ASoC: nau8825: drop redundant idiom when converting integer to boolean
[deliverable/linux.git] / arch / mips / kvm / emulate.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 unsigned long instpc)
44 {
45 unsigned int dspcontrol;
46 union mips_instruction insn;
47 struct kvm_vcpu_arch *arch = &vcpu->arch;
48 long epc = instpc;
49 long nextpc = KVM_INVALID_INST;
50
51 if (epc & 3)
52 goto unaligned;
53
54 /* Read the instruction */
55 insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57 if (insn.word == KVM_INVALID_INST)
58 return KVM_INVALID_INST;
59
60 switch (insn.i_format.opcode) {
61 /* jr and jalr are in r_format format. */
62 case spec_op:
63 switch (insn.r_format.func) {
64 case jalr_op:
65 arch->gprs[insn.r_format.rd] = epc + 8;
66 /* Fall through */
67 case jr_op:
68 nextpc = arch->gprs[insn.r_format.rs];
69 break;
70 }
71 break;
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79 switch (insn.i_format.rt) {
80 case bltz_op:
81 case bltzl_op:
82 if ((long)arch->gprs[insn.i_format.rs] < 0)
83 epc = epc + 4 + (insn.i_format.simmediate << 2);
84 else
85 epc += 8;
86 nextpc = epc;
87 break;
88
89 case bgez_op:
90 case bgezl_op:
91 if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 else
94 epc += 8;
95 nextpc = epc;
96 break;
97
98 case bltzal_op:
99 case bltzall_op:
100 arch->gprs[31] = epc + 8;
101 if ((long)arch->gprs[insn.i_format.rs] < 0)
102 epc = epc + 4 + (insn.i_format.simmediate << 2);
103 else
104 epc += 8;
105 nextpc = epc;
106 break;
107
108 case bgezal_op:
109 case bgezall_op:
110 arch->gprs[31] = epc + 8;
111 if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 epc = epc + 4 + (insn.i_format.simmediate << 2);
113 else
114 epc += 8;
115 nextpc = epc;
116 break;
117 case bposge32_op:
118 if (!cpu_has_dsp)
119 goto sigill;
120
121 dspcontrol = rddsp(0x01);
122
123 if (dspcontrol >= 32)
124 epc = epc + 4 + (insn.i_format.simmediate << 2);
125 else
126 epc += 8;
127 nextpc = epc;
128 break;
129 }
130 break;
131
132 /* These are unconditional and in j_format. */
133 case jal_op:
134 arch->gprs[31] = instpc + 8;
135 case j_op:
136 epc += 4;
137 epc >>= 28;
138 epc <<= 28;
139 epc |= (insn.j_format.target << 2);
140 nextpc = epc;
141 break;
142
143 /* These are conditional and in i_format. */
144 case beq_op:
145 case beql_op:
146 if (arch->gprs[insn.i_format.rs] ==
147 arch->gprs[insn.i_format.rt])
148 epc = epc + 4 + (insn.i_format.simmediate << 2);
149 else
150 epc += 8;
151 nextpc = epc;
152 break;
153
154 case bne_op:
155 case bnel_op:
156 if (arch->gprs[insn.i_format.rs] !=
157 arch->gprs[insn.i_format.rt])
158 epc = epc + 4 + (insn.i_format.simmediate << 2);
159 else
160 epc += 8;
161 nextpc = epc;
162 break;
163
164 case blez_op: /* not really i_format */
165 case blezl_op:
166 /* rt field assumed to be zero */
167 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 epc = epc + 4 + (insn.i_format.simmediate << 2);
169 else
170 epc += 8;
171 nextpc = epc;
172 break;
173
174 case bgtz_op:
175 case bgtzl_op:
176 /* rt field assumed to be zero */
177 if ((long)arch->gprs[insn.i_format.rs] > 0)
178 epc = epc + 4 + (insn.i_format.simmediate << 2);
179 else
180 epc += 8;
181 nextpc = epc;
182 break;
183
184 /* And now the FPA/cp1 branch instructions. */
185 case cop1_op:
186 kvm_err("%s: unsupported cop1_op\n", __func__);
187 break;
188 }
189
190 return nextpc;
191
192 unaligned:
193 kvm_err("%s: unaligned epc\n", __func__);
194 return nextpc;
195
196 sigill:
197 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203 unsigned long branch_pc;
204 enum emulation_result er = EMULATE_DONE;
205
206 if (cause & CAUSEF_BD) {
207 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 if (branch_pc == KVM_INVALID_INST) {
209 er = EMULATE_FAIL;
210 } else {
211 vcpu->arch.pc = branch_pc;
212 kvm_debug("BD update_pc(): New PC: %#lx\n",
213 vcpu->arch.pc);
214 }
215 } else
216 vcpu->arch.pc += 4;
217
218 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220 return er;
221 }
222
223 /**
224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225 * @vcpu: Virtual CPU.
226 *
227 * Returns: 1 if the CP0_Count timer is disabled by either the guest
228 * CP0_Cause.DC bit or the count_ctl.DC bit.
229 * 0 otherwise (in which case CP0_Count timer is running).
230 */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233 struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241 *
242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243 *
244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245 */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248 s64 now_ns, periods;
249 u64 delta;
250
251 now_ns = ktime_to_ns(now);
252 delta = now_ns + vcpu->arch.count_dyn_bias;
253
254 if (delta >= vcpu->arch.count_period) {
255 /* If delta is out of safe range the bias needs adjusting */
256 periods = div64_s64(now_ns, vcpu->arch.count_period);
257 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 /* Recalculate delta with new bias */
259 delta = now_ns + vcpu->arch.count_dyn_bias;
260 }
261
262 /*
263 * We've ensured that:
264 * delta < count_period
265 *
266 * Therefore the intermediate delta*count_hz will never overflow since
267 * at the boundary condition:
268 * delta = count_period
269 * delta = NSEC_PER_SEC * 2^32 / count_hz
270 * delta * count_hz = NSEC_PER_SEC * 2^32
271 */
272 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276 * kvm_mips_count_time() - Get effective current time.
277 * @vcpu: Virtual CPU.
278 *
279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280 * except when the master disable bit is set in count_ctl, in which case it is
281 * count_resume, i.e. the time that the count was disabled.
282 *
283 * Returns: Effective monotonic ktime for CP0_Count.
284 */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 return vcpu->arch.count_resume;
289
290 return ktime_get();
291 }
292
293 /**
294 * kvm_mips_read_count_running() - Read the current count value as if running.
295 * @vcpu: Virtual CPU.
296 * @now: Kernel time to read CP0_Count at.
297 *
298 * Returns the current guest CP0_Count register at time @now and handles if the
299 * timer interrupt is pending and hasn't been handled yet.
300 *
301 * Returns: The current value of the guest CP0_Count register.
302 */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305 struct mips_coproc *cop0 = vcpu->arch.cop0;
306 ktime_t expires, threshold;
307 uint32_t count, compare;
308 int running;
309
310 /* Calculate the biased and scaled guest CP0_Count */
311 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312 compare = kvm_read_c0_guest_compare(cop0);
313
314 /*
315 * Find whether CP0_Count has reached the closest timer interrupt. If
316 * not, we shouldn't inject it.
