Fix preemption and SMP problems in the FP emulator code.
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004 Maciej W. Rozycki
13 */
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23
24 #include <asm/bootinfo.h>
25 #include <asm/branch.h>
26 #include <asm/break.h>
27 #include <asm/cpu.h>
28 #include <asm/fpu.h>
29 #include <asm/module.h>
30 #include <asm/pgtable.h>
31 #include <asm/ptrace.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
34 #include <asm/tlbdebug.h>
35 #include <asm/traps.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/watch.h>
39 #include <asm/types.h>
40
41 extern asmlinkage void handle_tlbm(void);
42 extern asmlinkage void handle_tlbl(void);
43 extern asmlinkage void handle_tlbs(void);
44 extern asmlinkage void handle_adel(void);
45 extern asmlinkage void handle_ades(void);
46 extern asmlinkage void handle_ibe(void);
47 extern asmlinkage void handle_dbe(void);
48 extern asmlinkage void handle_sys(void);
49 extern asmlinkage void handle_bp(void);
50 extern asmlinkage void handle_ri(void);
51 extern asmlinkage void handle_cpu(void);
52 extern asmlinkage void handle_ov(void);
53 extern asmlinkage void handle_tr(void);
54 extern asmlinkage void handle_fpe(void);
55 extern asmlinkage void handle_mdmx(void);
56 extern asmlinkage void handle_watch(void);
57 extern asmlinkage void handle_mcheck(void);
58 extern asmlinkage void handle_reserved(void);
59
60 extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
61 struct mips_fpu_soft_struct *ctx);
62
63 void (*board_be_init)(void);
64 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
65
66 /*
67 * These constant is for searching for possible module text segments.
68 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
69 */
70 #define MODULE_RANGE (8*1024*1024)
71
72 /*
73 * This routine abuses get_user()/put_user() to reference pointers
74 * with at least a bit of error checking ...
75 */
76 void show_stack(struct task_struct *task, unsigned long *sp)
77 {
78 const int field = 2 * sizeof(unsigned long);
79 long stackdata;
80 int i;
81
82 if (!sp) {
83 if (task && task != current)
84 sp = (unsigned long *) task->thread.reg29;
85 else
86 sp = (unsigned long *) &sp;
87 }
88
89 printk("Stack :");
90 i = 0;
91 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
92 if (i && ((i % (64 / field)) == 0))
93 printk("\n ");
94 if (i > 39) {
95 printk(" ...");
96 break;
97 }
98
99 if (__get_user(stackdata, sp++)) {
100 printk(" (Bad stack address)");
101 break;
102 }
103
104 printk(" %0*lx", field, stackdata);
105 i++;
106 }
107 printk("\n");
108 }
109
110 void show_trace(struct task_struct *task, unsigned long *stack)
111 {
112 const int field = 2 * sizeof(unsigned long);
113 unsigned long addr;
114
115 if (!stack) {
116 if (task && task != current)
117 stack = (unsigned long *) task->thread.reg29;
118 else
119 stack = (unsigned long *) &stack;
120 }
121
122 printk("Call Trace:");
123 #ifdef CONFIG_KALLSYMS
124 printk("\n");
125 #endif
126 while (!kstack_end(stack)) {
127 addr = *stack++;
128 if (__kernel_text_address(addr)) {
129 printk(" [<%0*lx>] ", field, addr);
130 print_symbol("%s\n", addr);
131 }
132 }
133 printk("\n");
134 }
135
136 /*
137 * The architecture-independent dump_stack generator
138 */
139 void dump_stack(void)
140 {
141 unsigned long stack;
142
143 show_trace(current, &stack);
144 }
145
146 EXPORT_SYMBOL(dump_stack);
147
148 void show_code(unsigned int *pc)
149 {
150 long i;
151
152 printk("\nCode:");
153
154 for(i = -3 ; i < 6 ; i++) {
155 unsigned int insn;
156 if (__get_user(insn, pc + i)) {
157 printk(" (Bad address in epc)\n");
158 break;
159 }
160 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
161 }
162 }
163
164 void show_regs(struct pt_regs *regs)
165 {
166 const int field = 2 * sizeof(unsigned long);
167 unsigned int cause = regs->cp0_cause;
168 int i;
169
170 printk("Cpu %d\n", smp_processor_id());
171
172 /*
173 * Saved main processor registers
174 */
175 for (i = 0; i < 32; ) {
176 if ((i % 4) == 0)
