lib/string_helpers.c: make arrays static
[deliverable/linux.git] / arch / mips / kernel / vpe.c
1 /*
2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
3 *
4 * This program is free software; you can distribute it and/or modify it
5 * under the terms of the GNU General Public License (Version 2) as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * for more details.
12 *
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, write to the Free Software Foundation, Inc.,
15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16 */
17
18 /*
19 * VPE support module
20 *
21 * Provides support for loading a MIPS SP program on VPE1.
22 * The SP environment is rather simple, no tlb's. It needs to be relocatable
23 * (or partially linked). You should initialise your stack in the startup
24 * code. This loader looks for the symbol __start and sets up
25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
26 *
27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28 * i.e cat spapp >/dev/vpe1.
29 */
30 #include <linux/kernel.h>
31 #include <linux/device.h>
32 #include <linux/fs.h>
33 #include <linux/init.h>
34 #include <asm/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/list.h>
37 #include <linux/vmalloc.h>
38 #include <linux/elf.h>
39 #include <linux/seq_file.h>
40 #include <linux/syscalls.h>
41 #include <linux/moduleloader.h>
42 #include <linux/interrupt.h>
43 #include <linux/poll.h>
44 #include <linux/bootmem.h>
45 #include <asm/mipsregs.h>
46 #include <asm/mipsmtregs.h>
47 #include <asm/cacheflush.h>
48 #include <linux/atomic.h>
49 #include <asm/cpu.h>
50 #include <asm/mips_mt.h>
51 #include <asm/processor.h>
52 #include <asm/vpe.h>
53 #include <asm/kspd.h>
54
55 typedef void *vpe_handle;
56
57 #ifndef ARCH_SHF_SMALL
58 #define ARCH_SHF_SMALL 0
59 #endif
60
61 /* If this is set, the section belongs in the init part of the module */
62 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
63
64 /*
65 * The number of TCs and VPEs physically available on the core
66 */
67 static int hw_tcs, hw_vpes;
68 static char module_name[] = "vpe";
69 static int major;
70 static const int minor = 1; /* fixed for now */
71
72 #ifdef CONFIG_MIPS_APSP_KSPD
73 static struct kspd_notifications kspd_events;
74 static int kspd_events_reqd;
75 #endif
76
77 /* grab the likely amount of memory we will need. */
78 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
79 #define P_SIZE (2 * 1024 * 1024)
80 #else
81 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
82 #define P_SIZE (256 * 1024)
83 #endif
84
85 extern unsigned long physical_memsize;
86
87 #define MAX_VPES 16
88 #define VPE_PATH_MAX 256
89
90 enum vpe_state {
91 VPE_STATE_UNUSED = 0,
92 VPE_STATE_INUSE,
93 VPE_STATE_RUNNING
94 };
95
96 enum tc_state {
97 TC_STATE_UNUSED = 0,
98 TC_STATE_INUSE,
99 TC_STATE_RUNNING,
100 TC_STATE_DYNAMIC
101 };
102
103 struct vpe {
104 enum vpe_state state;
105
106 /* (device) minor associated with this vpe */
107 int minor;
108
109 /* elfloader stuff */
110 void *load_addr;
111 unsigned long len;
112 char *pbuffer;
113 unsigned long plen;
114 unsigned int uid, gid;
115 char cwd[VPE_PATH_MAX];
116
117 unsigned long __start;
118
119 /* tc's associated with this vpe */
120 struct list_head tc;
121
122 /* The list of vpe's */
123 struct list_head list;
124
125 /* shared symbol address */
126 void *shared_ptr;
127
128 /* the list of who wants to know when something major happens */
129 struct list_head notify;
130
131 unsigned int ntcs;
132 };
133
134 struct tc {
135 enum tc_state state;
136 int index;
137
138 struct vpe *pvpe; /* parent VPE */
139 struct list_head tc; /* The list of TC's with this VPE */
140 struct list_head list; /* The global list of tc's */
141 };
142
143 struct {
144 spinlock_t vpe_list_lock;
145 struct list_head vpe_list; /* Virtual processing elements */
146 spinlock_t tc_list_lock;
147 struct list_head tc_list; /* Thread contexts */
148 } vpecontrol = {
149 .vpe_list_lock = __SPIN_LOCK_UNLOCKED(vpe_list_lock),
150 .vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list),
151 .tc_list_lock = __SPIN_LOCK_UNLOCKED(tc_list_lock),
152 .tc_list = LIST_HEAD_INIT(vpecontrol.tc_list)
153 };
154
155 static void release_progmem(void *ptr);
156
157 /* get the vpe associated with this minor */
158 static struct vpe *get_vpe(int minor)
159 {
160 struct vpe *res, *v;
161
162 if (!cpu_has_mipsmt)
163 return NULL;
164
165 res = NULL;
166 spin_lock(&vpecontrol.vpe_list_lock);
167 list_for_each_entry(v, &vpecontrol.vpe_list, list) {
168 if (v->minor == minor) {
169 res = v;
170 break;
171 }
172 }
173 spin_unlock(&vpecontrol.vpe_list_lock);
174
175 return res;
176 }
177
178 /* get the vpe associated with this minor */
179 static struct tc *get_tc(int index)
180 {
181 struct tc *res, *t;
182
183 res = NULL;
184 spin_lock(&vpecontrol.tc_list_lock);
185 list_for_each_entry(t, &vpecontrol.tc_list, list) {
186 if (t->index == index) {
187 res = t;
188 break;
189 }
190 }
191 spin_unlock(&vpecontrol.tc_list_lock);
192
193 return res;
194 }
195
196 /* allocate a vpe and associate it with this minor (or index) */
197 static struct vpe *alloc_vpe(int minor)
198 {
199 struct vpe *v;
200
201 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL)
202 return NULL;
203
204 INIT_LIST_HEAD(&v->tc);
205 spin_lock(&vpecontrol.vpe_list_lock);
206 list_add_tail(&v->list, &vpecontrol.vpe_list);
207 spin_unlock(&vpecontrol.vpe_list_lock);
208
209 INIT_LIST_HEAD(&v->notify);
210 v->minor = minor;
211
212 return v;
213 }
214
215 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
216 static struct tc *alloc_tc(int index)