317 */
318 if ((int32_t)(count - compare) < 0)
319 return count;
320
321 /*
322 * The CP0_Count we're going to return has already reached the closest
323 * timer interrupt. Quickly check if it really is a new interrupt by
324 * looking at whether the interval until the hrtimer expiry time is
325 * less than 1/4 of the timer period.
326 */
327 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329 if (ktime_before(expires, threshold)) {
330 /*
331 * Cancel it while we handle it so there's no chance of
332 * interference with the timeout handler.
333 */
334 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336 /* Nothing should be waiting on the timeout */
337 kvm_mips_callbacks->queue_timer_int(vcpu);
338
339 /*
340 * Restart the timer if it was running based on the expiry time
341 * we read, so that we don't push it back 2 periods.
342 */
343 if (running) {
344 expires = ktime_add_ns(expires,
345 vcpu->arch.count_period);
346 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347 HRTIMER_MODE_ABS);
348 }
349 }
350
351 return count;
352 }
353
354 /**
355 * kvm_mips_read_count() - Read the current count value.
356 * @vcpu: Virtual CPU.
357 *
358 * Read the current guest CP0_Count value, taking into account whether the timer
359 * is stopped.
360 *
361 * Returns: The current guest CP0_Count value.
362 */
363 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 {
365 struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367 /* If count disabled just read static copy of count */
368 if (kvm_mips_count_disabled(vcpu))
369 return kvm_read_c0_guest_count(cop0);
370
371 return kvm_mips_read_count_running(vcpu, ktime_get());
372 }
373
374 /**
375 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376 * @vcpu: Virtual CPU.
377 * @count: Output pointer for CP0_Count value at point of freeze.
378 *
379 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380 * at the point it was frozen. It is guaranteed that any pending interrupts at
381 * the point it was frozen are handled, and none after that point.
382 *
383 * This is useful where the time/CP0_Count is needed in the calculation of the
384 * new parameters.
385 *
386 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387 *
388 * Returns: The ktime at the point of freeze.
389 */
390 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391 uint32_t *count)
392 {
393 ktime_t now;
394
395 /* stop hrtimer before finding time */
396 hrtimer_cancel(&vcpu->arch.comparecount_timer);
397 now = ktime_get();
398
399 /* find count at this point and handle pending hrtimer */
400 *count = kvm_mips_read_count_running(vcpu, now);
401
402 return now;
403 }
404
405 /**
406 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407 * @vcpu: Virtual CPU.
408 * @now: ktime at point of resume.
409 * @count: CP0_Count at point of resume.
410 *
411 * Resumes the timer and updates the timer expiry based on @now and @count.
412 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413 * parameters need to be changed.
414 *
415 * It is guaranteed that a timer interrupt immediately after resume will be
416 * handled, but not if CP_Compare is exactly at @count. That case is already
417 * handled by kvm_mips_freeze_timer().
418 *
419 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420 */
421 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422 ktime_t now, uint32_t count)
423 {
424 struct mips_coproc *cop0 = vcpu->arch.cop0;
425 uint32_t compare;
426 u64 delta;
427 ktime_t expire;
428
429 /* Calculate timeout (wrap 0 to 2^32) */
430 compare = kvm_read_c0_guest_compare(cop0);
431 delta = (u64)(uint32_t)(compare - count - 1) + 1;
432 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433 expire = ktime_add_ns(now, delta);
434
435 /* Update hrtimer to use new timeout */
436 hrtimer_cancel(&vcpu->arch.comparecount_timer);
437 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438 }
439
440 /**
441 * kvm_mips_write_count() - Modify the count and update timer.
442 * @vcpu: Virtual CPU.
443 * @count: Guest CP0_Count value to set.
444 *
445 * Sets the CP0_Count value and updates the timer accordingly.
446 */
447 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448 {
449 struct mips_coproc *cop0 = vcpu->arch.cop0;
450 ktime_t now;
451
452 /* Calculate bias */
453 now = kvm_mips_count_time(vcpu);
454 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455
456 if (kvm_mips_count_disabled(vcpu))
457 /* The timer's disabled, adjust the static count */
458 kvm_write_c0_guest_count(cop0, count);
459 else
460 /* Update timeout */
461 kvm_mips_resume_hrtimer(vcpu, now, count);
462 }
463
464 /**
465 * kvm_mips_init_count() - Initialise timer.
466 * @vcpu: Virtual CPU.
467 *
468 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469 * it going if it's enabled.
470 */
471 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472 {
473 /* 100 MHz */
474 vcpu->arch.count_hz = 100*1000*1000;
475 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476 vcpu->arch.count_hz);
477 vcpu->arch.count_dyn_bias = 0;
478
479 /* Starting at 0 */
480 kvm_mips_write_count(vcpu, 0);
481 }
482
483 /**
484 * kvm_mips_set_count_hz() - Update the frequency of the timer.
485 * @vcpu: Virtual CPU.
486 * @count_hz: Frequency of CP0_Count timer in Hz.
487 *
488 * Change the frequency of the CP0_Count timer. This is done atomically so that
489 * CP0_Count is continuous and no timer interrupt is lost.
490 *
491 * Returns: -EINVAL if @count_hz is out of range.
492 * 0 on success.
493 */
494 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495 {
496 struct mips_coproc *cop0 = vcpu->arch.cop0;
497 int dc;
498 ktime_t now;
499 u32 count;
500
501 /* ensure the frequency is in a sensible range... */
502 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503 return -EINVAL;
504 /* ... and has actually changed */
505 if (vcpu->arch.count_hz == count_hz)
506 return 0;
507
508 /* Safely freeze timer so we can keep it continuous */
509 dc = kvm_mips_count_disabled(vcpu);
510 if (dc) {
511 now = kvm_mips_count_time(vcpu);
512 count = kvm_read_c0_guest_count(cop0);
513 } else {
514 now = kvm_mips_freeze_hrtimer(vcpu, &count);
515 }
516
517 /* Update the frequency */
518 vcpu->arch.count_hz = count_hz;
519 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520 vcpu->arch.count_dyn_bias = 0;
521
522 /* Calculate adjusted bias so dynamic count is unchanged */
523 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524
525 /* Update and resume hrtimer */
526 if (!dc)
527 kvm_mips_resume_hrtimer(vcpu, now, count);
528 return 0;
529 }
530
531 /**
532 * kvm_mips_write_compare() - Modify compare and update timer.
533 * @vcpu: Virtual CPU.
534 * @compare: New CP0_Compare value.
535 * @ack: Whether to acknowledge timer interrupt.
536 *
537 * Update CP0_Compare to a new value and update the timeout.
538 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539 * any pending timer interrupt is preserved.
