Detach sched.h from mm.h
[deliverable/linux.git] / arch / mips / kernel / vpe.c
1 /*
2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
3 *
4 * This program is free software; you can distribute it and/or modify it
5 * under the terms of the GNU General Public License (Version 2) as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * for more details.
12 *
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, write to the Free Software Foundation, Inc.,
15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16 */
17
18 /*
19 * VPE support module
20 *
21 * Provides support for loading a MIPS SP program on VPE1.
22 * The SP enviroment is rather simple, no tlb's. It needs to be relocatable
23 * (or partially linked). You should initialise your stack in the startup
24 * code. This loader looks for the symbol __start and sets up
25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
26 *
27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28 * i.e cat spapp >/dev/vpe1.
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/device.h>
33 #include <linux/module.h>
34 #include <linux/fs.h>
35 #include <linux/init.h>
36 #include <asm/uaccess.h>
37 #include <linux/slab.h>
38 #include <linux/list.h>
39 #include <linux/vmalloc.h>
40 #include <linux/elf.h>
41 #include <linux/seq_file.h>
42 #include <linux/syscalls.h>
43 #include <linux/moduleloader.h>
44 #include <linux/interrupt.h>
45 #include <linux/poll.h>
46 #include <linux/bootmem.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/cacheflush.h>
50 #include <asm/atomic.h>
51 #include <asm/cpu.h>
52 #include <asm/mips_mt.h>
53 #include <asm/processor.h>
54 #include <asm/system.h>
55 #include <asm/vpe.h>
56 #include <asm/kspd.h>
57
58 typedef void *vpe_handle;
59
60 #ifndef ARCH_SHF_SMALL
61 #define ARCH_SHF_SMALL 0
62 #endif
63
64 /* If this is set, the section belongs in the init part of the module */
65 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
66
67 static char module_name[] = "vpe";
68 static int major;
69 static const int minor = 1; /* fixed for now */
70
71 #ifdef CONFIG_MIPS_APSP_KSPD
72 static struct kspd_notifications kspd_events;
73 static int kspd_events_reqd = 0;
74 #endif
75
76 /* grab the likely amount of memory we will need. */
77 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
78 #define P_SIZE (2 * 1024 * 1024)
79 #else
80 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
81 #define P_SIZE (256 * 1024)
82 #endif
83
84 extern unsigned long physical_memsize;
85
86 #define MAX_VPES 16
87 #define VPE_PATH_MAX 256
88
89 enum vpe_state {
90 VPE_STATE_UNUSED = 0,
91 VPE_STATE_INUSE,
92 VPE_STATE_RUNNING
93 };
94
95 enum tc_state {
96 TC_STATE_UNUSED = 0,
97 TC_STATE_INUSE,
98 TC_STATE_RUNNING,
99 TC_STATE_DYNAMIC
100 };
101
102 struct vpe {
103 enum vpe_state state;
104
105 /* (device) minor associated with this vpe */
106 int minor;
107
108 /* elfloader stuff */
109 void *load_addr;
110 unsigned long len;
111 char *pbuffer;
112 unsigned long plen;
113 unsigned int uid, gid;
114 char cwd[VPE_PATH_MAX];
115
116 unsigned long __start;
117
118 /* tc's associated with this vpe */
119 struct list_head tc;
120
121 /* The list of vpe's */
122 struct list_head list;
123
124 /* shared symbol address */
125 void *shared_ptr;
126
127 /* the list of who wants to know when something major happens */
128 struct list_head notify;
129 };
130
131 struct tc {
132 enum tc_state state;
133 int index;
134
135 /* parent VPE */
136 struct vpe *pvpe;
137
138 /* The list of TC's with this VPE */
139 struct list_head tc;
140
141 /* The global list of tc's */
142 struct list_head list;
143 };
144
145 struct {
146 /* Virtual processing elements */
147 struct list_head vpe_list;
148
149 /* Thread contexts */
150 struct list_head tc_list;
151 } vpecontrol = {
152 .vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list),
153 .tc_list = LIST_HEAD_INIT(vpecontrol.tc_list)
154 };
155
156 static void release_progmem(void *ptr);
157 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
158 extern void save_gp_address(unsigned int secbase, unsigned int rel);
159
160 /* get the vpe associated with this minor */
161 struct vpe *get_vpe(int minor)
162 {
163 struct vpe *v;
164
165 if (!cpu_has_mipsmt)
166 return NULL;
167
168 list_for_each_entry(v, &vpecontrol.vpe_list, list) {
169 if (v->minor == minor)
170 return v;
171 }
172
173 return NULL;
174 }
175
176 /* get the vpe associated with this minor */
177 struct tc *get_tc(int index)
178 {
179 struct tc *t;
180
181 list_for_each_entry(t, &vpecontrol.tc_list, list) {
182 if (t->index == index)
183 return t;
184 }
185
186 return NULL;
187 }
188
189 struct tc *get_tc_unused(void)
190 {
191 struct tc *t;
192
193 list_for_each_entry(t, &vpecontrol.tc_list, list) {
194 if (t->state == TC_STATE_UNUSED)
195 return t;
196 }
197
198 return NULL;
199 }
200
201 /* allocate a vpe and associate it with this minor (or index) */
202 struct vpe *alloc_vpe(int minor)
203 {
204 struct vpe *v;
205
206 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
207 return NULL;
208 }
209
210 INIT_LIST_HEAD(&v->tc);
211 list_add_tail(&v->list, &vpecontrol.vpe_list);
212
213 INIT_LIST_HEAD(&v->notify);
214 v->minor = minor;
215 return v;
216 }
217
218 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
219 struct tc *alloc_tc(int index)