177 printk("$%2d :", i);
178 if (i == 0)
179 printk(" %0*lx", field, 0UL);
180 else if (i == 26 || i == 27)
181 printk(" %*s", field, "");
182 else
183 printk(" %0*lx", field, regs->regs[i]);
184
185 i++;
186 if ((i % 4) == 0)
187 printk("\n");
188 }
189
190 printk("Hi : %0*lx\n", field, regs->hi);
191 printk("Lo : %0*lx\n", field, regs->lo);
192
193 /*
194 * Saved cp0 registers
195 */
196 printk("epc : %0*lx ", field, regs->cp0_epc);
197 print_symbol("%s ", regs->cp0_epc);
198 printk(" %s\n", print_tainted());
199 printk("ra : %0*lx ", field, regs->regs[31]);
200 print_symbol("%s\n", regs->regs[31]);
201
202 printk("Status: %08x ", (uint32_t) regs->cp0_status);
203
204 if (regs->cp0_status & ST0_KX)
205 printk("KX ");
206 if (regs->cp0_status & ST0_SX)
207 printk("SX ");
208 if (regs->cp0_status & ST0_UX)
209 printk("UX ");
210 switch (regs->cp0_status & ST0_KSU) {
211 case KSU_USER:
212 printk("USER ");
213 break;
214 case KSU_SUPERVISOR:
215 printk("SUPERVISOR ");
216 break;
217 case KSU_KERNEL:
218 printk("KERNEL ");
219 break;
220 default:
221 printk("BAD_MODE ");
222 break;
223 }
224 if (regs->cp0_status & ST0_ERL)
225 printk("ERL ");
226 if (regs->cp0_status & ST0_EXL)
227 printk("EXL ");
228 if (regs->cp0_status & ST0_IE)
229 printk("IE ");
230 printk("\n");
231
232 printk("Cause : %08x\n", cause);
233
234 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
235 if (1 <= cause && cause <= 5)
236 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
237
238 printk("PrId : %08x\n", read_c0_prid());
239 }
240
241 void show_registers(struct pt_regs *regs)
242 {
243 show_regs(regs);
244 print_modules();
245 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
246 current->comm, current->pid, current_thread_info(), current);
247 show_stack(current, (long *) regs->regs[29]);
248 show_trace(current, (long *) regs->regs[29]);
249 show_code((unsigned int *) regs->cp0_epc);
250 printk("\n");
251 }
252
253 static DEFINE_SPINLOCK(die_lock);
254
255 NORET_TYPE void __die(const char * str, struct pt_regs * regs,
256 const char * file, const char * func, unsigned long line)
257 {
258 static int die_counter;
259
260 console_verbose();
261 spin_lock_irq(&die_lock);
262 printk("%s", str);
263 if (file && func)
264 printk(" in %s:%s, line %ld", file, func, line);
265 printk("[#%d]:\n", ++die_counter);
266 show_registers(regs);
267 spin_unlock_irq(&die_lock);
268 do_exit(SIGSEGV);
269 }
270
271 void __die_if_kernel(const char * str, struct pt_regs * regs,
272 const char * file, const char * func, unsigned long line)
273 {
274 if (!user_mode(regs))
275 __die(str, regs, file, func, line);
276 }
277
278 extern const struct exception_table_entry __start___dbe_table[];
279 extern const struct exception_table_entry __stop___dbe_table[];
280
281 void __declare_dbe_table(void)
282 {
283 __asm__ __volatile__(
284 ".section\t__dbe_table,\"a\"\n\t"
285 ".previous"
286 );
287 }
288
289 /* Given an address, look for it in the exception tables. */
290 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
291 {
292 const struct exception_table_entry *e;
293
294 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
295 if (!e)
296 e = search_module_dbetables(addr);
297 return e;
298 }
299
300 asmlinkage void do_be(struct pt_regs *regs)
301 {
302 const int field = 2 * sizeof(unsigned long);
303 const struct exception_table_entry *fixup = NULL;
304 int data = regs->cp0_cause & 4;
305 int action = MIPS_BE_FATAL;
306
307 /* XXX For now. Fixme, this searches the wrong table ... */
308 if (data && !user_mode(regs))
309 fixup = search_dbe_tables(exception_epc(regs));
310
311 if (fixup)
312 action = MIPS_BE_FIXUP;
313
314 if (board_be_handler)
315 action = board_be_handler(regs, fixup != 0);
316
317 switch (action) {
318 case MIPS_BE_DISCARD:
319 return;
320 case MIPS_BE_FIXUP:
321 if (fixup) {
322 regs->cp0_epc = fixup->nextinsn;
323 return;
324 }
325 break;
326 default:
327 break;
328 }
329
330 /*
331 * Assume it would be too dangerous to continue ...