540 */
541 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
542 {
543 struct mips_coproc *cop0 = vcpu->arch.cop0;
544 int dc;
545 u32 old_compare = kvm_read_c0_guest_compare(cop0);
546 ktime_t now;
547 uint32_t count;
548
549 /* if unchanged, must just be an ack */
550 if (old_compare == compare) {
551 if (!ack)
552 return;
553 kvm_mips_callbacks->dequeue_timer_int(vcpu);
554 kvm_write_c0_guest_compare(cop0, compare);
555 return;
556 }
557
558 /* freeze_hrtimer() takes care of timer interrupts <= count */
559 dc = kvm_mips_count_disabled(vcpu);
560 if (!dc)
561 now = kvm_mips_freeze_hrtimer(vcpu, &count);
562
563 if (ack)
564 kvm_mips_callbacks->dequeue_timer_int(vcpu);
565
566 kvm_write_c0_guest_compare(cop0, compare);
567
568 /* resume_hrtimer() takes care of timer interrupts > count */
569 if (!dc)
570 kvm_mips_resume_hrtimer(vcpu, now, count);
571 }
572
573 /**
574 * kvm_mips_count_disable() - Disable count.
575 * @vcpu: Virtual CPU.
576 *
577 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578 * time will be handled but not after.
579 *
580 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581 * count_ctl.DC has been set (count disabled).
582 *
583 * Returns: The time that the timer was stopped.
584 */
585 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586 {
587 struct mips_coproc *cop0 = vcpu->arch.cop0;
588 uint32_t count;
589 ktime_t now;
590
591 /* Stop hrtimer */
592 hrtimer_cancel(&vcpu->arch.comparecount_timer);
593
594 /* Set the static count from the dynamic count, handling pending TI */
595 now = ktime_get();
596 count = kvm_mips_read_count_running(vcpu, now);
597 kvm_write_c0_guest_count(cop0, count);
598
599 return now;
600 }
601
602 /**
603 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604 * @vcpu: Virtual CPU.
605 *
606 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
607 * before the final stop time will be handled if the timer isn't disabled by
608 * count_ctl.DC, but not after.
609 *
610 * Assumes CP0_Cause.DC is clear (count enabled).
611 */
612 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613 {
614 struct mips_coproc *cop0 = vcpu->arch.cop0;
615
616 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
617 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618 kvm_mips_count_disable(vcpu);
619 }
620
621 /**
622 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623 * @vcpu: Virtual CPU.
624 *
625 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
626 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627 * potentially before even returning, so the caller should be careful with
628 * ordering of CP0_Cause modifications so as not to lose it.
629 *
630 * Assumes CP0_Cause.DC is set (count disabled).
631 */
632 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633 {
634 struct mips_coproc *cop0 = vcpu->arch.cop0;
635 uint32_t count;
636
637 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638
639 /*
640 * Set the dynamic count to match the static count.
641 * This starts the hrtimer if count_ctl.DC allows it.
642 * Otherwise it conveniently updates the biases.
643 */
644 count = kvm_read_c0_guest_count(cop0);
645 kvm_mips_write_count(vcpu, count);
646 }
647
648 /**
649 * kvm_mips_set_count_ctl() - Update the count control KVM register.
650 * @vcpu: Virtual CPU.
651 * @count_ctl: Count control register new value.
652 *
653 * Set the count control KVM register. The timer is updated accordingly.
654 *
655 * Returns: -EINVAL if reserved bits are set.
656 * 0 on success.
657 */
658 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659 {
660 struct mips_coproc *cop0 = vcpu->arch.cop0;
661 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662 s64 delta;
663 ktime_t expire, now;
664 uint32_t count, compare;
665
666 /* Only allow defined bits to be changed */
667 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668 return -EINVAL;
669
670 /* Apply new value */
671 vcpu->arch.count_ctl = count_ctl;
672
673 /* Master CP0_Count disable */
674 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675 /* Is CP0_Cause.DC already disabling CP0_Count? */
676 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678 /* Just record the current time */
679 vcpu->arch.count_resume = ktime_get();
680 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681 /* disable timer and record current time */
682 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683 } else {
684 /*
685 * Calculate timeout relative to static count at resume
686 * time (wrap 0 to 2^32).
687 */
688 count = kvm_read_c0_guest_count(cop0);
689 compare = kvm_read_c0_guest_compare(cop0);
690 delta = (u64)(uint32_t)(compare - count - 1) + 1;
691 delta = div_u64(delta * NSEC_PER_SEC,
692 vcpu->arch.count_hz);
693 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694
695 /* Handle pending interrupt */
696 now = ktime_get();
697 if (ktime_compare(now, expire) >= 0)
698 /* Nothing should be waiting on the timeout */
699 kvm_mips_callbacks->queue_timer_int(vcpu);
700
701 /* Resume hrtimer without changing bias */
702 count = kvm_mips_read_count_running(vcpu, now);
703 kvm_mips_resume_hrtimer(vcpu, now, count);
704 }
705 }
706
707 return 0;
708 }
709
710 /**
711 * kvm_mips_set_count_resume() - Update the count resume KVM register.
712 * @vcpu: Virtual CPU.
713 * @count_resume: Count resume register new value.
714 *
715 * Set the count resume KVM register.
716 *
717 * Returns: -EINVAL if out of valid range (0..now).
718 * 0 on success.
719 */
720 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721 {
722 /*
723 * It doesn't make sense for the resume time to be in the future, as it
724 * would be possible for the next interrupt to be more than a full
725 * period in the future.
726 */
727 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728 return -EINVAL;
729
730 vcpu->arch.count_resume = ns_to_ktime(count_resume);
731 return 0;
732 }
733
734 /**
735 * kvm_mips_count_timeout() - Push timer forward on timeout.
736 * @vcpu: Virtual CPU.
737 *
738 * Handle an hrtimer event by push the hrtimer forward a period.
739 *
740 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
741 */
742 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743 {
744 /* Add the Count period to the current expiry time */
745 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746 vcpu->arch.count_period);
747 return HRTIMER_RESTART;
748 }
749
750 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751 {
752 struct mips_coproc *cop0 = vcpu->arch.cop0;
753 enum emulation_result er = EMULATE_DONE;
754
755 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
756 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
757 kvm_read_c0_guest_epc(cop0));
758 kvm_clear_c0_guest_status(cop0, ST0_EXL);
759 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
760
761 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
762 kvm_clear_c0_guest_status(cop0, ST0_ERL);
763 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
764 } else {
765 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766 vcpu->arch.pc);
767 er = EMULATE_FAIL;
768 }
769
770 return er;
771 }
772
773 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774 {
775 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776 vcpu->arch.pending_exceptions);
777
778 ++vcpu->stat.wait_exits;
779 trace_kvm_exit(vcpu, WAIT_EXITS);
780 if (!vcpu->arch.pending_exceptions) {
781 vcpu->arch.wait = 1;
782 kvm_vcpu_block(vcpu);
783
784 /*
785 * We we are runnable, then definitely go off to user space to
786 * check if any I/O interrupts are pending.