217 {
218 struct tc *tc;
219
220 if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL)
221 goto out;
222
223 INIT_LIST_HEAD(&tc->tc);
224 tc->index = index;
225
226 spin_lock(&vpecontrol.tc_list_lock);
227 list_add_tail(&tc->list, &vpecontrol.tc_list);
228 spin_unlock(&vpecontrol.tc_list_lock);
229
230 out:
231 return tc;
232 }
233
234 /* clean up and free everything */
235 static void release_vpe(struct vpe *v)
236 {
237 list_del(&v->list);
238 if (v->load_addr)
239 release_progmem(v);
240 kfree(v);
241 }
242
243 static void __maybe_unused dump_mtregs(void)
244 {
245 unsigned long val;
246
247 val = read_c0_config3();
248 printk("config3 0x%lx MT %ld\n", val,
249 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
250
251 val = read_c0_mvpcontrol();
252 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
253 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
254 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
255 (val & MVPCONTROL_EVP));
256
257 val = read_c0_mvpconf0();
258 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
259 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
260 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
261 }
262
263 /* Find some VPE program space */
264 static void *alloc_progmem(unsigned long len)
265 {
266 void *addr;
267
268 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
269 /*
270 * This means you must tell Linux to use less memory than you
271 * physically have, for example by passing a mem= boot argument.
272 */
273 addr = pfn_to_kaddr(max_low_pfn);
274 memset(addr, 0, len);
275 #else
276 /* simple grab some mem for now */
277 addr = kzalloc(len, GFP_KERNEL);
278 #endif
279
280 return addr;
281 }
282
283 static void release_progmem(void *ptr)
284 {
285 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
286 kfree(ptr);
287 #endif
288 }
289
290 /* Update size with this section: return offset. */
291 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
292 {
293 long ret;
294
295 ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
296 *size = ret + sechdr->sh_size;
297 return ret;
298 }
299
300 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
301 might -- code, read-only data, read-write data, small data. Tally
302 sizes, and place the offsets into sh_entsize fields: high bit means it
303 belongs in init. */
304 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
305 Elf_Shdr * sechdrs, const char *secstrings)
306 {
307 static unsigned long const masks[][2] = {
308 /* NOTE: all executable code must be the first section
309 * in this array; otherwise modify the text_size
310 * finder in the two loops below */
311 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
312 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
313 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
314 {ARCH_SHF_SMALL | SHF_ALLOC, 0}
315 };
316 unsigned int m, i;
317
318 for (i = 0; i < hdr->e_shnum; i++)
319 sechdrs[i].sh_entsize = ~0UL;
320
321 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
322 for (i = 0; i < hdr->e_shnum; ++i) {
323 Elf_Shdr *s = &sechdrs[i];
324
325 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
326 if ((s->sh_flags & masks[m][0]) != masks[m][0]
327 || (s->sh_flags & masks[m][1])
328 || s->sh_entsize != ~0UL)
329 continue;
330 s->sh_entsize =
331 get_offset((unsigned long *)&mod->core_size, s);
332 }
333
334 if (m == 0)
335 mod->core_text_size = mod->core_size;
336
337 }
338 }
339
340
341 /* from module-elf32.c, but subverted a little */
342
343 struct mips_hi16 {
344 struct mips_hi16 *next;
345 Elf32_Addr *addr;
346 Elf32_Addr value;
347 };
348
349 static struct mips_hi16 *mips_hi16_list;
350 static unsigned int gp_offs, gp_addr;
351
352 static int apply_r_mips_none(struct module *me, uint32_t *location,
353 Elf32_Addr v)
354 {
355 return 0;
356 }
357
358 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
359 Elf32_Addr v)
360 {
361 int rel;
362
363 if( !(*location & 0xffff) ) {
364 rel = (int)v - gp_addr;
365 }
366 else {
367 /* .sbss + gp(relative) + offset */
368 /* kludge! */
369 rel = (int)(short)((int)v + gp_offs +
370 (int)(short)(*location & 0xffff) - gp_addr);
371 }
372
373 if( (rel > 32768) || (rel < -32768) ) {
374 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
375 "relative address 0x%x out of range of gp register\n",
376 rel);
377 return -ENOEXEC;
378 }
379
380 *location = (*location & 0xffff0000) | (rel & 0xffff);
381
382 return 0;
383 }
384
385 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
386 Elf32_Addr v)
387 {
388 int rel;
389 rel = (((unsigned int)v - (unsigned int)location));
390 rel >>= 2; // because the offset is in _instructions_ not bytes.
391 rel -= 1; // and one instruction less due to the branch delay slot.
392
393 if( (rel > 32768) || (rel < -32768) ) {
394 printk(KERN_DEBUG "VPE loader: "
395 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
396 return -ENOEXEC;
397 }
398
399 *location = (*location & 0xffff0000) | (rel & 0xffff);
400
401 return 0;
402 }
403
404 static int apply_r_mips_32(struct module *me, uint32_t *location,
405 Elf32_Addr v)
406 {
407 *location += v;
408
409 return 0;
410 }
411
412 static int apply_r_mips_26(struct module *me, uint32_t *location,
413 Elf32_Addr v)
414 {
415 if (v % 4) {
416 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
417 " unaligned relocation\n");
418 return -ENOEXEC;
419 }
420
421 /*
422 * Not desperately convinced this is a good check of an overflow condition
423 * anyway. But it gets in the way of handling undefined weak symbols which
424 * we want to set to zero.