220 {
221 struct tc *t;
222
223 if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
224 return NULL;
225 }
226
227 INIT_LIST_HEAD(&t->tc);
228 list_add_tail(&t->list, &vpecontrol.tc_list);
229
230 t->index = index;
231
232 return t;
233 }
234
235 /* clean up and free everything */
236 void release_vpe(struct vpe *v)
237 {
238 list_del(&v->list);
239 if (v->load_addr)
240 release_progmem(v);
241 kfree(v);
242 }
243
244 void dump_mtregs(void)
245 {
246 unsigned long val;
247
248 val = read_c0_config3();
249 printk("config3 0x%lx MT %ld\n", val,
250 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
251
252 val = read_c0_mvpcontrol();
253 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
254 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
255 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
256 (val & MVPCONTROL_EVP));
257
258 val = read_c0_mvpconf0();
259 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
260 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
261 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
262 }
263
264 /* Find some VPE program space */
265 static void *alloc_progmem(unsigned long len)
266 {
267 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
268 /* this means you must tell linux to use less memory than you physically have */
269 return pfn_to_kaddr(max_pfn);
270 #else
271 // simple grab some mem for now
272 return kmalloc(len, GFP_KERNEL);
273 #endif
274 }
275
276 static void release_progmem(void *ptr)
277 {
278 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
279 kfree(ptr);
280 #endif
281 }
282
283 /* Update size with this section: return offset. */
284 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
285 {
286 long ret;
287
288 ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
289 *size = ret + sechdr->sh_size;
290 return ret;
291 }
292
293 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
294 might -- code, read-only data, read-write data, small data. Tally
295 sizes, and place the offsets into sh_entsize fields: high bit means it
296 belongs in init. */
297 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
298 Elf_Shdr * sechdrs, const char *secstrings)
299 {
300 static unsigned long const masks[][2] = {
301 /* NOTE: all executable code must be the first section
302 * in this array; otherwise modify the text_size
303 * finder in the two loops below */
304 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
305 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
306 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
307 {ARCH_SHF_SMALL | SHF_ALLOC, 0}
308 };
309 unsigned int m, i;
310
311 for (i = 0; i < hdr->e_shnum; i++)
312 sechdrs[i].sh_entsize = ~0UL;
313
314 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
315 for (i = 0; i < hdr->e_shnum; ++i) {
316 Elf_Shdr *s = &sechdrs[i];
317
318 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
319 if ((s->sh_flags & masks[m][0]) != masks[m][0]
320 || (s->sh_flags & masks[m][1])
321 || s->sh_entsize != ~0UL)
322 continue;
323 s->sh_entsize = get_offset(&mod->core_size, s);
324 }
325
326 if (m == 0)
327 mod->core_text_size = mod->core_size;
328
329 }
330 }
331
332
333 /* from module-elf32.c, but subverted a little */
334
335 struct mips_hi16 {
336 struct mips_hi16 *next;
337 Elf32_Addr *addr;
338 Elf32_Addr value;
339 };
340
341 static struct mips_hi16 *mips_hi16_list;
342 static unsigned int gp_offs, gp_addr;
343
344 static int apply_r_mips_none(struct module *me, uint32_t *location,
345 Elf32_Addr v)
346 {
347 return 0;
348 }
349
350 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
351 Elf32_Addr v)
352 {
353 int rel;
354
355 if( !(*location & 0xffff) ) {
356 rel = (int)v - gp_addr;
357 }
358 else {
359 /* .sbss + gp(relative) + offset */
360 /* kludge! */
361 rel = (int)(short)((int)v + gp_offs +
362 (int)(short)(*location & 0xffff) - gp_addr);
363 }
364
365 if( (rel > 32768) || (rel < -32768) ) {
366 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
367 "relative address 0x%x out of range of gp register\n",
368 rel);
369 return -ENOEXEC;
370 }
371
372 *location = (*location & 0xffff0000) | (rel & 0xffff);
373
374 return 0;
375 }
376
377 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
378 Elf32_Addr v)
379 {
380 int rel;
381 rel = (((unsigned int)v - (unsigned int)location));
382 rel >>= 2; // because the offset is in _instructions_ not bytes.
383 rel -= 1; // and one instruction less due to the branch delay slot.
384
385 if( (rel > 32768) || (rel < -32768) ) {
386 printk(KERN_DEBUG "VPE loader: "
387 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
388 return -ENOEXEC;
389 }
390
391 *location = (*location & 0xffff0000) | (rel & 0xffff);
392
393 return 0;
394 }
395
396 static int apply_r_mips_32(struct module *me, uint32_t *location,
397 Elf32_Addr v)
398 {
399 *location += v;
400
401 return 0;
402 }
403
404 static int apply_r_mips_26(struct module *me, uint32_t *location,
405 Elf32_Addr v)
406 {
407 if (v % 4) {
408 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
409 " unaligned relocation\n");
410 return -ENOEXEC;
411 }
412
413 /*
414 * Not desperately convinced this is a good check of an overflow condition
415 * anyway. But it gets in the way of handling undefined weak symbols which
416 * we want to set to zero.