787 */
788 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791 }
792 }
793
794 return EMULATE_DONE;
795 }
796
797 /*
798 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799 * we can catch this, if things ever change
800 */
801 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802 {
803 struct mips_coproc *cop0 = vcpu->arch.cop0;
804 uint32_t pc = vcpu->arch.pc;
805
806 kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
807 return EMULATE_FAIL;
808 }
809
810 /* Write Guest TLB Entry @ Index */
811 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
812 {
813 struct mips_coproc *cop0 = vcpu->arch.cop0;
814 int index = kvm_read_c0_guest_index(cop0);
815 struct kvm_mips_tlb *tlb = NULL;
816 uint32_t pc = vcpu->arch.pc;
817
818 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
819 kvm_debug("%s: illegal index: %d\n", __func__, index);
820 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
821 pc, index, kvm_read_c0_guest_entryhi(cop0),
822 kvm_read_c0_guest_entrylo0(cop0),
823 kvm_read_c0_guest_entrylo1(cop0),
824 kvm_read_c0_guest_pagemask(cop0));
825 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
826 }
827
828 tlb = &vcpu->arch.guest_tlb[index];
829 /*
830 * Probe the shadow host TLB for the entry being overwritten, if one
831 * matches, invalidate it
832 */
833 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
834
835 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
836 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
837 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
838 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
839
840 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
841 pc, index, kvm_read_c0_guest_entryhi(cop0),
842 kvm_read_c0_guest_entrylo0(cop0),
843 kvm_read_c0_guest_entrylo1(cop0),
844 kvm_read_c0_guest_pagemask(cop0));
845
846 return EMULATE_DONE;
847 }
848
849 /* Write Guest TLB Entry @ Random Index */
850 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
851 {
852 struct mips_coproc *cop0 = vcpu->arch.cop0;
853 struct kvm_mips_tlb *tlb = NULL;
854 uint32_t pc = vcpu->arch.pc;
855 int index;
856
857 get_random_bytes(&index, sizeof(index));
858 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
859
860 tlb = &vcpu->arch.guest_tlb[index];
861
862 /*
863 * Probe the shadow host TLB for the entry being overwritten, if one
864 * matches, invalidate it
865 */
866 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
867
868 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
869 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
870 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
871 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
872
873 kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
874 pc, index, kvm_read_c0_guest_entryhi(cop0),
875 kvm_read_c0_guest_entrylo0(cop0),
876 kvm_read_c0_guest_entrylo1(cop0));
877
878 return EMULATE_DONE;
879 }
880
881 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
882 {
883 struct mips_coproc *cop0 = vcpu->arch.cop0;
884 long entryhi = kvm_read_c0_guest_entryhi(cop0);
885 uint32_t pc = vcpu->arch.pc;
886 int index = -1;
887
888 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
889
890 kvm_write_c0_guest_index(cop0, index);
891
892 kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
893 index);
894
895 return EMULATE_DONE;
896 }
897
898 /**
899 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
900 * @vcpu: Virtual CPU.
901 *
902 * Finds the mask of bits which are writable in the guest's Config1 CP0
903 * register, by userland (currently read-only to the guest).
904 */
905 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
906 {
907 unsigned int mask = 0;
908
909 /* Permit FPU to be present if FPU is supported */
910 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
911 mask |= MIPS_CONF1_FP;
912
913 return mask;
914 }
915
916 /**
917 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
918 * @vcpu: Virtual CPU.
919 *
920 * Finds the mask of bits which are writable in the guest's Config3 CP0
921 * register, by userland (currently read-only to the guest).
922 */
923 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
924 {
925 /* Config4 is optional */
926 unsigned int mask = MIPS_CONF_M;
927
928 /* Permit MSA to be present if MSA is supported */
929 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
930 mask |= MIPS_CONF3_MSA;
931
932 return mask;
933 }
934
935 /**
936 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
937 * @vcpu: Virtual CPU.
938 *
939 * Finds the mask of bits which are writable in the guest's Config4 CP0
940 * register, by userland (currently read-only to the guest).
941 */
942 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
943 {
944 /* Config5 is optional */
945 return MIPS_CONF_M;
946 }
947
948 /**
949 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
950 * @vcpu: Virtual CPU.
951 *
952 * Finds the mask of bits which are writable in the guest's Config5 CP0
953 * register, by the guest itself.
954 */
955 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
956 {
957 unsigned int mask = 0;
958
959 /* Permit MSAEn changes if MSA supported and enabled */
960 if (kvm_mips_guest_has_msa(&vcpu->arch))
961 mask |= MIPS_CONF5_MSAEN;
962
963 /*
964 * Permit guest FPU mode changes if FPU is enabled and the relevant
965 * feature exists according to FIR register.
966 */
967 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
968 if (cpu_has_fre)
969 mask |= MIPS_CONF5_FRE;
970 /* We don't support UFR or UFE */
971 }
972
973 return mask;
974 }
975
976 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
977 uint32_t cause, struct kvm_run *run,
978 struct kvm_vcpu *vcpu)
979 {
980 struct mips_coproc *cop0 = vcpu->arch.cop0;
981 enum emulation_result er = EMULATE_DONE;
982 int32_t rt, rd, copz, sel, co_bit, op;
983 uint32_t pc = vcpu->arch.pc;
984 unsigned long curr_pc;
985
986 /*
987 * Update PC and hold onto current PC in case there is
988 * an error and we want to rollback the PC
989 */
990 curr_pc = vcpu->arch.pc;
991 er = update_pc(vcpu, cause);
992 if (er == EMULATE_FAIL)
993 return er;
994
995 copz = (inst >> 21) & 0x1f;
996 rt = (inst >> 16) & 0x1f;
997 rd = (inst >> 11) & 0x1f;
998 sel = inst & 0x7;
999 co_bit = (inst >> 25) & 1;
1000
1001 if (co_bit) {
1002 op = (inst) & 0xff;
1003
1004 switch (op) {
1005 case tlbr_op: /* Read indexed TLB entry */
1006 er = kvm_mips_emul_tlbr(vcpu);
1007 break;
1008 case tlbwi_op: /* Write indexed */
1009 er = kvm_mips_emul_tlbwi(vcpu);
1010 break;
1011 case tlbwr_op: /* Write random */
1012 er = kvm_mips_emul_tlbwr(vcpu);
1013 break;
1014 case tlbp_op: /* TLB Probe */
1015 er = kvm_mips_emul_tlbp(vcpu);
1016 break;
1017 case rfe_op:
1018 kvm_err("!!!COP0_RFE!!!\n");
1019 break;
1020 case eret_op:
1021 er = kvm_mips_emul_eret(vcpu);
1022 goto dont_update_pc;
1023 break;
1024 case wait_op:
1025 er = kvm_mips_emul_wait(vcpu);
1026 break;
1027 }
1028 } else {
1029 switch (copz) {
1030 case mfc_op:
1031 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1032 cop0->stat[rd][sel]++;
1033 #endif
1034 /* Get reg */