425 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
426 * printk(KERN_ERR
427 * "module %s: relocation overflow\n",
428 * me->name);
429 * return -ENOEXEC;
430 * }
431 */
432
433 *location = (*location & ~0x03ffffff) |
434 ((*location + (v >> 2)) & 0x03ffffff);
435 return 0;
436 }
437
438 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
439 Elf32_Addr v)
440 {
441 struct mips_hi16 *n;
442
443 /*
444 * We cannot relocate this one now because we don't know the value of
445 * the carry we need to add. Save the information, and let LO16 do the
446 * actual relocation.
447 */
448 n = kmalloc(sizeof *n, GFP_KERNEL);
449 if (!n)
450 return -ENOMEM;
451
452 n->addr = location;
453 n->value = v;
454 n->next = mips_hi16_list;
455 mips_hi16_list = n;
456
457 return 0;
458 }
459
460 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
461 Elf32_Addr v)
462 {
463 unsigned long insnlo = *location;
464 Elf32_Addr val, vallo;
465 struct mips_hi16 *l, *next;
466
467 /* Sign extend the addend we extract from the lo insn. */
468 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
469
470 if (mips_hi16_list != NULL) {
471
472 l = mips_hi16_list;
473 while (l != NULL) {
474 unsigned long insn;
475
476 /*
477 * The value for the HI16 had best be the same.
478 */
479 if (v != l->value) {
480 printk(KERN_DEBUG "VPE loader: "
481 "apply_r_mips_lo16/hi16: \t"
482 "inconsistent value information\n");
483 goto out_free;
484 }
485
486 /*
487 * Do the HI16 relocation. Note that we actually don't
488 * need to know anything about the LO16 itself, except
489 * where to find the low 16 bits of the addend needed
490 * by the LO16.
491 */
492 insn = *l->addr;
493 val = ((insn & 0xffff) << 16) + vallo;
494 val += v;
495
496 /*
497 * Account for the sign extension that will happen in
498 * the low bits.
499 */
500 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
501
502 insn = (insn & ~0xffff) | val;
503 *l->addr = insn;
504
505 next = l->next;
506 kfree(l);
507 l = next;
508 }
509
510 mips_hi16_list = NULL;
511 }
512
513 /*
514 * Ok, we're done with the HI16 relocs. Now deal with the LO16.
515 */
516 val = v + vallo;
517 insnlo = (insnlo & ~0xffff) | (val & 0xffff);
518 *location = insnlo;
519
520 return 0;
521
522 out_free:
523 while (l != NULL) {
524 next = l->next;
525 kfree(l);
526 l = next;
527 }
528 mips_hi16_list = NULL;
529
530 return -ENOEXEC;
531 }
532
533 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
534 Elf32_Addr v) = {
535 [R_MIPS_NONE] = apply_r_mips_none,
536 [R_MIPS_32] = apply_r_mips_32,
537 [R_MIPS_26] = apply_r_mips_26,
538 [R_MIPS_HI16] = apply_r_mips_hi16,
539 [R_MIPS_LO16] = apply_r_mips_lo16,
540 [R_MIPS_GPREL16] = apply_r_mips_gprel16,
541 [R_MIPS_PC16] = apply_r_mips_pc16
542 };
543
544 static char *rstrs[] = {
545 [R_MIPS_NONE] = "MIPS_NONE",
546 [R_MIPS_32] = "MIPS_32",
547 [R_MIPS_26] = "MIPS_26",
548 [R_MIPS_HI16] = "MIPS_HI16",
549 [R_MIPS_LO16] = "MIPS_LO16",
550 [R_MIPS_GPREL16] = "MIPS_GPREL16",
551 [R_MIPS_PC16] = "MIPS_PC16"
552 };
553
554 static int apply_relocations(Elf32_Shdr *sechdrs,
555 const char *strtab,
556 unsigned int symindex,
557 unsigned int relsec,
558 struct module *me)
559 {
560 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
561 Elf32_Sym *sym;
562 uint32_t *location;
563 unsigned int i;
564 Elf32_Addr v;
565 int res;
566
567 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
568 Elf32_Word r_info = rel[i].r_info;
569
570 /* This is where to make the change */
571 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
572 + rel[i].r_offset;
573 /* This is the symbol it is referring to */
574 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
575 + ELF32_R_SYM(r_info);
576
577 if (!sym->st_value) {
578 printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
579 me->name, strtab + sym->st_name);
580 /* just print the warning, dont barf */
581 }
582
583 v = sym->st_value;
584
585 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
586 if( res ) {
587 char *r = rstrs[ELF32_R_TYPE(r_info)];
588 printk(KERN_WARNING "VPE loader: .text+0x%x "
589 "relocation type %s for symbol \"%s\" failed\n",
590 rel[i].r_offset, r ? r : "UNKNOWN",
591 strtab + sym->st_name);
592 return res;
593 }
594 }
595
596 return 0;
597 }
598
599 static inline void save_gp_address(unsigned int secbase, unsigned int rel)
600 {
601 gp_addr = secbase + rel;
602 gp_offs = gp_addr - (secbase & 0xffff0000);
603 }
604 /* end module-elf32.c */
605
606
607
608 /* Change all symbols so that sh_value encodes the pointer directly. */
609 static void simplify_symbols(Elf_Shdr * sechdrs,
610 unsigned int symindex,
611 const char *strtab,
612 const char *secstrings,
613 unsigned int nsecs, struct module *mod)
614 {
615 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
616 unsigned long secbase, bssbase = 0;
617 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
618 int size;
619
620 /* find the .bss section for COMMON symbols */
621 for (i = 0; i < nsecs; i++) {
622 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
623 bssbase = sechdrs[i].sh_addr;
624 break;
625 }
626 }
627
628 for (i = 1; i < n; i++) {
629 switch (sym[i].st_shndx) {
630 case SHN_COMMON:
631 /* Allocate space for the symbol in the .bss section.