417 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
418 * printk(KERN_ERR
419 * "module %s: relocation overflow\n",
420 * me->name);
421 * return -ENOEXEC;
422 * }
423 */
424
425 *location = (*location & ~0x03ffffff) |
426 ((*location + (v >> 2)) & 0x03ffffff);
427 return 0;
428 }
429
430 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
431 Elf32_Addr v)
432 {
433 struct mips_hi16 *n;
434
435 /*
436 * We cannot relocate this one now because we don't know the value of
437 * the carry we need to add. Save the information, and let LO16 do the
438 * actual relocation.
439 */
440 n = kmalloc(sizeof *n, GFP_KERNEL);
441 if (!n)
442 return -ENOMEM;
443
444 n->addr = location;
445 n->value = v;
446 n->next = mips_hi16_list;
447 mips_hi16_list = n;
448
449 return 0;
450 }
451
452 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
453 Elf32_Addr v)
454 {
455 unsigned long insnlo = *location;
456 Elf32_Addr val, vallo;
457
458 /* Sign extend the addend we extract from the lo insn. */
459 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
460
461 if (mips_hi16_list != NULL) {
462 struct mips_hi16 *l;
463
464 l = mips_hi16_list;
465 while (l != NULL) {
466 struct mips_hi16 *next;
467 unsigned long insn;
468
469 /*
470 * The value for the HI16 had best be the same.
471 */
472 if (v != l->value) {
473 printk(KERN_DEBUG "VPE loader: "
474 "apply_r_mips_lo16/hi16: "
475 "inconsistent value information\n");
476 return -ENOEXEC;
477 }
478
479 /*
480 * Do the HI16 relocation. Note that we actually don't
481 * need to know anything about the LO16 itself, except
482 * where to find the low 16 bits of the addend needed
483 * by the LO16.
484 */
485 insn = *l->addr;
486 val = ((insn & 0xffff) << 16) + vallo;
487 val += v;
488
489 /*
490 * Account for the sign extension that will happen in
491 * the low bits.
492 */
493 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
494
495 insn = (insn & ~0xffff) | val;
496 *l->addr = insn;
497
498 next = l->next;
499 kfree(l);
500 l = next;
501 }
502
503 mips_hi16_list = NULL;
504 }
505
506 /*
507 * Ok, we're done with the HI16 relocs. Now deal with the LO16.
508 */
509 val = v + vallo;
510 insnlo = (insnlo & ~0xffff) | (val & 0xffff);
511 *location = insnlo;
512
513 return 0;
514 }
515
516 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
517 Elf32_Addr v) = {
518 [R_MIPS_NONE] = apply_r_mips_none,
519 [R_MIPS_32] = apply_r_mips_32,
520 [R_MIPS_26] = apply_r_mips_26,
521 [R_MIPS_HI16] = apply_r_mips_hi16,
522 [R_MIPS_LO16] = apply_r_mips_lo16,
523 [R_MIPS_GPREL16] = apply_r_mips_gprel16,
524 [R_MIPS_PC16] = apply_r_mips_pc16
525 };
526
527 static char *rstrs[] = {
528 [R_MIPS_NONE] = "MIPS_NONE",
529 [R_MIPS_32] = "MIPS_32",
530 [R_MIPS_26] = "MIPS_26",
531 [R_MIPS_HI16] = "MIPS_HI16",
532 [R_MIPS_LO16] = "MIPS_LO16",
533 [R_MIPS_GPREL16] = "MIPS_GPREL16",
534 [R_MIPS_PC16] = "MIPS_PC16"
535 };
536
537 int apply_relocations(Elf32_Shdr *sechdrs,
538 const char *strtab,
539 unsigned int symindex,
540 unsigned int relsec,
541 struct module *me)
542 {
543 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
544 Elf32_Sym *sym;
545 uint32_t *location;
546 unsigned int i;
547 Elf32_Addr v;
548 int res;
549
550 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
551 Elf32_Word r_info = rel[i].r_info;
552
553 /* This is where to make the change */
554 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
555 + rel[i].r_offset;
556 /* This is the symbol it is referring to */
557 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
558 + ELF32_R_SYM(r_info);
559
560 if (!sym->st_value) {
561 printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
562 me->name, strtab + sym->st_name);
563 /* just print the warning, dont barf */
564 }
565
566 v = sym->st_value;
567
568 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
569 if( res ) {
570 char *r = rstrs[ELF32_R_TYPE(r_info)];
571 printk(KERN_WARNING "VPE loader: .text+0x%x "
572 "relocation type %s for symbol \"%s\" failed\n",
573 rel[i].r_offset, r ? r : "UNKNOWN",
574 strtab + sym->st_name);
575 return res;
576 }
577 }
578
579 return 0;
580 }
581
582 void save_gp_address(unsigned int secbase, unsigned int rel)
583 {
584 gp_addr = secbase + rel;
585 gp_offs = gp_addr - (secbase & 0xffff0000);
586 }
587 /* end module-elf32.c */
588
589
590
591 /* Change all symbols so that sh_value encodes the pointer directly. */
592 static void simplify_symbols(Elf_Shdr * sechdrs,
593 unsigned int symindex,
594 const char *strtab,
595 const char *secstrings,
596 unsigned int nsecs, struct module *mod)
597 {
598 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
599 unsigned long secbase, bssbase = 0;
600 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
601 int size;
602
603 /* find the .bss section for COMMON symbols */
604 for (i = 0; i < nsecs; i++) {
605 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
606 bssbase = sechdrs[i].sh_addr;
607 break;
608 }
609 }
610
611 for (i = 1; i < n; i++) {
612 switch (sym[i].st_shndx) {
613 case SHN_COMMON:
614 /* Allocate space for the symbol in the .bss section.