1035 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1036 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1037 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1038 vcpu->arch.gprs[rt] = 0x0;
1039 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1040 kvm_mips_trans_mfc0(inst, opc, vcpu);
1041 #endif
1042 } else {
1043 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1044
1045 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1046 kvm_mips_trans_mfc0(inst, opc, vcpu);
1047 #endif
1048 }
1049
1050 kvm_debug
1051 ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1052 pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1053
1054 break;
1055
1056 case dmfc_op:
1057 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1058 break;
1059
1060 case mtc_op:
1061 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1062 cop0->stat[rd][sel]++;
1063 #endif
1064 if ((rd == MIPS_CP0_TLB_INDEX)
1065 && (vcpu->arch.gprs[rt] >=
1066 KVM_MIPS_GUEST_TLB_SIZE)) {
1067 kvm_err("Invalid TLB Index: %ld",
1068 vcpu->arch.gprs[rt]);
1069 er = EMULATE_FAIL;
1070 break;
1071 }
1072 #define C0_EBASE_CORE_MASK 0xff
1073 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1074 /* Preserve CORE number */
1075 kvm_change_c0_guest_ebase(cop0,
1076 ~(C0_EBASE_CORE_MASK),
1077 vcpu->arch.gprs[rt]);
1078 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1079 kvm_read_c0_guest_ebase(cop0));
1080 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1081 uint32_t nasid =
1082 vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1083 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1084 ((kvm_read_c0_guest_entryhi(cop0) &
1085 KVM_ENTRYHI_ASID) != nasid)) {
1086 kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1087 kvm_read_c0_guest_entryhi(cop0)
1088 & KVM_ENTRYHI_ASID,
1089 vcpu->arch.gprs[rt]
1090 & KVM_ENTRYHI_ASID);
1091
1092 /* Blow away the shadow host TLBs */
1093 kvm_mips_flush_host_tlb(1);
1094 }
1095 kvm_write_c0_guest_entryhi(cop0,
1096 vcpu->arch.gprs[rt]);
1097 }
1098 /* Are we writing to COUNT */
1099 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1100 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1101 goto done;
1102 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1103 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1104 pc, kvm_read_c0_guest_compare(cop0),
1105 vcpu->arch.gprs[rt]);
1106
1107 /* If we are writing to COMPARE */
1108 /* Clear pending timer interrupt, if any */
1109 kvm_mips_write_compare(vcpu,
1110 vcpu->arch.gprs[rt],
1111 true);
1112 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1113 unsigned int old_val, val, change;
1114
1115 old_val = kvm_read_c0_guest_status(cop0);
1116 val = vcpu->arch.gprs[rt];
1117 change = val ^ old_val;
1118
1119 /* Make sure that the NMI bit is never set */
1120 val &= ~ST0_NMI;
1121
1122 /*
1123 * Don't allow CU1 or FR to be set unless FPU
1124 * capability enabled and exists in guest
1125 * configuration.
1126 */
1127 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1128 val &= ~(ST0_CU1 | ST0_FR);
1129
1130 /*
1131 * Also don't allow FR to be set if host doesn't
1132 * support it.
1133 */
1134 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1135 val &= ~ST0_FR;
1136
1137
1138 /* Handle changes in FPU mode */
1139 preempt_disable();
1140
1141 /*
1142 * FPU and Vector register state is made
1143 * UNPREDICTABLE by a change of FR, so don't
1144 * even bother saving it.
1145 */
1146 if (change & ST0_FR)
1147 kvm_drop_fpu(vcpu);
1148
1149 /*
1150 * If MSA state is already live, it is undefined
1151 * how it interacts with FR=0 FPU state, and we
1152 * don't want to hit reserved instruction
1153 * exceptions trying to save the MSA state later
1154 * when CU=1 && FR=1, so play it safe and save
1155 * it first.
1156 */
1157 if (change & ST0_CU1 && !(val & ST0_FR) &&
1158 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1159 kvm_lose_fpu(vcpu);
1160
1161 /*
1162 * Propagate CU1 (FPU enable) changes
1163 * immediately if the FPU context is already
1164 * loaded. When disabling we leave the context
1165 * loaded so it can be quickly enabled again in
1166 * the near future.
1167 */
1168 if (change & ST0_CU1 &&
1169 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1170 change_c0_status(ST0_CU1, val);
1171
1172 preempt_enable();
1173
1174 kvm_write_c0_guest_status(cop0, val);
1175
1176 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1177 /*
1178 * If FPU present, we need CU1/FR bits to take
1179 * effect fairly soon.
1180 */
1181 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1182 kvm_mips_trans_mtc0(inst, opc, vcpu);
1183 #endif
1184 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1185 unsigned int old_val, val, change, wrmask;
1186
1187 old_val = kvm_read_c0_guest_config5(cop0);
1188 val = vcpu->arch.gprs[rt];
1189
1190 /* Only a few bits are writable in Config5 */
1191 wrmask = kvm_mips_config5_wrmask(vcpu);
1192 change = (val ^ old_val) & wrmask;
1193 val = old_val ^ change;
1194
1195
1196 /* Handle changes in FPU/MSA modes */
1197 preempt_disable();
1198
1199 /*
1200 * Propagate FRE changes immediately if the FPU
1201 * context is already loaded.
1202 */
1203 if (change & MIPS_CONF5_FRE &&
1204 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1205 change_c0_config5(MIPS_CONF5_FRE, val);
1206
1207 /*
1208 * Propagate MSAEn changes immediately if the
1209 * MSA context is already loaded. When disabling
1210 * we leave the context loaded so it can be
1211 * quickly enabled again in the near future.
1212 */
1213 if (change & MIPS_CONF5_MSAEN &&
1214 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1215 change_c0_config5(MIPS_CONF5_MSAEN,
1216 val);
1217
1218 preempt_enable();
1219
1220 kvm_write_c0_guest_config5(cop0, val);
1221 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1222 uint32_t old_cause, new_cause;
1223
1224 old_cause = kvm_read_c0_guest_cause(cop0);
1225 new_cause = vcpu->arch.gprs[rt];
1226 /* Update R/W bits */
1227 kvm_change_c0_guest_cause(cop0, 0x08800300,
1228 new_cause);
1229 /* DC bit enabling/disabling timer? */
1230 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1231 if (new_cause & CAUSEF_DC)
1232 kvm_mips_count_disable_cause(vcpu);
1233 else
1234 kvm_mips_count_enable_cause(vcpu);
1235 }
1236 } else {
1237 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1238 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1239 kvm_mips_trans_mtc0(inst, opc, vcpu);
1240 #endif
1241 }
1242
1243 kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1244 rd, sel, cop0->reg[rd][sel]);
1245 break;
1246
1247 case dmtc_op:
1248 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1249 vcpu->arch.pc, rt, rd, sel);
1250 er = EMULATE_FAIL;
1251 break;
1252
1253 case mfmc0_op:
1254 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1255 cop0->stat[MIPS_CP0_STATUS][0]++;
1256 #endif
1257 if (rt != 0)
1258 vcpu->arch.gprs[rt] =
1259 kvm_read_c0_guest_status(cop0);
1260 /* EI */
1261 if (inst & 0x20) {
1262 kvm_debug("[%#lx] mfmc0_op: EI\n",
1263 vcpu->arch.pc);
1264 kvm_set_c0_guest_status(cop0, ST0_IE);
1265 } else {
1266 kvm_debug("[%#lx] mfmc0_op: DI\n",
1267 vcpu->arch.pc);
1268 kvm_clear_c0_guest_status(cop0, ST0_IE);
1269 }
1270
1271 break;
1272
1273 case wrpgpr_op:
1274 {
1275 uint32_t css =