632 st_value is currently size.
633 We want it to have the address of the symbol. */
634
635 size = sym[i].st_value;
636 sym[i].st_value = bssbase;
637
638 bssbase += size;
639 break;
640
641 case SHN_ABS:
642 /* Don't need to do anything */
643 break;
644
645 case SHN_UNDEF:
646 /* ret = -ENOENT; */
647 break;
648
649 case SHN_MIPS_SCOMMON:
650 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON "
651 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
652 sym[i].st_shndx);
653 // .sbss section
654 break;
655
656 default:
657 secbase = sechdrs[sym[i].st_shndx].sh_addr;
658
659 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
660 save_gp_address(secbase, sym[i].st_value);
661 }
662
663 sym[i].st_value += secbase;
664 break;
665 }
666 }
667 }
668
669 #ifdef DEBUG_ELFLOADER
670 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
671 const char *strtab, struct module *mod)
672 {
673 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
674 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
675
676 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
677 for (i = 1; i < n; i++) {
678 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
679 strtab + sym[i].st_name, sym[i].st_value);
680 }
681 }
682 #endif
683
684 /* We are prepared so configure and start the VPE... */
685 static int vpe_run(struct vpe * v)
686 {
687 unsigned long flags, val, dmt_flag;
688 struct vpe_notifications *n;
689 unsigned int vpeflags;
690 struct tc *t;
691
692 /* check we are the Master VPE */
693 local_irq_save(flags);
694 val = read_c0_vpeconf0();
695 if (!(val & VPECONF0_MVP)) {
696 printk(KERN_WARNING
697 "VPE loader: only Master VPE's are allowed to configure MT\n");
698 local_irq_restore(flags);
699
700 return -1;
701 }
702
703 dmt_flag = dmt();
704 vpeflags = dvpe();
705
706 if (!list_empty(&v->tc)) {
707 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
708 evpe(vpeflags);
709 emt(dmt_flag);
710 local_irq_restore(flags);
711
712 printk(KERN_WARNING
713 "VPE loader: TC %d is already in use.\n",
714 t->index);
715 return -ENOEXEC;
716 }
717 } else {
718 evpe(vpeflags);
719 emt(dmt_flag);
720 local_irq_restore(flags);
721
722 printk(KERN_WARNING
723 "VPE loader: No TC's associated with VPE %d\n",
724 v->minor);
725
726 return -ENOEXEC;
727 }
728
729 /* Put MVPE's into 'configuration state' */
730 set_c0_mvpcontrol(MVPCONTROL_VPC);
731
732 settc(t->index);
733
734 /* should check it is halted, and not activated */
735 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
736 evpe(vpeflags);
737 emt(dmt_flag);
738 local_irq_restore(flags);
739
740 printk(KERN_WARNING "VPE loader: TC %d is already active!\n",
741 t->index);
742
743 return -ENOEXEC;
744 }
745
746 /* Write the address we want it to start running from in the TCPC register. */
747 write_tc_c0_tcrestart((unsigned long)v->__start);
748 write_tc_c0_tccontext((unsigned long)0);
749
750 /*
751 * Mark the TC as activated, not interrupt exempt and not dynamically
752 * allocatable
753 */
754 val = read_tc_c0_tcstatus();
755 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
756 write_tc_c0_tcstatus(val);
757
758 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
759
760 /*
761 * The sde-kit passes 'memsize' to __start in $a3, so set something
762 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and
763 * DFLT_HEAP_SIZE when you compile your program
764 */
765 mttgpr(6, v->ntcs);
766 mttgpr(7, physical_memsize);
767
768 /* set up VPE1 */
769 /*
770 * bind the TC to VPE 1 as late as possible so we only have the final
771 * VPE registers to set up, and so an EJTAG probe can trigger on it
772 */
773 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
774
775 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
776
777 back_to_back_c0_hazard();
778
779 /* Set up the XTC bit in vpeconf0 to point at our tc */
780 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
781 | (t->index << VPECONF0_XTC_SHIFT));
782
783 back_to_back_c0_hazard();
784
785 /* enable this VPE */
786 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
787
788 /* clear out any left overs from a previous program */
789 write_vpe_c0_status(0);
790 write_vpe_c0_cause(0);
791
792 /* take system out of configuration state */
793 clear_c0_mvpcontrol(MVPCONTROL_VPC);
794
795 /*
796 * SMTC/SMVP kernels manage VPE enable independently,
797 * but uniprocessor kernels need to turn it on, even
798 * if that wasn't the pre-dvpe() state.
799 */
800 #ifdef CONFIG_SMP
801 evpe(vpeflags);
802 #else
803 evpe(EVPE_ENABLE);
804 #endif
805 emt(dmt_flag);
806 local_irq_restore(flags);
807
808 list_for_each_entry(n, &v->notify, list)
809 n->start(minor);
810
811 return 0;
812 }
813
814 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
815 unsigned int symindex, const char *strtab,
816 struct module *mod)
817 {
818 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
819 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
820
821 for (i = 1; i < n; i++) {
822 if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
823 v->__start = sym[i].st_value;
824 }
825
826 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
827 v->shared_ptr = (void *)sym[i].st_value;
828 }
829 }
830
831 if ( (v->__start == 0) || (v->shared_ptr == NULL))
832 return -1;
833
834 return 0;
835 }
836
837 /*
838 * Allocates a VPE with some program code space(the load address), copies the
839 * contents of the program (p)buffer performing relocatations/etc, free's it
840 * when finished.