615 st_value is currently size.
616 We want it to have the address of the symbol. */
617
618 size = sym[i].st_value;
619 sym[i].st_value = bssbase;
620
621 bssbase += size;
622 break;
623
624 case SHN_ABS:
625 /* Don't need to do anything */
626 break;
627
628 case SHN_UNDEF:
629 /* ret = -ENOENT; */
630 break;
631
632 case SHN_MIPS_SCOMMON:
633 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
634 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
635 sym[i].st_shndx);
636 // .sbss section
637 break;
638
639 default:
640 secbase = sechdrs[sym[i].st_shndx].sh_addr;
641
642 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
643 save_gp_address(secbase, sym[i].st_value);
644 }
645
646 sym[i].st_value += secbase;
647 break;
648 }
649 }
650 }
651
652 #ifdef DEBUG_ELFLOADER
653 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
654 const char *strtab, struct module *mod)
655 {
656 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
657 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
658
659 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
660 for (i = 1; i < n; i++) {
661 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
662 strtab + sym[i].st_name, sym[i].st_value);
663 }
664 }
665 #endif
666
667 static void dump_tc(struct tc *t)
668 {
669 unsigned long val;
670
671 settc(t->index);
672 printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
673 "TCStatus 0x%lx halt 0x%lx\n",
674 t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
675 read_tc_c0_tcstatus(), read_tc_c0_tchalt());
676
677 printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
678 printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
679
680 val = read_c0_vpeconf0();
681 printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
682 (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
683
684 printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
685 printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
686
687 printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
688 printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
689 }
690
691 static void dump_tclist(void)
692 {
693 struct tc *t;
694
695 list_for_each_entry(t, &vpecontrol.tc_list, list) {
696 dump_tc(t);
697 }
698 }
699
700 /* We are prepared so configure and start the VPE... */
701 static int vpe_run(struct vpe * v)
702 {
703 struct vpe_notifications *n;
704 unsigned long val, dmt_flag;
705 struct tc *t;
706
707 /* check we are the Master VPE */
708 val = read_c0_vpeconf0();
709 if (!(val & VPECONF0_MVP)) {
710 printk(KERN_WARNING
711 "VPE loader: only Master VPE's are allowed to configure MT\n");
712 return -1;
713 }
714
715 /* disable MT (using dvpe) */
716 dvpe();
717
718 if (!list_empty(&v->tc)) {
719 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
720 printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
721 t->index);
722 return -ENOEXEC;
723 }
724 } else {
725 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
726 v->minor);
727 return -ENOEXEC;
728 }
729
730 /* Put MVPE's into 'configuration state' */
731 set_c0_mvpcontrol(MVPCONTROL_VPC);
732
733 settc(t->index);
734
735 /* should check it is halted, and not activated */
736 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
737 printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
738 t->index);
739 dump_tclist();
740 return -ENOEXEC;
741 }
742
743 /*
744 * Disable multi-threaded execution whilst we activate, clear the
745 * halt bit and bound the tc to the other VPE...
746 */
747 dmt_flag = dmt();
748
749 /* Write the address we want it to start running from in the TCPC register. */
750 write_tc_c0_tcrestart((unsigned long)v->__start);
751 write_tc_c0_tccontext((unsigned long)0);
752 /*
753 * Mark the TC as activated, not interrupt exempt and not dynamically
754 * allocatable
755 */
756 val = read_tc_c0_tcstatus();
757 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
758 write_tc_c0_tcstatus(val);
759
760 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
761
762 /*
763 * The sde-kit passes 'memsize' to __start in $a3, so set something
764 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and
765 * DFLT_HEAP_SIZE when you compile your program
766 */
767 mttgpr(7, physical_memsize);
768
769
770 /* set up VPE1 */
771 /*
772 * bind the TC to VPE 1 as late as possible so we only have the final
773 * VPE registers to set up, and so an EJTAG probe can trigger on it
774 */
775 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
776
777 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
778
779 back_to_back_c0_hazard();
780
781 /* Set up the XTC bit in vpeconf0 to point at our tc */
782 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
783 | (t->index << VPECONF0_XTC_SHIFT));
784
785 back_to_back_c0_hazard();
786
787 /* enable this VPE */
788 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
789
790 /* clear out any left overs from a previous program */
791 write_vpe_c0_status(0);
792 write_vpe_c0_cause(0);
793
794 /* take system out of configuration state */
795 clear_c0_mvpcontrol(MVPCONTROL_VPC);
796
797 /* now safe to re-enable multi-threading */
798 emt(dmt_flag);
799
800 /* set it running */
801 evpe(EVPE_ENABLE);
802
803 list_for_each_entry(n, &v->notify, list) {
804 n->start(v->minor);
805 }
806
807 return 0;
808 }
809
810 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
811 unsigned int symindex, const char *strtab,
812 struct module *mod)
813 {
814 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
815 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
816
817 for (i = 1; i < n; i++) {
818 if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
819 v->__start = sym[i].st_value;
820 }
821
822 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
823 v->shared_ptr = (void *)sym[i].st_value;
824 }
825 }
826
827 if ( (v->__start == 0) || (v->shared_ptr == NULL))
828 return -1;
829
830 return 0;
831 }
832
833 /*
834 * Allocates a VPE with some program code space(the load address), copies the
835 * contents of the program (p)buffer performing relocatations/etc, free's it
836 * when finished.