1276 cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1277 uint32_t pss =
1278 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1279 /*
1280 * We don't support any shadow register sets, so
1281 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1282 */
1283 if (css || pss) {
1284 er = EMULATE_FAIL;
1285 break;
1286 }
1287 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1288 vcpu->arch.gprs[rt]);
1289 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1290 }
1291 break;
1292 default:
1293 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1294 vcpu->arch.pc, copz);
1295 er = EMULATE_FAIL;
1296 break;
1297 }
1298 }
1299
1300 done:
1301 /* Rollback PC only if emulation was unsuccessful */
1302 if (er == EMULATE_FAIL)
1303 vcpu->arch.pc = curr_pc;
1304
1305 dont_update_pc:
1306 /*
1307 * This is for special instructions whose emulation
1308 * updates the PC, so do not overwrite the PC under
1309 * any circumstances
1310 */
1311
1312 return er;
1313 }
1314
1315 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1316 struct kvm_run *run,
1317 struct kvm_vcpu *vcpu)
1318 {
1319 enum emulation_result er = EMULATE_DO_MMIO;
1320 int32_t op, base, rt, offset;
1321 uint32_t bytes;
1322 void *data = run->mmio.data;
1323 unsigned long curr_pc;
1324
1325 /*
1326 * Update PC and hold onto current PC in case there is
1327 * an error and we want to rollback the PC
1328 */
1329 curr_pc = vcpu->arch.pc;
1330 er = update_pc(vcpu, cause);
1331 if (er == EMULATE_FAIL)
1332 return er;
1333
1334 rt = (inst >> 16) & 0x1f;
1335 base = (inst >> 21) & 0x1f;
1336 offset = inst & 0xffff;
1337 op = (inst >> 26) & 0x3f;
1338
1339 switch (op) {
1340 case sb_op:
1341 bytes = 1;
1342 if (bytes > sizeof(run->mmio.data)) {
1343 kvm_err("%s: bad MMIO length: %d\n", __func__,
1344 run->mmio.len);
1345 }
1346 run->mmio.phys_addr =
1347 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1348 host_cp0_badvaddr);
1349 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1350 er = EMULATE_FAIL;
1351 break;
1352 }
1353 run->mmio.len = bytes;
1354 run->mmio.is_write = 1;
1355 vcpu->mmio_needed = 1;
1356 vcpu->mmio_is_write = 1;
1357 *(u8 *) data = vcpu->arch.gprs[rt];
1358 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1359 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1360 *(uint8_t *) data);
1361
1362 break;
1363
1364 case sw_op:
1365 bytes = 4;
1366 if (bytes > sizeof(run->mmio.data)) {
1367 kvm_err("%s: bad MMIO length: %d\n", __func__,
1368 run->mmio.len);
1369 }
1370 run->mmio.phys_addr =
1371 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1372 host_cp0_badvaddr);
1373 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1374 er = EMULATE_FAIL;
1375 break;
1376 }
1377
1378 run->mmio.len = bytes;
1379 run->mmio.is_write = 1;
1380 vcpu->mmio_needed = 1;
1381 vcpu->mmio_is_write = 1;
1382 *(uint32_t *) data = vcpu->arch.gprs[rt];
1383
1384 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1385 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1386 vcpu->arch.gprs[rt], *(uint32_t *) data);
1387 break;
1388
1389 case sh_op:
1390 bytes = 2;
1391 if (bytes > sizeof(run->mmio.data)) {
1392 kvm_err("%s: bad MMIO length: %d\n", __func__,
1393 run->mmio.len);
1394 }
1395 run->mmio.phys_addr =
1396 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1397 host_cp0_badvaddr);
1398 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1399 er = EMULATE_FAIL;
1400 break;
1401 }
1402
1403 run->mmio.len = bytes;
1404 run->mmio.is_write = 1;
1405 vcpu->mmio_needed = 1;
1406 vcpu->mmio_is_write = 1;
1407 *(uint16_t *) data = vcpu->arch.gprs[rt];
1408
1409 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1410 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1411 vcpu->arch.gprs[rt], *(uint32_t *) data);
1412 break;
1413
1414 default:
1415 kvm_err("Store not yet supported");
1416 er = EMULATE_FAIL;
1417 break;
1418 }
1419
1420 /* Rollback PC if emulation was unsuccessful */
1421 if (er == EMULATE_FAIL)
1422 vcpu->arch.pc = curr_pc;
1423
1424 return er;
1425 }
1426
1427 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1428 struct kvm_run *run,
1429 struct kvm_vcpu *vcpu)
1430 {
1431 enum emulation_result er = EMULATE_DO_MMIO;
1432 int32_t op, base, rt, offset;
1433 uint32_t bytes;
1434
1435 rt = (inst >> 16) & 0x1f;
1436 base = (inst >> 21) & 0x1f;
1437 offset = inst & 0xffff;
1438 op = (inst >> 26) & 0x3f;
1439
1440 vcpu->arch.pending_load_cause = cause;
1441 vcpu->arch.io_gpr = rt;
1442
1443 switch (op) {
1444 case lw_op:
1445 bytes = 4;
1446 if (bytes > sizeof(run->mmio.data)) {
1447 kvm_err("%s: bad MMIO length: %d\n", __func__,
1448 run->mmio.len);
1449 er = EMULATE_FAIL;
1450 break;
1451 }
1452 run->mmio.phys_addr =
1453 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1454 host_cp0_badvaddr);
1455 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1456 er = EMULATE_FAIL;
1457 break;
1458 }
1459
1460 run->mmio.len = bytes;
1461 run->mmio.is_write = 0;
1462 vcpu->mmio_needed = 1;
1463 vcpu->mmio_is_write = 0;
1464 break;
1465
1466 case lh_op:
1467 case lhu_op:
1468 bytes = 2;
1469 if (bytes > sizeof(run->mmio.data)) {
1470 kvm_err("%s: bad MMIO length: %d\n", __func__,
1471 run->mmio.len);
1472 er = EMULATE_FAIL;
1473 break;
1474 }
1475 run->mmio.phys_addr =
1476 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1477 host_cp0_badvaddr);
1478 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1479 er = EMULATE_FAIL;
1480 break;
1481 }
1482
1483 run->mmio.len = bytes;
1484 run->mmio.is_write = 0;
1485 vcpu->mmio_needed = 1;
1486 vcpu->mmio_is_write = 0;
1487
1488 if (op == lh_op)
1489 vcpu->mmio_needed = 2;
1490 else
1491 vcpu->mmio_needed = 1;
1492
1493 break;
1494
1495 case lbu_op:
1496 case lb_op:
1497 bytes = 1;
1498 if (bytes > sizeof(run->mmio.data)) {
1499 kvm_err("%s: bad MMIO length: %d\n", __func__,
1500 run->mmio.len);
1501 er = EMULATE_FAIL;
1502 break;
1503 }
1504 run->mmio.phys_addr =
1505 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1506 host_cp0_badvaddr);
1507 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1508 er = EMULATE_FAIL;
1509 break;
1510 }
1511
1512 run->mmio.len = bytes;
1513 run->mmio.is_write = 0;
1514 vcpu->mmio_is_write = 0;
1515
1516 if (op == lb_op)
1517 vcpu->mmio_needed = 2;
1518 else
1519 vcpu->mmio_needed = 1;
1520
1521 break;
1522
1523 default:
1524 kvm_err("Load not yet supported");
1525 er = EMULATE_FAIL;
1526 break;
1527 }
1528
1529 return er;
1530 }
1531
1532 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1533 {
1534 unsigned long offset = (va & ~PAGE_MASK);
1535 struct kvm *kvm = vcpu->kvm;
1536 unsigned long pa;
1537 gfn_t gfn;
1538 kvm_pfn_t pfn;
1539
1540 gfn = va >> PAGE_SHIFT;
1541
1542 if (gfn >= kvm->arch.guest_pmap_npages) {
1543 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1544 kvm_mips_dump_host_tlbs();
1545 kvm_arch_vcpu_dump_regs(vcpu);
1546 return -1;
1547 }
1548 pfn = kvm->arch.guest_pmap[gfn];
1549 pa = (pfn << PAGE_SHIFT) | offset;
1550
1551 kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1552 CKSEG0ADDR(pa));
1553
1554 local_flush_icache_range(CKSEG0ADDR(pa), 32);
1555 return 0;
1556 }
1557
1558 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1559 uint32_t cause,