841 */
842 static int vpe_elfload(struct vpe * v)
843 {
844 Elf_Ehdr *hdr;
845 Elf_Shdr *sechdrs;
846 long err = 0;
847 char *secstrings, *strtab = NULL;
848 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
849 struct module mod; // so we can re-use the relocations code
850
851 memset(&mod, 0, sizeof(struct module));
852 strcpy(mod.name, "VPE loader");
853
854 hdr = (Elf_Ehdr *) v->pbuffer;
855 len = v->plen;
856
857 /* Sanity checks against insmoding binaries or wrong arch,
858 weird elf version */
859 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
860 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
861 || !elf_check_arch(hdr)
862 || hdr->e_shentsize != sizeof(*sechdrs)) {
863 printk(KERN_WARNING
864 "VPE loader: program wrong arch or weird elf version\n");
865
866 return -ENOEXEC;
867 }
868
869 if (hdr->e_type == ET_REL)
870 relocate = 1;
871
872 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
873 printk(KERN_ERR "VPE loader: program length %u truncated\n",
874 len);
875
876 return -ENOEXEC;
877 }
878
879 /* Convenience variables */
880 sechdrs = (void *)hdr + hdr->e_shoff;
881 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
882 sechdrs[0].sh_addr = 0;
883
884 /* And these should exist, but gcc whinges if we don't init them */
885 symindex = strindex = 0;
886
887 if (relocate) {
888 for (i = 1; i < hdr->e_shnum; i++) {
889 if (sechdrs[i].sh_type != SHT_NOBITS
890 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
891 printk(KERN_ERR "VPE program length %u truncated\n",
892 len);
893 return -ENOEXEC;
894 }
895
896 /* Mark all sections sh_addr with their address in the
897 temporary image. */
898 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
899
900 /* Internal symbols and strings. */
901 if (sechdrs[i].sh_type == SHT_SYMTAB) {
902 symindex = i;
903 strindex = sechdrs[i].sh_link;
904 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
905 }
906 }
907 layout_sections(&mod, hdr, sechdrs, secstrings);
908 }
909
910 v->load_addr = alloc_progmem(mod.core_size);
911 if (!v->load_addr)
912 return -ENOMEM;
913
914 pr_info("VPE loader: loading to %p\n", v->load_addr);
915
916 if (relocate) {
917 for (i = 0; i < hdr->e_shnum; i++) {
918 void *dest;
919
920 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
921 continue;
922
923 dest = v->load_addr + sechdrs[i].sh_entsize;
924
925 if (sechdrs[i].sh_type != SHT_NOBITS)
926 memcpy(dest, (void *)sechdrs[i].sh_addr,
927 sechdrs[i].sh_size);
928 /* Update sh_addr to point to copy in image. */
929 sechdrs[i].sh_addr = (unsigned long)dest;
930
931 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
932 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
933 }
934
935 /* Fix up syms, so that st_value is a pointer to location. */
936 simplify_symbols(sechdrs, symindex, strtab, secstrings,
937 hdr->e_shnum, &mod);
938
939 /* Now do relocations. */
940 for (i = 1; i < hdr->e_shnum; i++) {
941 const char *strtab = (char *)sechdrs[strindex].sh_addr;
942 unsigned int info = sechdrs[i].sh_info;
943
944 /* Not a valid relocation section? */
945 if (info >= hdr->e_shnum)
946 continue;
947
948 /* Don't bother with non-allocated sections */
949 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
950 continue;
951
952 if (sechdrs[i].sh_type == SHT_REL)
953 err = apply_relocations(sechdrs, strtab, symindex, i,
954 &mod);
955 else if (sechdrs[i].sh_type == SHT_RELA)
956 err = apply_relocate_add(sechdrs, strtab, symindex, i,
957 &mod);
958 if (err < 0)
959 return err;
960
961 }
962 } else {
963 struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff);
964
965 for (i = 0; i < hdr->e_phnum; i++) {
966 if (phdr->p_type == PT_LOAD) {
967 memcpy((void *)phdr->p_paddr,
968 (char *)hdr + phdr->p_offset,
969 phdr->p_filesz);
970 memset((void *)phdr->p_paddr + phdr->p_filesz,
971 0, phdr->p_memsz - phdr->p_filesz);
972 }
973 phdr++;
974 }
975
976 for (i = 0; i < hdr->e_shnum; i++) {
977 /* Internal symbols and strings. */
978 if (sechdrs[i].sh_type == SHT_SYMTAB) {
979 symindex = i;
980 strindex = sechdrs[i].sh_link;
981 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
982
983 /* mark the symtab's address for when we try to find the
984 magic symbols */
985 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
986 }
987 }
988 }
989
990 /* make sure it's physically written out */
991 flush_icache_range((unsigned long)v->load_addr,
992 (unsigned long)v->load_addr + v->len);
993
994 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
995 if (v->__start == 0) {
996 printk(KERN_WARNING "VPE loader: program does not contain "
997 "a __start symbol\n");
998 return -ENOEXEC;
999 }
1000
1001 if (v->shared_ptr == NULL)
1002 printk(KERN_WARNING "VPE loader: "
1003 "program does not contain vpe_shared symbol.\n"
1004 " Unable to use AMVP (AP/SP) facilities.\n");
1005 }
1006
1007 printk(" elf loaded\n");