837 */
838 static int vpe_elfload(struct vpe * v)
839 {
840 Elf_Ehdr *hdr;
841 Elf_Shdr *sechdrs;
842 long err = 0;
843 char *secstrings, *strtab = NULL;
844 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
845 struct module mod; // so we can re-use the relocations code
846
847 memset(&mod, 0, sizeof(struct module));
848 strcpy(mod.name, "VPE loader");
849
850 hdr = (Elf_Ehdr *) v->pbuffer;
851 len = v->plen;
852
853 /* Sanity checks against insmoding binaries or wrong arch,
854 weird elf version */
855 if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
856 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
857 || !elf_check_arch(hdr)
858 || hdr->e_shentsize != sizeof(*sechdrs)) {
859 printk(KERN_WARNING
860 "VPE loader: program wrong arch or weird elf version\n");
861
862 return -ENOEXEC;
863 }
864
865 if (hdr->e_type == ET_REL)
866 relocate = 1;
867
868 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
869 printk(KERN_ERR "VPE loader: program length %u truncated\n",
870 len);
871
872 return -ENOEXEC;
873 }
874
875 /* Convenience variables */
876 sechdrs = (void *)hdr + hdr->e_shoff;
877 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
878 sechdrs[0].sh_addr = 0;
879
880 /* And these should exist, but gcc whinges if we don't init them */
881 symindex = strindex = 0;
882
883 if (relocate) {
884 for (i = 1; i < hdr->e_shnum; i++) {
885 if (sechdrs[i].sh_type != SHT_NOBITS
886 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
887 printk(KERN_ERR "VPE program length %u truncated\n",
888 len);
889 return -ENOEXEC;
890 }
891
892 /* Mark all sections sh_addr with their address in the
893 temporary image. */
894 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
895
896 /* Internal symbols and strings. */
897 if (sechdrs[i].sh_type == SHT_SYMTAB) {
898 symindex = i;
899 strindex = sechdrs[i].sh_link;
900 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
901 }
902 }
903 layout_sections(&mod, hdr, sechdrs, secstrings);
904 }
905
906 v->load_addr = alloc_progmem(mod.core_size);
907 memset(v->load_addr, 0, mod.core_size);
908
909 printk("VPE loader: loading to %p\n", v->load_addr);
910
911 if (relocate) {
912 for (i = 0; i < hdr->e_shnum; i++) {
913 void *dest;
914
915 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
916 continue;
917
918 dest = v->load_addr + sechdrs[i].sh_entsize;
919
920 if (sechdrs[i].sh_type != SHT_NOBITS)
921 memcpy(dest, (void *)sechdrs[i].sh_addr,
922 sechdrs[i].sh_size);
923 /* Update sh_addr to point to copy in image. */
924 sechdrs[i].sh_addr = (unsigned long)dest;
925
926 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
927 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
928 }
929
930 /* Fix up syms, so that st_value is a pointer to location. */
931 simplify_symbols(sechdrs, symindex, strtab, secstrings,
932 hdr->e_shnum, &mod);
933
934 /* Now do relocations. */
935 for (i = 1; i < hdr->e_shnum; i++) {
936 const char *strtab = (char *)sechdrs[strindex].sh_addr;
937 unsigned int info = sechdrs[i].sh_info;
938
939 /* Not a valid relocation section? */
940 if (info >= hdr->e_shnum)
941 continue;
942
943 /* Don't bother with non-allocated sections */
944 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
945 continue;
946
947 if (sechdrs[i].sh_type == SHT_REL)
948 err = apply_relocations(sechdrs, strtab, symindex, i,
949 &mod);
950 else if (sechdrs[i].sh_type == SHT_RELA)
951 err = apply_relocate_add(sechdrs, strtab, symindex, i,
952 &mod);
953 if (err < 0)
954 return err;
955
956 }
957 } else {
958 for (i = 0; i < hdr->e_shnum; i++) {
959
960 /* Internal symbols and strings. */
961 if (sechdrs[i].sh_type == SHT_SYMTAB) {
962 symindex = i;
963 strindex = sechdrs[i].sh_link;
964 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
965
966 /* mark the symtab's address for when we try to find the
967 magic symbols */
968 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
969 }
970
971 /* filter sections we dont want in the final image */
972 if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
973 (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
974 printk( KERN_DEBUG " ignoring section, "
975 "name %s type %x address 0x%x \n",
976 secstrings + sechdrs[i].sh_name,
977 sechdrs[i].sh_type, sechdrs[i].sh_addr);
978 continue;
979 }
980
981 if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
982 printk( KERN_WARNING "VPE loader: "
983 "fully linked image has invalid section, "