1560 struct kvm_run *run,
1561 struct kvm_vcpu *vcpu)
1562 {
1563 struct mips_coproc *cop0 = vcpu->arch.cop0;
1564 enum emulation_result er = EMULATE_DONE;
1565 int32_t offset, cache, op_inst, op, base;
1566 struct kvm_vcpu_arch *arch = &vcpu->arch;
1567 unsigned long va;
1568 unsigned long curr_pc;
1569
1570 /*
1571 * Update PC and hold onto current PC in case there is
1572 * an error and we want to rollback the PC
1573 */
1574 curr_pc = vcpu->arch.pc;
1575 er = update_pc(vcpu, cause);
1576 if (er == EMULATE_FAIL)
1577 return er;
1578
1579 base = (inst >> 21) & 0x1f;
1580 op_inst = (inst >> 16) & 0x1f;
1581 offset = (int16_t)inst;
1582 cache = op_inst & CacheOp_Cache;
1583 op = op_inst & CacheOp_Op;
1584
1585 va = arch->gprs[base] + offset;
1586
1587 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1588 cache, op, base, arch->gprs[base], offset);
1589
1590 /*
1591 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1592 * invalidate the caches entirely by stepping through all the
1593 * ways/indexes
1594 */
1595 if (op == Index_Writeback_Inv) {
1596 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1597 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1598 arch->gprs[base], offset);
1599
1600 if (cache == Cache_D)
1601 r4k_blast_dcache();
1602 else if (cache == Cache_I)
1603 r4k_blast_icache();
1604 else {
1605 kvm_err("%s: unsupported CACHE INDEX operation\n",
1606 __func__);
1607 return EMULATE_FAIL;
1608 }
1609
1610 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1611 kvm_mips_trans_cache_index(inst, opc, vcpu);
1612 #endif
1613 goto done;
1614 }
1615
1616 preempt_disable();
1617 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1618 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1619 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1620 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1621 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1622 int index;
1623
1624 /* If an entry already exists then skip */
1625 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1626 goto skip_fault;
1627
1628 /*
1629 * If address not in the guest TLB, then give the guest a fault,
1630 * the resulting handler will do the right thing
1631 */
1632 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1633 (kvm_read_c0_guest_entryhi
1634 (cop0) & KVM_ENTRYHI_ASID));
1635
1636 if (index < 0) {
1637 vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1638 vcpu->arch.host_cp0_badvaddr = va;
1639 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1640 vcpu);
1641 preempt_enable();
1642 goto dont_update_pc;
1643 } else {
1644 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1645 /*
1646 * Check if the entry is valid, if not then setup a TLB
1647 * invalid exception to the guest
1648 */
1649 if (!TLB_IS_VALID(*tlb, va)) {
1650 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1651 run, vcpu);
1652 preempt_enable();
1653 goto dont_update_pc;
1654 } else {
1655 /*
1656 * We fault an entry from the guest tlb to the
1657 * shadow host TLB
1658 */
1659 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1660 NULL,
1661 NULL);
1662 }
1663 }
1664 } else {
1665 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1666 cache, op, base, arch->gprs[base], offset);
1667 er = EMULATE_FAIL;
1668 preempt_enable();
1669 goto dont_update_pc;
1670
1671 }
1672
1673 skip_fault:
1674 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1675 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1676 flush_dcache_line(va);
1677
1678 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1679 /*
1680 * Replace the CACHE instruction, with a SYNCI, not the same,
1681 * but avoids a trap
1682 */
1683 kvm_mips_trans_cache_va(inst, opc, vcpu);
1684 #endif
1685 } else if (op_inst == Hit_Invalidate_I) {
1686 flush_dcache_line(va);
1687 flush_icache_line(va);
1688
1689 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1690 /* Replace the CACHE instruction, with a SYNCI */
1691 kvm_mips_trans_cache_va(inst, opc, vcpu);
1692 #endif
1693 } else {
1694 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1695 cache, op, base, arch->gprs[base], offset);
1696 er = EMULATE_FAIL;
1697 preempt_enable();
1698 goto dont_update_pc;
1699 }
1700
1701 preempt_enable();
1702
1703 dont_update_pc:
1704 /* Rollback PC */
1705 vcpu->arch.pc = curr_pc;
1706 done:
1707 return er;
1708 }
1709
1710 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1711 struct kvm_run *run,
1712 struct kvm_vcpu *vcpu)
1713 {
1714 enum emulation_result er = EMULATE_DONE;
1715 uint32_t inst;
1716
1717 /* Fetch the instruction. */
1718 if (cause & CAUSEF_BD)
1719 opc += 1;
1720
1721 inst = kvm_get_inst(opc, vcpu);
1722
1723 switch (((union mips_instruction)inst).r_format.opcode) {
1724 case cop0_op:
1725 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1726 break;
1727 case sb_op:
1728 case sh_op:
1729 case sw_op:
1730 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1731 break;
1732 case lb_op:
1733 case lbu_op:
1734 case lhu_op:
1735 case lh_op:
1736 case lw_op:
1737 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1738 break;
1739
1740 case cache_op:
1741 ++vcpu->stat.cache_exits;
1742 trace_kvm_exit(vcpu, CACHE_EXITS);
1743 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1744 break;
1745
1746 default:
1747 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1748 inst);
1749 kvm_arch_vcpu_dump_regs(vcpu);
1750 er = EMULATE_FAIL;
1751 break;
1752 }
1753
1754 return er;
1755 }
1756
1757 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1758 uint32_t *opc,
1759 struct kvm_run *run,
1760 struct kvm_vcpu *vcpu)
1761 {
1762 struct mips_coproc *cop0 = vcpu->arch.cop0;
1763 struct kvm_vcpu_arch *arch = &vcpu->arch;
1764 enum emulation_result er = EMULATE_DONE;
1765
1766 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1767 /* save old pc */
1768 kvm_write_c0_guest_epc(cop0, arch->pc);
1769 kvm_set_c0_guest_status(cop0, ST0_EXL);
1770
1771 if (cause & CAUSEF_BD)
1772 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1773 else
1774 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1775
1776 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1777
1778 kvm_change_c0_guest_cause(cop0, (0xff),
1779 (EXCCODE_SYS << CAUSEB_EXCCODE));
1780
1781 /* Set PC to the exception entry point */
1782 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1783
1784 } else {
1785 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1786 er = EMULATE_FAIL;
1787 }
1788
1789 return er;
1790 }
1791
1792 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1793 uint32_t *opc,
1794 struct kvm_run *run,
1795 struct kvm_vcpu *vcpu)
1796 {
1797 struct mips_coproc *cop0 = vcpu->arch.cop0;
1798 struct kvm_vcpu_arch *arch = &vcpu->arch;
1799 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
1800 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1801
1802 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1803 /* save old pc */
1804 kvm_write_c0_guest_epc(cop0, arch->pc);
1805 kvm_set_c0_guest_status(cop0, ST0_EXL);
1806
1807 if (cause & CAUSEF_BD)
1808 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1809 else
1810 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1811
