_vector(9, handle_bp);
1762 set_except_vector(10, rdhwr_noopt ? handle_ri :
1763 (cpu_has_vtag_icache ?
1764 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1765 set_except_vector(11, handle_cpu);
1766 set_except_vector(12, handle_ov);
1767 set_except_vector(13, handle_tr);
1768
1769 if (current_cpu_type() == CPU_R6000 ||
1770 current_cpu_type() == CPU_R6000A) {
1771 /*
1772 * The R6000 is the only R-series CPU that features a machine
1773 * check exception (similar to the R4000 cache error) and
1774 * unaligned ldc1/sdc1 exception. The handlers have not been
1775 * written yet. Well, anyway there is no R6000 machine on the
1776 * current list of targets for Linux/MIPS.
1777 * (Duh, crap, there is someone with a triple R6k machine)
1778 */
1779 //set_except_vector(14, handle_mc);
1780 //set_except_vector(15, handle_ndc);
1781 }
1782
1783
1784 if (board_nmi_handler_setup)
1785 board_nmi_handler_setup();
1786
1787 if (cpu_has_fpu && !cpu_has_nofpuex)
1788 set_except_vector(15, handle_fpe);
1789
1790 set_except_vector(22, handle_mdmx);
1791
1792 if (cpu_has_mcheck)
1793 set_except_vector(24, handle_mcheck);
1794
1795 if (cpu_has_mipsmt)
1796 set_except_vector(25, handle_mt);
1797
1798 set_except_vector(26, handle_dsp);
1799
1800 if (cpu_has_vce)
1801 /* Special exception: R4[04]00 uses also the divec space. */
1802 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1803 else if (cpu_has_4kex)
1804 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1805 else
1806 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1807
1808 local_flush_icache_range(ebase, ebase + 0x400);
1809 flush_tlb_handlers();
1810
1811 sort_extable(__start___dbe_table, __stop___dbe_table);
1812
1813 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1814 }
This page took 0.08409 seconds and 6 git commands to generate.