984 "name %s type %x address 0x%x, before load "
985 "address of 0x%x\n",
986 secstrings + sechdrs[i].sh_name,
987 sechdrs[i].sh_type, sechdrs[i].sh_addr,
988 (unsigned int)v->load_addr);
989 return -ENOEXEC;
990 }
991
992 printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
993 "size 0x%x0 from x%p\n",
994 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
995 sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
996
997 if (sechdrs[i].sh_type != SHT_NOBITS)
998 memcpy((void *)sechdrs[i].sh_addr,
999 (char *)hdr + sechdrs[i].sh_offset,
1000 sechdrs[i].sh_size);
1001 else
1002 memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
1003 }
1004 }
1005
1006 /* make sure it's physically written out */
1007 flush_icache_range((unsigned long)v->load_addr,
1008 (unsigned long)v->load_addr + v->len);
1009
1010 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
1011 if (v->__start == 0) {
1012 printk(KERN_WARNING "VPE loader: program does not contain "
1013 "a __start symbol\n");
1014 return -ENOEXEC;
1015 }
1016
1017 if (v->shared_ptr == NULL)
1018 printk(KERN_WARNING "VPE loader: "
1019 "program does not contain vpe_shared symbol.\n"
1020 " Unable to use AMVP (AP/SP) facilities.\n");
1021 }
1022
1023 printk(" elf loaded\n");
1024 return 0;
1025 }
1026
1027 __attribute_used__ void dump_vpe(struct vpe * v)
1028 {
1029 struct tc *t;
1030
1031 settc(v->minor);
1032
1033 printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1034 printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1035
1036 list_for_each_entry(t, &vpecontrol.tc_list, list)
1037 dump_tc(t);
1038 }
1039
1040 static void cleanup_tc(struct tc *tc)
1041 {
1042 int tmp;
1043
1044 /* Put MVPE's into 'configuration state' */
1045 set_c0_mvpcontrol(MVPCONTROL_VPC);
1046
1047 settc(tc->index);
1048 tmp = read_tc_c0_tcstatus();
1049
1050 /* mark not allocated and not dynamically allocatable */
1051 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1052 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1053 write_tc_c0_tcstatus(tmp);
1054
1055 write_tc_c0_tchalt(TCHALT_H);
1056
1057 /* bind it to anything other than VPE1 */
1058 write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1059
1060 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1061 }
1062
1063 static int getcwd(char *buff, int size)
1064 {
1065 mm_segment_t old_fs;
1066 int ret;
1067
1068 old_fs = get_fs();
1069 set_fs(KERNEL_DS);
1070
1071 ret = sys_getcwd(buff,size);
1072
1073 set_fs(old_fs);
1074
1075 return ret;
1076 }
1077
1078 /* checks VPE is unused and gets ready to load program */
1079 static int vpe_open(struct inode *inode, struct file *filp)
1080 {
1081 int minor, ret;
1082 enum vpe_state state;
1083 struct vpe *v;
1084 struct vpe_notifications *not;
1085
1086 /* assume only 1 device at the mo. */
1087 if ((minor = iminor(inode)) != 1) {
1088 printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1089 return -ENODEV;
1090 }
1091
1092 if ((v = get_vpe(minor)) == NULL) {
1093 printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1094 return -ENODEV;
1095 }
1096
1097 state = xchg(&v->state, VPE_STATE_INUSE);
1098 if (state != VPE_STATE_UNUSED) {
1099 dvpe();
1100
1101 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1102
1103 dump_tc(get_tc(minor));
1104
1105 list_for_each_entry(not, &v->notify, list) {
1106 not->stop(minor);
1107 }
1108
1109 release_progmem(v->load_addr);
1110 cleanup_tc(get_tc(minor));
1111 }
1112
1113 /* this of-course trashes what was there before... */
1114 v->pbuffer = vmalloc(P_SIZE);
1115 v->plen = P_SIZE;
1116 v->load_addr = NULL;
1117 v->len = 0;
1118
1119 v->uid = filp->f_uid;
1120 v->gid = filp->f_gid;
1121
1122 #ifdef CONFIG_MIPS_APSP_KSPD
1123 /* get kspd to tell us when a syscall_exit happens */
1124 if (!kspd_events_reqd) {
1125 kspd_notify(&kspd_events);
1126 kspd_events_reqd++;
1127 }
1128 #endif
1129
1130 v->cwd[0] = 0;
1131 ret = getcwd(v->cwd, VPE_PATH_MAX);
1132 if (ret < 0)
1133 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1134
1135 v->shared_ptr = NULL;
1136 v->__start = 0;
1137 return 0;
1138 }
1139
1140 static int vpe_release(struct inode *inode, struct file *filp)
1141 {
1142 int minor, ret = 0;
1143 struct vpe *v;
1144 Elf_Ehdr *hdr;
1145
1146 minor = iminor(inode);
1147 if ((v = get_vpe(minor)) == NULL)
1148 return -ENODEV;
1149
1150 // simple case of fire and forget, so tell the VPE to run...