332 */
333 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
334 data ? "Data" : "Instruction",
335 field, regs->cp0_epc, field, regs->regs[31]);
336 die_if_kernel("Oops", regs);
337 force_sig(SIGBUS, current);
338 }
339
340 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
341 {
342 unsigned int __user *epc;
343
344 epc = (unsigned int __user *) regs->cp0_epc +
345 ((regs->cp0_cause & CAUSEF_BD) != 0);
346 if (!get_user(*opcode, epc))
347 return 0;
348
349 force_sig(SIGSEGV, current);
350 return 1;
351 }
352
353 /*
354 * ll/sc emulation
355 */
356
357 #define OPCODE 0xfc000000
358 #define BASE 0x03e00000
359 #define RT 0x001f0000
360 #define OFFSET 0x0000ffff
361 #define LL 0xc0000000
362 #define SC 0xe0000000
363 #define SPEC3 0x7c000000
364 #define RD 0x0000f800
365 #define FUNC 0x0000003f
366 #define RDHWR 0x0000003b
367
368 /*
369 * The ll_bit is cleared by r*_switch.S
370 */
371
372 unsigned long ll_bit;
373
374 static struct task_struct *ll_task = NULL;
375
376 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
377 {
378 unsigned long value, __user *vaddr;
379 long offset;
380 int signal = 0;
381
382 /*
383 * analyse the ll instruction that just caused a ri exception
384 * and put the referenced address to addr.
385 */
386
387 /* sign extend offset */
388 offset = opcode & OFFSET;
389 offset <<= 16;
390 offset >>= 16;
391
392 vaddr = (unsigned long __user *)
393 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
394
395 if ((unsigned long)vaddr & 3) {
396 signal = SIGBUS;
397 goto sig;
398 }
399 if (get_user(value, vaddr)) {
400 signal = SIGSEGV;
401 goto sig;
402 }
403
404 preempt_disable();
405
406 if (ll_task == NULL || ll_task == current) {
407 ll_bit = 1;
408 } else {
409 ll_bit = 0;
410 }
411 ll_task = current;
412
413 preempt_enable();
414
415 compute_return_epc(regs);
416
417 regs->regs[(opcode & RT) >> 16] = value;
418
419 return;
420
421 sig:
422 force_sig(signal, current);
423 }
424
425 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
426 {
427 unsigned long __user *vaddr;
428 unsigned long reg;
429 long offset;
430 int signal = 0;
431
432 /*
433 * analyse the sc instruction that just caused a ri exception
434 * and put the referenced address to addr.