1008 return 0;
1009 }
1010
1011 static void cleanup_tc(struct tc *tc)
1012 {
1013 unsigned long flags;
1014 unsigned int mtflags, vpflags;
1015 int tmp;
1016
1017 local_irq_save(flags);
1018 mtflags = dmt();
1019 vpflags = dvpe();
1020 /* Put MVPE's into 'configuration state' */
1021 set_c0_mvpcontrol(MVPCONTROL_VPC);
1022
1023 settc(tc->index);
1024 tmp = read_tc_c0_tcstatus();
1025
1026 /* mark not allocated and not dynamically allocatable */
1027 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1028 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1029 write_tc_c0_tcstatus(tmp);
1030
1031 write_tc_c0_tchalt(TCHALT_H);
1032 mips_ihb();
1033
1034 /* bind it to anything other than VPE1 */
1035 // write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1036
1037 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1038 evpe(vpflags);
1039 emt(mtflags);
1040 local_irq_restore(flags);
1041 }
1042
1043 static int getcwd(char *buff, int size)
1044 {
1045 mm_segment_t old_fs;
1046 int ret;
1047
1048 old_fs = get_fs();
1049 set_fs(KERNEL_DS);
1050
1051 ret = sys_getcwd(buff, size);
1052
1053 set_fs(old_fs);
1054
1055 return ret;
1056 }
1057
1058 /* checks VPE is unused and gets ready to load program */
1059 static int vpe_open(struct inode *inode, struct file *filp)
1060 {
1061 enum vpe_state state;
1062 struct vpe_notifications *not;
1063 struct vpe *v;
1064 int ret;
1065
1066 if (minor != iminor(inode)) {
1067 /* assume only 1 device at the moment. */
1068 pr_warning("VPE loader: only vpe1 is supported\n");
1069
1070 return -ENODEV;
1071 }
1072
1073 if ((v = get_vpe(tclimit)) == NULL) {
1074 pr_warning("VPE loader: unable to get vpe\n");
1075
1076 return -ENODEV;
1077 }
1078
1079 state = xchg(&v->state, VPE_STATE_INUSE);
1080 if (state != VPE_STATE_UNUSED) {
1081 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1082
1083 list_for_each_entry(not, &v->notify, list) {
1084 not->stop(tclimit);
1085 }
1086
1087 release_progmem(v->load_addr);
1088 cleanup_tc(get_tc(tclimit));
1089 }
1090
1091 /* this of-course trashes what was there before... */
1092 v->pbuffer = vmalloc(P_SIZE);
1093 if (!v->pbuffer) {
1094 pr_warning("VPE loader: unable to allocate memory\n");
1095 return -ENOMEM;
1096 }
1097 v->plen = P_SIZE;
1098 v->load_addr = NULL;
1099 v->len = 0;
1100
1101 v->uid = filp->f_cred->fsuid;
1102 v->gid = filp->f_cred->fsgid;
1103
1104 #ifdef CONFIG_MIPS_APSP_KSPD
1105 /* get kspd to tell us when a syscall_exit happens */
1106 if (!kspd_events_reqd) {
1107 kspd_notify(&kspd_events);
1108 kspd_events_reqd++;
1109 }
1110 #endif
1111
1112 v->cwd[0] = 0;
1113 ret = getcwd(v->cwd, VPE_PATH_MAX);
1114 if (ret < 0)
1115 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1116
1117 v->shared_ptr = NULL;
1118 v->__start = 0;
1119
1120 return 0;
1121 }
1122
1123 static int vpe_release(struct inode *inode, struct file *filp)
1124 {
1125 struct vpe *v;
1126 Elf_Ehdr *hdr;
1127 int ret = 0;
1128
1129 v = get_vpe(tclimit);
1130 if (v == NULL)
1131 return -ENODEV;
1132
1133 hdr = (Elf_Ehdr *) v->pbuffer;
1134 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) {
1135 if (vpe_elfload(v) >= 0) {
1136 vpe_run(v);
1137 } else {
1138 printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1139 ret = -ENOEXEC;
1140 }
1141 } else {
1142 printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1143 ret = -ENOEXEC;
1144 }
1145
1146 /* It's good to be able to run the SP and if it chokes have a look at
1147 the /dev/rt?. But if we reset the pointer to the shared struct we
1148 lose what has happened. So perhaps if garbage is sent to the vpe
1149 device, use it as a trigger for the reset. Hopefully a nice
1150 executable will be along shortly. */
1151 if (ret < 0)
1152 v->shared_ptr = NULL;
1153
1154 vfree(v->pbuffer);
1155 v->plen = 0;
1156
1157 return ret;
1158 }
1159
1160 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1161 size_t count, loff_t * ppos)
1162 {
1163 size_t ret = count;
1164 struct vpe *v;
1165
1166 if (iminor(file->f_path.dentry->d_inode) != minor)
1167 return -ENODEV;
1168
1169 v = get_vpe(tclimit);
1170 if (v == NULL)
1171 return -ENODEV;
1172
1173 if ((count + v->len) > v->plen) {
1174 printk(KERN_WARNING
1175 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1176 return -ENOMEM;
1177 }
1178
1179 count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1180 if (!count)
1181 return -EFAULT;
1182
1183 v->len += count;
1184 return ret;
1185 }
1186
1187 static const struct file_operations vpe_fops = {
1188 .owner = THIS_MODULE,
1189 .open = vpe_open,
1190 .release = vpe_release,
1191 .write = vpe_write,
1192 .llseek = noop_llseek,
1193 };
1194
1195 /* module wrapper entry points */
1196 /* give me a vpe */
1197 vpe_handle vpe_alloc(void)
1198 {
1199 int i;
1200 struct vpe *v;
1201
1202 /* find a vpe */
1203 for (i = 1; i < MAX_VPES; i++) {