1151
1152 hdr = (Elf_Ehdr *) v->pbuffer;
1153 if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1154 if (vpe_elfload(v) >= 0)
1155 vpe_run(v);
1156 else {
1157 printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1158 ret = -ENOEXEC;
1159 }
1160 } else {
1161 printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1162 ret = -ENOEXEC;
1163 }
1164
1165 /* It's good to be able to run the SP and if it chokes have a look at
1166 the /dev/rt?. But if we reset the pointer to the shared struct we
1167 loose what has happened. So perhaps if garbage is sent to the vpe
1168 device, use it as a trigger for the reset. Hopefully a nice
1169 executable will be along shortly. */
1170 if (ret < 0)
1171 v->shared_ptr = NULL;
1172
1173 // cleanup any temp buffers
1174 if (v->pbuffer)
1175 vfree(v->pbuffer);
1176 v->plen = 0;
1177 return ret;
1178 }
1179
1180 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1181 size_t count, loff_t * ppos)
1182 {
1183 int minor;
1184 size_t ret = count;
1185 struct vpe *v;
1186
1187 minor = iminor(file->f_path.dentry->d_inode);
1188 if ((v = get_vpe(minor)) == NULL)
1189 return -ENODEV;
1190
1191 if (v->pbuffer == NULL) {
1192 printk(KERN_ERR "VPE loader: no buffer for program\n");
1193 return -ENOMEM;
1194 }
1195
1196 if ((count + v->len) > v->plen) {
1197 printk(KERN_WARNING
1198 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1199 return -ENOMEM;
1200 }
1201
1202 count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1203 if (!count)
1204 return -EFAULT;
1205
1206 v->len += count;
1207 return ret;
1208 }
1209
1210 static const struct file_operations vpe_fops = {
1211 .owner = THIS_MODULE,
1212 .open = vpe_open,
1213 .release = vpe_release,
1214 .write = vpe_write
1215 };
1216
1217 /* module wrapper entry points */
1218 /* give me a vpe */
1219 vpe_handle vpe_alloc(void)
1220 {
1221 int i;
1222 struct vpe *v;
1223
1224 /* find a vpe */
1225 for (i = 1; i < MAX_VPES; i++) {
1226 if ((v = get_vpe(i)) != NULL) {
1227 v->state = VPE_STATE_INUSE;
1228 return v;
1229 }
1230 }
1231 return NULL;
1232 }
1233
1234 EXPORT_SYMBOL(vpe_alloc);
1235
1236 /* start running from here */
1237 int vpe_start(vpe_handle vpe, unsigned long start)
1238 {
1239 struct vpe *v = vpe;
1240
1241 v->__start = start;
1242 return vpe_run(v);
1243 }
1244
1245 EXPORT_SYMBOL(vpe_start);
1246
1247 /* halt it for now */
1248 int vpe_stop(vpe_handle vpe)
1249 {
1250 struct vpe *v = vpe;
1251 struct tc *t;
1252 unsigned int evpe_flags;
1253
1254 evpe_flags = dvpe();
1255
1256 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1257
1258 settc(t->index);
1259 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1260 }
1261
1262 evpe(evpe_flags);
1263
1264 return 0;
1265 }
1266
1267 EXPORT_SYMBOL(vpe_stop);
1268
1269 /* I've done with it thank you */
1270 int vpe_free(vpe_handle vpe)
1271 {
1272 struct vpe *v = vpe;
1273 struct tc *t;
1274 unsigned int evpe_flags;
1275
1276 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1277 return -ENOEXEC;
1278 }
1279
1280 evpe_flags = dvpe();
1281
1282 /* Put MVPE's into 'configuration state' */
1283 set_c0_mvpcontrol(MVPCONTROL_VPC);
1284
1285 settc(t->index);
1286 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1287
1288 /* mark the TC unallocated and halt'ed */
1289 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1290 write_tc_c0_tchalt(TCHALT_H);
1291
1292 v->state = VPE_STATE_UNUSED;
1293
1294 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1295 evpe(evpe_flags);
1296
1297 return 0;
1298 }
1299
1300 EXPORT_SYMBOL(vpe_free);
1301
1302 void *vpe_get_shared(int index)
1303 {
1304 struct vpe *v;
1305
1306 if ((v = get_vpe(index)) == NULL)
1307 return NULL;
1308
1309 return v->shared_ptr;
1310 }
1311
1312 EXPORT_SYMBOL(vpe_get_shared);
1313
1314 int vpe_getuid(int index)
1315 {
1316 struct vpe *v;
1317
1318 if ((v = get_vpe(index)) == NULL)
1319 return -1;
1320
1321 return v->uid;
1322 }
1323
1324 EXPORT_SYMBOL(vpe_getuid);
1325
1326 int vpe_getgid(int index)
1327 {
1328 struct vpe *v;
1329
1330 if ((v = get_vpe(index)) == NULL)
1331 return -1;
1332
1333 return v->gid;
1334 }
1335
1336 EXPORT_SYMBOL(vpe_getgid);
1337
1338 int vpe_notify(int index, struct vpe_notifications *notify)
1339 {
1340 struct vpe *v;
1341
1342 if ((v = get_vpe(index)) == NULL)
1343 return -1;
1344