435 */
436
437 /* sign extend offset */
438 offset = opcode & OFFSET;
439 offset <<= 16;
440 offset >>= 16;
441
442 vaddr = (unsigned long __user *)
443 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
444 reg = (opcode & RT) >> 16;
445
446 if ((unsigned long)vaddr & 3) {
447 signal = SIGBUS;
448 goto sig;
449 }
450
451 preempt_disable();
452
453 if (ll_bit == 0 || ll_task != current) {
454 compute_return_epc(regs);
455 regs->regs[reg] = 0;
456 preempt_enable();
457 return;
458 }
459
460 preempt_enable();
461
462 if (put_user(regs->regs[reg], vaddr)) {
463 signal = SIGSEGV;
464 goto sig;
465 }
466
467 compute_return_epc(regs);
468 regs->regs[reg] = 1;
469
470 return;
471
472 sig:
473 force_sig(signal, current);
474 }
475
476 /*
477 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
478 * opcodes are supposed to result in coprocessor unusable exceptions if
479 * executed on ll/sc-less processors. That's the theory. In practice a
480 * few processors such as NEC's VR4100 throw reserved instruction exceptions
481 * instead, so we're doing the emulation thing in both exception handlers.
482 */
483 static inline int simulate_llsc(struct pt_regs *regs)
484 {
485 unsigned int opcode;
486
487 if (unlikely(get_insn_opcode(regs, &opcode)))
488 return -EFAULT;
489
490 if ((opcode & OPCODE) == LL) {
491 simulate_ll(regs, opcode);
492 return 0;
493 }
494 if ((opcode & OPCODE) == SC) {
495 simulate_sc(regs, opcode);
496 return 0;
497 }
498
499 return -EFAULT; /* Strange things going on ... */
500 }
501
502 /*
503 * Simulate trapping 'rdhwr' instructions to provide user accessible
504 * registers not implemented in hardware. The only current use of this
505 * is the thread area pointer.
506 */
507 static inline int simulate_rdhwr(struct pt_regs *regs)
508 {
509 struct thread_info *ti = current->thread_info;
510 unsigned int opcode;
511
512 if (unlikely(get_insn_opcode(regs, &opcode)))
513 return -EFAULT;
514
515 if (unlikely(compute_return_epc(regs)))
516 return -EFAULT;
517
518 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
519 int rd = (opcode & RD) >> 11;
520 int rt = (opcode & RT) >> 16;
521 switch (rd) {
522 case 29:
523 regs->regs[rt] = ti->tp_value;
524 break;
525 default:
526 return -EFAULT;
527 }
528 }
529
530 return 0;
531 }
532
533 asmlinkage void do_ov(struct pt_regs *regs)
534 {
535 siginfo_t info;
536
537 info.si_code = FPE_INTOVF;
538 info.si_signo = SIGFPE;
539 info.si_errno = 0;
540 info.si_addr = (void __user *) regs->cp0_epc;
541 force_sig_info(SIGFPE, &info, current);
542 }
543
544 /*
545 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
546 */
547 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
548 {
549 if (fcr31 & FPU_CSR_UNI_X) {
550 int sig;
551
552 preempt_disable();
553
554 #ifdef CONFIG_PREEMPT
555 if (!is_fpu_owner()) {
556 /* We might lose fpu before disabling preempt... */
557 own_fpu();
558 BUG_ON(!used_math());
559 restore_fp(current);
560 }
561 #endif
562 /*
563 * Unimplemented operation exception. If we've got the full
564 * software emulator on-board, let's use it...
565 *
566 * Force FPU to dump state into task/thread context. We're
567 * moving a lot of data here for what is probably a single
568 * instruction, but the alternative is to pre-decode the FP
569 * register operands before invoking the emulator, which seems
570 * a bit extreme for what should be an infrequent event.
571 */
572 save_fp(current);
573 /* Ensure 'resume' not overwrite saved fp context again. */
574 lose_fpu();
575
576 preempt_enable();
577
578 /* Run the emulator */
579 sig = fpu_emulator_cop1Handler (0, regs,
580 &current->thread.fpu.soft);
581
582 preempt_disable();
583
584 own_fpu(); /* Using the FPU again. */
585 /*
586 * We can't allow the emulated instruction to leave any of
587 * the cause bit set in $fcr31.