1204 if ((v = get_vpe(i)) != NULL) {
1205 v->state = VPE_STATE_INUSE;
1206 return v;
1207 }
1208 }
1209 return NULL;
1210 }
1211
1212 EXPORT_SYMBOL(vpe_alloc);
1213
1214 /* start running from here */
1215 int vpe_start(vpe_handle vpe, unsigned long start)
1216 {
1217 struct vpe *v = vpe;
1218
1219 v->__start = start;
1220 return vpe_run(v);
1221 }
1222
1223 EXPORT_SYMBOL(vpe_start);
1224
1225 /* halt it for now */
1226 int vpe_stop(vpe_handle vpe)
1227 {
1228 struct vpe *v = vpe;
1229 struct tc *t;
1230 unsigned int evpe_flags;
1231
1232 evpe_flags = dvpe();
1233
1234 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1235
1236 settc(t->index);
1237 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1238 }
1239
1240 evpe(evpe_flags);
1241
1242 return 0;
1243 }
1244
1245 EXPORT_SYMBOL(vpe_stop);
1246
1247 /* I've done with it thank you */
1248 int vpe_free(vpe_handle vpe)
1249 {
1250 struct vpe *v = vpe;
1251 struct tc *t;
1252 unsigned int evpe_flags;
1253
1254 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1255 return -ENOEXEC;
1256 }
1257
1258 evpe_flags = dvpe();
1259
1260 /* Put MVPE's into 'configuration state' */
1261 set_c0_mvpcontrol(MVPCONTROL_VPC);
1262
1263 settc(t->index);
1264 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1265
1266 /* halt the TC */
1267 write_tc_c0_tchalt(TCHALT_H);
1268 mips_ihb();
1269
1270 /* mark the TC unallocated */
1271 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1272
1273 v->state = VPE_STATE_UNUSED;
1274
1275 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1276 evpe(evpe_flags);
1277
1278 return 0;
1279 }
1280
1281 EXPORT_SYMBOL(vpe_free);
1282
1283 void *vpe_get_shared(int index)
1284 {
1285 struct vpe *v;
1286
1287 if ((v = get_vpe(index)) == NULL)
1288 return NULL;
1289
1290 return v->shared_ptr;
1291 }
1292
1293 EXPORT_SYMBOL(vpe_get_shared);
1294
1295 int vpe_getuid(int index)
1296 {
1297 struct vpe *v;
1298
1299 if ((v = get_vpe(index)) == NULL)
1300 return -1;
1301
1302 return v->uid;
1303 }
1304
1305 EXPORT_SYMBOL(vpe_getuid);
1306
1307 int vpe_getgid(int index)
1308 {
1309 struct vpe *v;
1310
1311 if ((v = get_vpe(index)) == NULL)
1312 return -1;
1313
1314 return v->gid;
1315 }
1316
1317 EXPORT_SYMBOL(vpe_getgid);
1318
1319 int vpe_notify(int index, struct vpe_notifications *notify)
1320 {
1321 struct vpe *v;
1322
1323 if ((v = get_vpe(index)) == NULL)
1324 return -1;
1325
1326 list_add(&notify->list, &v->notify);
1327 return 0;
1328 }
1329
1330 EXPORT_SYMBOL(vpe_notify);
1331
1332 char *vpe_getcwd(int index)
1333 {
1334 struct vpe *v;
1335
1336 if ((v = get_vpe(index)) == NULL)
1337 return NULL;
1338
1339 return v->cwd;
1340 }
1341
1342 EXPORT_SYMBOL(vpe_getcwd);
1343
1344 #ifdef CONFIG_MIPS_APSP_KSPD
1345 static void kspd_sp_exit( int sp_id)
1346 {
1347 cleanup_tc(get_tc(sp_id));
1348 }
1349 #endif
1350
1351 static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
1352 const char *buf, size_t len)
1353 {
1354 struct vpe *vpe = get_vpe(tclimit);
1355 struct vpe_notifications *not;
1356
1357 list_for_each_entry(not, &vpe->notify, list) {
1358 not->stop(tclimit);
1359 }
1360
1361 release_progmem(vpe->load_addr);
1362 cleanup_tc(get_tc(tclimit));
1363 vpe_stop(vpe);
1364 vpe_free(vpe);
1365
1366 return len;
1367 }
1368
1369 static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr,
1370 char *buf)
1371 {
1372 struct vpe *vpe = get_vpe(tclimit);
1373
1374 return sprintf(buf, "%d\n", vpe->ntcs);
1375 }
1376
1377 static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr,
1378 const char *buf, size_t len)
1379 {
1380 struct vpe *vpe = get_vpe(tclimit);
1381 unsigned long new;
1382 char *endp;
1383
1384 new = simple_strtoul(buf, &endp, 0);
1385 if (endp == buf)
1386 goto out_einval;
1387
1388 if (new == 0 || new > (hw_tcs - tclimit))
1389 goto out_einval;
1390
1391 vpe->ntcs = new;
1392
1393 return len;
1394
1395 out_einval:
1396 return -EINVAL;
1397 }
1398
1399 static struct device_attribute vpe_class_attributes[] = {
1400 __ATTR(kill, S_IWUSR, NULL, store_kill),
1401 __ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs),
1402 {}
1403 };
1404
1405 static void vpe_device_release(struct device *cd)
1406 {
1407 kfree(cd);
1408 }
1409
1410 struct class vpe_class = {
1411 .name = "vpe",
1412 .owner = THIS_MODULE,
1413 .dev_release = vpe_device_release,
1414 .dev_attrs = vpe_class_attributes,
1415 };
1416
1417 struct device vpe_device;
1418
1419 static int __init vpe_module_init(void)
1420 {
1421 unsigned int mtflags, vpflags;
1422 unsigned long flags, val;
1423 struct vpe *v = NULL;
1424 struct tc *t;
1425 int tc, err;
1426
1427 if (!cpu_has_mipsmt) {
1428 printk("VPE loader: not a MIPS MT capable processor\n");
1429 return -ENODEV;
1430 }
1431
1432 if (vpelimit == 0) {
1433 printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