1345 list_add(&notify->list, &v->notify);
1346 return 0;
1347 }
1348
1349 EXPORT_SYMBOL(vpe_notify);
1350
1351 char *vpe_getcwd(int index)
1352 {
1353 struct vpe *v;
1354
1355 if ((v = get_vpe(index)) == NULL)
1356 return NULL;
1357
1358 return v->cwd;
1359 }
1360
1361 EXPORT_SYMBOL(vpe_getcwd);
1362
1363 #ifdef CONFIG_MIPS_APSP_KSPD
1364 static void kspd_sp_exit( int sp_id)
1365 {
1366 cleanup_tc(get_tc(sp_id));
1367 }
1368 #endif
1369
1370 static struct device *vpe_dev;
1371
1372 static int __init vpe_module_init(void)
1373 {
1374 struct vpe *v = NULL;
1375 struct device *dev;
1376 struct tc *t;
1377 unsigned long val;
1378 int i, err;
1379
1380 if (!cpu_has_mipsmt) {
1381 printk("VPE loader: not a MIPS MT capable processor\n");
1382 return -ENODEV;
1383 }
1384
1385 major = register_chrdev(0, module_name, &vpe_fops);
1386 if (major < 0) {
1387 printk("VPE loader: unable to register character device\n");
1388 return major;
1389 }
1390
1391 dev = device_create(mt_class, NULL, MKDEV(major, minor),
1392 "tc%d", minor);
1393 if (IS_ERR(dev)) {
1394 err = PTR_ERR(dev);
1395 goto out_chrdev;
1396 }
1397 vpe_dev = dev;
1398
1399 dmt();
1400 dvpe();
1401
1402 /* Put MVPE's into 'configuration state' */
1403 set_c0_mvpcontrol(MVPCONTROL_VPC);
1404
1405 /* dump_mtregs(); */
1406
1407
1408 val = read_c0_mvpconf0();
1409 for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1410 t = alloc_tc(i);
1411
1412 /* VPE's */
1413 if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1414 settc(i);
1415
1416 if ((v = alloc_vpe(i)) == NULL) {
1417 printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1418 return -ENODEV;
1419 }
1420
1421 /* add the tc to the list of this vpe's tc's. */
1422 list_add(&t->tc, &v->tc);
1423
1424 /* deactivate all but vpe0 */
1425 if (i != 0) {
1426 unsigned long tmp = read_vpe_c0_vpeconf0();
1427
1428 tmp &= ~VPECONF0_VPA;
1429
1430 /* master VPE */
1431 tmp |= VPECONF0_MVP;
1432 write_vpe_c0_vpeconf0(tmp);
1433 }
1434
1435 /* disable multi-threading with TC's */
1436 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1437
1438 if (i != 0) {
1439 write_vpe_c0_status((read_c0_status() &
1440 ~(ST0_IM | ST0_IE | ST0_KSU))
1441 | ST0_CU0);
1442
1443 /*
1444 * Set config to be the same as vpe0,
1445 * particularly kseg0 coherency alg
1446 */
1447 write_vpe_c0_config(read_c0_config());
1448 }
1449 }
1450
1451 /* TC's */
1452 t->pvpe = v; /* set the parent vpe */
1453
1454 if (i != 0) {
1455 unsigned long tmp;
1456
1457 settc(i);
1458
1459 /* Any TC that is bound to VPE0 gets left as is - in case
1460 we are running SMTC on VPE0. A TC that is bound to any
1461 other VPE gets bound to VPE0, ideally I'd like to make
1462 it homeless but it doesn't appear to let me bind a TC
1463 to a non-existent VPE. Which is perfectly reasonable.
1464
1465 The (un)bound state is visible to an EJTAG probe so may
1466 notify GDB...
1467 */
1468
1469 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1470 /* tc is bound >vpe0 */
1471 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1472
1473 t->pvpe = get_vpe(0); /* set the parent vpe */
1474 }
1475
1476 tmp = read_tc_c0_tcstatus();
1477
1478 /* mark not activated and not dynamically allocatable */
1479 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1480 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1481 write_tc_c0_tcstatus(tmp);
1482
1483 write_tc_c0_tchalt(TCHALT_H);
1484 }
1485 }
1486
1487 /* release config state */
1488 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1489
1490 #ifdef CONFIG_MIPS_APSP_KSPD
1491 kspd_events.kspd_sp_exit = kspd_sp_exit;
1492 #endif
1493 return 0;
1494
1495 out_chrdev:
1496 unregister_chrdev(major, module_name);
1497
1498 return err;
1499 }
1500
1501 static void __exit vpe_module_exit(void)
1502 {
1503 struct vpe *v, *n;
1504
1505 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1506 if (v->state != VPE_STATE_UNUSED) {
1507 release_vpe(v);
1508 }
1509 }
1510
1511 device_destroy(mt_class, MKDEV(major, minor));
1512 unregister_chrdev(major, module_name);
1513 }
1514
1515 module_init(vpe_module_init);
1516 module_exit(vpe_module_exit);
1517 MODULE_DESCRIPTION("MIPS VPE Loader");
1518 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1519 MODULE_LICENSE("GPL");
This page took 0.062261 seconds and 5 git commands to generate.