588 */
589 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
590
591 /* Restore the hardware register state */
592 restore_fp(current);
593
594 preempt_enable();
595
596 /* If something went wrong, signal */
597 if (sig)
598 force_sig(sig, current);
599
600 return;
601 }
602
603 force_sig(SIGFPE, current);
604 }
605
606 asmlinkage void do_bp(struct pt_regs *regs)
607 {
608 unsigned int opcode, bcode;
609 siginfo_t info;
610
611 die_if_kernel("Break instruction in kernel code", regs);
612
613 if (get_insn_opcode(regs, &opcode))
614 return;
615
616 /*
617 * There is the ancient bug in the MIPS assemblers that the break
618 * code starts left to bit 16 instead to bit 6 in the opcode.
619 * Gas is bug-compatible, but not always, grrr...
620 * We handle both cases with a simple heuristics. --macro
621 */
622 bcode = ((opcode >> 6) & ((1 << 20) - 1));
623 if (bcode < (1 << 10))
624 bcode <<= 10;
625
626 /*
627 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
628 * insns, even for break codes that indicate arithmetic failures.
629 * Weird ...)
630 * But should we continue the brokenness??? --macro
631 */
632 switch (bcode) {
633 case BRK_OVERFLOW << 10:
634 case BRK_DIVZERO << 10:
635 if (bcode == (BRK_DIVZERO << 10))
636 info.si_code = FPE_INTDIV;
637 else
638 info.si_code = FPE_INTOVF;
639 info.si_signo = SIGFPE;
640 info.si_errno = 0;
641 info.si_addr = (void __user *) regs->cp0_epc;
642 force_sig_info(SIGFPE, &info, current);
643 break;
644 default:
645 force_sig(SIGTRAP, current);
646 }
647 }
648
649 asmlinkage void do_tr(struct pt_regs *regs)
650 {
651 unsigned int opcode, tcode = 0;
652 siginfo_t info;
653
654 die_if_kernel("Trap instruction in kernel code", regs);
655
656 if (get_insn_opcode(regs, &opcode))
657 return;
658
659 /* Immediate versions don't provide a code. */
660 if (!(opcode & OPCODE))
661 tcode = ((opcode >> 6) & ((1 << 10) - 1));
662
663 /*
664 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
665 * insns, even for trap codes that indicate arithmetic failures.
666 * Weird ...)
667 * But should we continue the brokenness??? --macro
668 */
669 switch (tcode) {
670 case BRK_OVERFLOW:
671 case BRK_DIVZERO:
672 if (tcode == BRK_DIVZERO)
673 info.si_code = FPE_INTDIV;
674 else
675 info.si_code = FPE_INTOVF;
676 info.si_signo = SIGFPE;
677 info.si_errno = 0;
678 info.si_addr = (void __user *) regs->cp0_epc;
679 force_sig_info(SIGFPE, &info, current);
680 break;
681 default:
682 force_sig(SIGTRAP, current);
683 }
684 }
685
686 asmlinkage void do_ri(struct pt_regs *regs)
687 {
688 die_if_kernel("Reserved instruction in kernel code", regs);
689
690 if (!cpu_has_llsc)
691 if (!simulate_llsc(regs))
692 return;
693
694 if (!simulate_rdhwr(regs))
695 return;
696
697 force_sig(SIGILL, current);
698 }
699
700 asmlinkage void do_cpu(struct pt_regs *regs)
701 {
702 unsigned int cpid;
703
704 die_if_kernel("do_cpu invoked from kernel context!", regs);
705
706 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
707
708 switch (cpid) {
709 case 0:
710 if (!cpu_has_llsc)
711 if (!simulate_llsc(regs))
712 return;
713
714 if (!simulate_rdhwr(regs))
715 return;
716
717 break;
718
719 case 1:
720 preempt_disable();
721
722 own_fpu();
723 if (used_math()) { /* Using the FPU again. */
724 restore_fp(current);
725 } else { /* First time FPU user. */
726 init_fpu();
727 set_used_math();
728 }
729
730 preempt_enable();
731
732 if (!cpu_has_fpu) {
733 int sig = fpu_emulator_cop1Handler(0, regs,
734 &current->thread.fpu.soft);
735 if (sig)
736 force_sig(sig, current);
737 }
738
739 return;
740
741 case 2:
742 case 3:
743 break;
744 }
745
746 force_sig(SIGILL, current);
747 }
748
749 asmlinkage void do_mdmx(struct pt_regs *regs)
750 {
751 force_sig(SIGILL, current);
752 }
753
754 asmlinkage void do_watch(struct pt_regs *regs)
755 {
756 /*
757 * We use the watch exception where available to detect stack
758 * overflows.