1434 "initializing VPE loader.\nPass maxvpes=<n> argument as "
1435 "kernel argument\n");
1436
1437 return -ENODEV;
1438 }
1439
1440 if (tclimit == 0) {
1441 printk(KERN_WARNING "No TCs reserved for AP/SP, not "
1442 "initializing VPE loader.\nPass maxtcs=<n> argument as "
1443 "kernel argument\n");
1444
1445 return -ENODEV;
1446 }
1447
1448 major = register_chrdev(0, module_name, &vpe_fops);
1449 if (major < 0) {
1450 printk("VPE loader: unable to register character device\n");
1451 return major;
1452 }
1453
1454 err = class_register(&vpe_class);
1455 if (err) {
1456 printk(KERN_ERR "vpe_class registration failed\n");
1457 goto out_chrdev;
1458 }
1459
1460 device_initialize(&vpe_device);
1461 vpe_device.class = &vpe_class,
1462 vpe_device.parent = NULL,
1463 dev_set_name(&vpe_device, "vpe1");
1464 vpe_device.devt = MKDEV(major, minor);
1465 err = device_add(&vpe_device);
1466 if (err) {
1467 printk(KERN_ERR "Adding vpe_device failed\n");
1468 goto out_class;
1469 }
1470
1471 local_irq_save(flags);
1472 mtflags = dmt();
1473 vpflags = dvpe();
1474
1475 /* Put MVPE's into 'configuration state' */
1476 set_c0_mvpcontrol(MVPCONTROL_VPC);
1477
1478 /* dump_mtregs(); */
1479
1480 val = read_c0_mvpconf0();
1481 hw_tcs = (val & MVPCONF0_PTC) + 1;
1482 hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
1483
1484 for (tc = tclimit; tc < hw_tcs; tc++) {
1485 /*
1486 * Must re-enable multithreading temporarily or in case we
1487 * reschedule send IPIs or similar we might hang.
1488 */
1489 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1490 evpe(vpflags);
1491 emt(mtflags);
1492 local_irq_restore(flags);
1493 t = alloc_tc(tc);
1494 if (!t) {
1495 err = -ENOMEM;
1496 goto out;
1497 }
1498
1499 local_irq_save(flags);
1500 mtflags = dmt();
1501 vpflags = dvpe();
1502 set_c0_mvpcontrol(MVPCONTROL_VPC);
1503
1504 /* VPE's */
1505 if (tc < hw_tcs) {
1506 settc(tc);
1507
1508 if ((v = alloc_vpe(tc)) == NULL) {
1509 printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1510
1511 goto out_reenable;
1512 }
1513
1514 v->ntcs = hw_tcs - tclimit;
1515
1516 /* add the tc to the list of this vpe's tc's. */
1517 list_add(&t->tc, &v->tc);
1518
1519 /* deactivate all but vpe0 */
1520 if (tc >= tclimit) {
1521 unsigned long tmp = read_vpe_c0_vpeconf0();
1522
1523 tmp &= ~VPECONF0_VPA;
1524
1525 /* master VPE */
1526 tmp |= VPECONF0_MVP;
1527 write_vpe_c0_vpeconf0(tmp);
1528 }
1529
1530 /* disable multi-threading with TC's */
1531 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1532
1533 if (tc >= vpelimit) {
1534 /*
1535 * Set config to be the same as vpe0,
1536 * particularly kseg0 coherency alg
1537 */
1538 write_vpe_c0_config(read_c0_config());
1539 }
1540 }
1541
1542 /* TC's */
1543 t->pvpe = v; /* set the parent vpe */
1544
1545 if (tc >= tclimit) {
1546 unsigned long tmp;
1547
1548 settc(tc);
1549
1550 /* Any TC that is bound to VPE0 gets left as is - in case
1551 we are running SMTC on VPE0. A TC that is bound to any
1552 other VPE gets bound to VPE0, ideally I'd like to make
1553 it homeless but it doesn't appear to let me bind a TC
1554 to a non-existent VPE. Which is perfectly reasonable.
1555
1556 The (un)bound state is visible to an EJTAG probe so may
1557 notify GDB...
1558 */
1559
1560 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1561 /* tc is bound >vpe0 */
1562 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1563
1564 t->pvpe = get_vpe(0); /* set the parent vpe */
1565 }
1566
1567 /* halt the TC */
1568 write_tc_c0_tchalt(TCHALT_H);
1569 mips_ihb();
1570
1571 tmp = read_tc_c0_tcstatus();
1572
1573 /* mark not activated and not dynamically allocatable */
1574 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1575 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1576 write_tc_c0_tcstatus(tmp);
1577 }
1578 }
1579
1580 out_reenable:
1581 /* release config state */
1582 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1583
1584 evpe(vpflags);
1585 emt(mtflags);
1586 local_irq_restore(flags);
1587
1588 #ifdef CONFIG_MIPS_APSP_KSPD
1589 kspd_events.kspd_sp_exit = kspd_sp_exit;
1590 #endif
1591 return 0;
1592
1593 out_class:
1594 class_unregister(&vpe_class);
1595 out_chrdev:
1596 unregister_chrdev(major, module_name);
1597
1598 out:
1599 return err;
1600 }
1601
1602 static void __exit vpe_module_exit(void)
1603 {
1604 struct vpe *v, *n;
1605
1606 device_del(&vpe_device);
1607 unregister_chrdev(major, module_name);
1608
1609 /* No locking needed here */
1610 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1611 if (v->state != VPE_STATE_UNUSED)
1612 release_vpe(v);
1613 }
1614 }
1615
1616 module_init(vpe_module_init);
1617 module_exit(vpe_module_exit);
1618 MODULE_DESCRIPTION("MIPS VPE Loader");
1619 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1620 MODULE_LICENSE("GPL");
This page took 0.074433 seconds and 5 git commands to generate.