759 */
760 dump_tlb_all();
761 show_regs(regs);
762 panic("Caught WATCH exception - probably caused by stack overflow.");
763 }
764
765 asmlinkage void do_mcheck(struct pt_regs *regs)
766 {
767 show_regs(regs);
768 dump_tlb_all();
769 /*
770 * Some chips may have other causes of machine check (e.g. SB1
771 * graduation timer)
772 */
773 panic("Caught Machine Check exception - %scaused by multiple "
774 "matching entries in the TLB.",
775 (regs->cp0_status & ST0_TS) ? "" : "not ");
776 }
777
778 asmlinkage void do_reserved(struct pt_regs *regs)
779 {
780 /*
781 * Game over - no way to handle this if it ever occurs. Most probably
782 * caused by a new unknown cpu type or after another deadly
783 * hard/software error.
784 */
785 show_regs(regs);
786 panic("Caught reserved exception %ld - should not happen.",
787 (regs->cp0_cause & 0x7f) >> 2);
788 }
789
790 /*
791 * Some MIPS CPUs can enable/disable for cache parity detection, but do
792 * it different ways.
793 */
794 static inline void parity_protection_init(void)
795 {
796 switch (current_cpu_data.cputype) {
797 case CPU_24K:
798 case CPU_5KC:
799 write_c0_ecc(0x80000000);
800 back_to_back_c0_hazard();
801 /* Set the PE bit (bit 31) in the c0_errctl register. */
802 printk(KERN_INFO "Cache parity protection %sabled\n",
803 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
804 break;
805 case CPU_20KC:
806 case CPU_25KF:
807 /* Clear the DE bit (bit 16) in the c0_status register. */
808 printk(KERN_INFO "Enable cache parity protection for "
809 "MIPS 20KC/25KF CPUs.\n");
810 clear_c0_status(ST0_DE);
811 break;
812 default:
813 break;
814 }
815 }
816
817 asmlinkage void cache_parity_error(void)
818 {
819 const int field = 2 * sizeof(unsigned long);
820 unsigned int reg_val;
821
822 /* For the moment, report the problem and hang. */
823 printk("Cache error exception:\n");
824 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
825 reg_val = read_c0_cacheerr();
826 printk("c0_cacheerr == %08x\n", reg_val);
827
828 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
829 reg_val & (1<<30) ? "secondary" : "primary",
830 reg_val & (1<<31) ? "data" : "insn");
831 printk("Error bits: %s%s%s%s%s%s%s\n",
832 reg_val & (1<<29) ? "ED " : "",
833 reg_val & (1<<28) ? "ET " : "",
834 reg_val & (1<<26) ? "EE " : "",
835 reg_val & (1<<25) ? "EB " : "",
836 reg_val & (1<<24) ? "EI " : "",
837 reg_val & (1<<23) ? "E1 " : "",
838 reg_val & (1<<22) ? "E0 " : "");
839 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
840
841 #if defined(CONFIG_CPU_MIPS32) || defined (CONFIG_CPU_MIPS64)
842 if (reg_val & (1<<22))
843 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
844
845 if (reg_val & (1<<23))
846 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
847 #endif
848
849 panic("Can't handle the cache error!");
850 }
851
852 /*
853 * SDBBP EJTAG debug exception handler.
854 * We skip the instruction and return to the next instruction.
855 */
856 void ejtag_exception_handler(struct pt_regs *regs)
857 {
858 const int field = 2 * sizeof(unsigned long);
859 unsigned long depc, old_epc;
860 unsigned int debug;
861
862 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
863 depc = read_c0_depc();
864 debug = read_c0_debug();
865 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
866 if (debug & 0x80000000) {
867 /*
868 * In branch delay slot.
869 * We cheat a little bit here and use EPC to calculate the
870 * debug return address (DEPC). EPC is restored after the
871 * calculation.
872 */
873 old_epc = regs->cp0_epc;
874 regs->cp0_epc = depc;
875 __compute_return_epc(regs);
876 depc = regs->cp0_epc;
877 regs->cp0_epc = old_epc;
878 } else
879 depc += 4;
880 write_c0_depc(depc);
881
882 #if 0
883 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
884 write_c0_debug(debug | 0x100);
885 #endif
886 }
887
888 /*
889 * NMI exception handler.
890 */
891 void nmi_exception_handler(struct pt_regs *regs)
892 {
893 printk("NMI taken!!!!\n");
894 die("NMI", regs);
895 while(1) ;
896 }
897
898 unsigned long exception_handlers[32];
899
900 /*
901 * As a side effect of the way this is implemented we're limited
902 * to interrupt handlers in the address range from
903 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
904 */
905 void *set_except_vector(int n, void *addr)
906 {
907 unsigned long handler = (unsigned long) addr;
908 unsigned long old_handler = exception_handlers[n];
909
910 exception_handlers[n] = handler;
911 if (n == 0 && cpu_has_divec) {
912 *(volatile u32 *)(CAC_BASE + 0x200) = 0x08000000 |
913 (0x03ffffff & (handler >> 2));
914 flush_icache_range(CAC_BASE + 0x200, CAC_BASE + 0x204);
915 }
916 return (void *)old_handler;
917 }
918
919 /*
920 * This is used by native signal handling
921 */
922 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
923 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
924
925 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
926 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
927
928 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
929 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
930
931 static inline void signal_init(void)
932 {
933 if (cpu_has_fpu) {
934 save_fp_context = _save_fp_context;
935 restore_fp_context = _restore_fp_context;
936 } else {
937 save_fp_context = fpu_emulator_save_context;
938 restore_fp_context = fpu_emulator_restore_context;
939 }
940 }
941
942 #ifdef CONFIG_MIPS32_COMPAT
943
944 /*
945 * This is used by 32-bit signal stuff on the 64-bit kernel
946 */
947 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
948 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
949
950 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
951 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
952
953 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
954 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
955
956 static inline void signal32_init(void)
957 {
958 if (cpu_has_fpu) {
959 save_fp_context32 = _save_fp_context32;
960 restore_fp_context32 = _restore_fp_context32;
961 } else {
962 save_fp_context32 = fpu_emulator_save_context32;
963 restore_fp_context32 = fpu_emulator_restore_context32;
964 }
965 }
966 #endif
967
968 extern void cpu_cache_init(void);
969 extern void tlb_init(void);
970
971 void __init per_cpu_trap_init(void)
972 {
973 unsigned int cpu = smp_processor_id();
974 unsigned int status_set = ST0_CU0;
975
976 /*
977 * Disable coprocessors and select 32-bit or 64-bit addressing
978 * and the 16/32 or 32/32 FPR register model. Reset the BEV
979 * flag that some firmware may have left set and the TS bit (for
980 * IP27). Set XX for ISA IV code to work.
981 */
982 #ifdef CONFIG_64BIT
983 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
984 #endif
985 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
986 status_set |= ST0_XX;
987 change_c0_status(ST0_CU|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
988 status_set);
989
990 /*
991 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
992 * interrupt processing overhead. Use it where available.
993 */
994 if (cpu_has_divec)
995 set_c0_cause(CAUSEF_IV);
996
997 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
998 TLBMISS_HANDLER_SETUP();
999
1000 atomic_inc(&init_mm.mm_count);
1001 current->active_mm = &init_mm;
1002 BUG_ON(current->mm);
1003 enter_lazy_tlb(&init_mm, current);
1004
1005 cpu_cache_init();
1006 tlb_init();
1007 }
1008
1009 void __init trap_init(void)
1010 {
1011 extern char except_vec3_generic, except_vec3_r4000;
1012 extern char except_vec_ejtag_debug;
1013 extern char except_vec4;
1014 unsigned long i;
1015
1016 per_cpu_trap_init();
1017
1018 /*
1019 * Copy the generic exception handlers to their final destination.
1020 * This will be overriden later as suitable for a particular
1021 * configuration.
1022 */
1023 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1024
1025 /*
1026 * Setup default vectors
1027 */
1028 for (i = 0; i <= 31; i++)
1029 set_except_vector(i, handle_reserved);
1030
1031 /*
1032 * Copy the EJTAG debug exception vector handler code to it's final
1033 * destination.
1034 */
1035 if (cpu_has_ejtag)
1036 memcpy((void *)(CAC_BASE + 0x300), &except_vec_ejtag_debug, 0x80);
1037
1038 /*
1039 * Only some CPUs have the watch exceptions.
1040 */
1041 if (cpu_has_watch)
1042 set_except_vector(23, handle_watch);
1043
1044 /*
1045 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
1046 * interrupt processing overhead. Use it where available.
1047 */
1048 if (cpu_has_divec)
1049 memcpy((void *)(CAC_BASE + 0x200), &except_vec4, 0x8);
1050
1051 /*
1052 * Some CPUs can enable/disable for cache parity detection, but does
1053 * it different ways.
1054 */
1055 parity_protection_init();
1056
1057 /*
1058 * The Data Bus Errors / Instruction Bus Errors are signaled
1059 * by external hardware. Therefore these two exceptions
1060 * may have board specific handlers.
1061 */
1062 if (board_be_init)
1063 board_be_init();
1064
1065 set_except_vector(1, handle_tlbm);
1066 set_except_vector(2, handle_tlbl);
1067 set_except_vector(3, handle_tlbs);
1068
1069 set_except_vector(4, handle_adel);
1070 set_except_vector(5, handle_ades);
1071
1072 set_except_vector(6, handle_ibe);
1073 set_except_vector(7, handle_dbe);
1074
1075 set_except_vector(8, handle_sys);
1076 set_except_vector(9, handle_bp);
1077 set_except_vector(10, handle_ri);
1078 set_except_vector(11, handle_cpu);
1079 set_except_vector(12, handle_ov);
1080 set_except_vector(13, handle_tr);
1081 set_except_vector(22, handle_mdmx);
1082
1083 if (cpu_has_fpu && !cpu_has_nofpuex)
1084 set_except_vector(15, handle_fpe);
1085
1086 if (cpu_has_mcheck)
1087 set_except_vector(24, handle_mcheck);
1088
1089 if (cpu_has_vce)
1090 /* Special exception: R4[04]00 uses also the divec space. */
1091 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1092 else if (cpu_has_4kex)
1093 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1094 else
1095 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1096
1097 if (current_cpu_data.cputype == CPU_R6000 ||
1098 current_cpu_data.cputype == CPU_R6000A) {
1099 /*
1100 * The R6000 is the only R-series CPU that features a machine
1101 * check exception (similar to the R4000 cache error) and
1102 * unaligned ldc1/sdc1 exception. The handlers have not been
1103 * written yet. Well, anyway there is no R6000 machine on the
1104 * current list of targets for Linux/MIPS.
1105 * (Duh, crap, there is someone with a triple R6k machine)
1106 */
1107 //set_except_vector(14, handle_mc);
1108 //set_except_vector(15, handle_ndc);
1109 }
1110
1111 signal_init();
1112 #ifdef CONFIG_MIPS32_COMPAT
1113 signal32_init();
1114 #endif
1115
1116 flush_icache_range(CAC_BASE, CAC_BASE + 0x400);
1117 }
This page took 0.057608 seconds and 6 git commands to generate.