1812 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1813 arch->pc);
1814
1815 /* set pc to the exception entry point */
1816 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1817
1818 } else {
1819 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1820 arch->pc);
1821
1822 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1823 }
1824
1825 kvm_change_c0_guest_cause(cop0, (0xff),
1826 (EXCCODE_TLBL << CAUSEB_EXCCODE));
1827
1828 /* setup badvaddr, context and entryhi registers for the guest */
1829 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1830 /* XXXKYMA: is the context register used by linux??? */
1831 kvm_write_c0_guest_entryhi(cop0, entryhi);
1832 /* Blow away the shadow host TLBs */
1833 kvm_mips_flush_host_tlb(1);
1834
1835 return EMULATE_DONE;
1836 }
1837
1838 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1839 uint32_t *opc,
1840 struct kvm_run *run,
1841 struct kvm_vcpu *vcpu)
1842 {
1843 struct mips_coproc *cop0 = vcpu->arch.cop0;
1844 struct kvm_vcpu_arch *arch = &vcpu->arch;
1845 unsigned long entryhi =
1846 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1847 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1848
1849 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1850 /* save old pc */
1851 kvm_write_c0_guest_epc(cop0, arch->pc);
1852 kvm_set_c0_guest_status(cop0, ST0_EXL);
1853
1854 if (cause & CAUSEF_BD)
1855 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1856 else
1857 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1858
1859 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1860 arch->pc);
1861
1862 /* set pc to the exception entry point */
1863 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1864
1865 } else {
1866 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1867 arch->pc);
1868 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1869 }
1870
1871 kvm_change_c0_guest_cause(cop0, (0xff),
1872 (EXCCODE_TLBL << CAUSEB_EXCCODE));
1873
1874 /* setup badvaddr, context and entryhi registers for the guest */
1875 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1876 /* XXXKYMA: is the context register used by linux??? */
1877 kvm_write_c0_guest_entryhi(cop0, entryhi);
1878 /* Blow away the shadow host TLBs */
1879 kvm_mips_flush_host_tlb(1);
1880
1881 return EMULATE_DONE;
1882 }
1883
1884 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1885 uint32_t *opc,
1886 struct kvm_run *run,
1887 struct kvm_vcpu *vcpu)
1888 {
1889 struct mips_coproc *cop0 = vcpu->arch.cop0;
1890 struct kvm_vcpu_arch *arch = &vcpu->arch;
1891 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1892 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1893
1894 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1895 /* save old pc */
1896 kvm_write_c0_guest_epc(cop0, arch->pc);
1897 kvm_set_c0_guest_status(cop0, ST0_EXL);
1898
1899 if (cause & CAUSEF_BD)
1900 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1901 else
1902 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1903
1904 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1905 arch->pc);
1906
1907 /* Set PC to the exception entry point */
1908 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1909 } else {
1910 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1911 arch->pc);
1912 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1913 }
1914
1915 kvm_change_c0_guest_cause(cop0, (0xff),
1916 (EXCCODE_TLBS << CAUSEB_EXCCODE));
1917
1918 /* setup badvaddr, context and entryhi registers for the guest */
1919 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1920 /* XXXKYMA: is the context register used by linux??? */
1921 kvm_write_c0_guest_entryhi(cop0, entryhi);
1922 /* Blow away the shadow host TLBs */
1923 kvm_mips_flush_host_tlb(1);
1924
1925 return EMULATE_DONE;
1926 }
1927
1928 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1929 uint32_t *opc,
1930 struct kvm_run *run,
1931 struct kvm_vcpu *vcpu)
1932 {
1933 struct mips_coproc *cop0 = vcpu->arch.cop0;
1934 struct kvm_vcpu_arch *arch = &vcpu->arch;
1935 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1936 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1937
1938 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1939 /* save old pc */
1940 kvm_write_c0_guest_epc(cop0, arch->pc);
1941 kvm_set_c0_guest_status(cop0, ST0_EXL);
1942
1943 if (cause & CAUSEF_BD)
1944 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1945 else
1946 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1947
1948 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1949 arch->pc);
1950
1951 /* Set PC to the exception entry point */
1952 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1953 } else {
1954 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1955 arch->pc);
1956 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1957 }
1958
1959 kvm_change_c0_guest_cause(cop0, (0xff),
1960 (EXCCODE_TLBS << CAUSEB_EXCCODE));
1961
1962 /* setup badvaddr, context and entryhi registers for the guest */
1963 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1964 /* XXXKYMA: is the context register used by linux??? */
1965 kvm_write_c0_guest_entryhi(cop0, entryhi);
1966 /* Blow away the shadow host TLBs */
1967 kvm_mips_flush_host_tlb(1);
1968
1969 return EMULATE_DONE;
1970 }
1971
1972 /* TLBMOD: store into address matching TLB with Dirty bit off */
1973 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1974 struct kvm_run *run,
1975 struct kvm_vcpu *vcpu)
1976 {
1977 enum emulation_result er = EMULATE_DONE;
1978 #ifdef DEBUG
1979 struct mips_coproc *cop0 = vcpu->arch.cop0;
1980 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1981 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1982 int index;
1983
1984 /* If address not in the guest TLB, then we are in trouble */
1985 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1986 if (index < 0) {
1987 /* XXXKYMA Invalidate and retry */
1988 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1989 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1990 __func__, entryhi);
1991 kvm_mips_dump_guest_tlbs(vcpu);
1992 kvm_mips_dump_host_tlbs();
1993 return EMULATE_FAIL;
1994 }
1995 #endif
1996
1997 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1998 return er;
1999 }
2000
2001 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2002 uint32_t *opc,
2003 struct kvm_run *run,
2004 struct kvm_vcpu *vcpu)
2005 {
2006 struct mips_coproc *cop0 = vcpu->arch.cop0;
2007 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2008 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2009 struct kvm_vcpu_arch *arch = &vcpu->arch;
2010
2011 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2012 /* save old pc */
2013 kvm_write_c0_guest_epc(cop0, arch->pc);
2014 kvm_set_c0_guest_status(cop0, ST0_EXL);
2015
2016 if (cause & CAUSEF_BD)
2017 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2018 else
2019 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2020
2021 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2022 arch->pc);
2023
2024 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2025 } else {
2026 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2027 arch->pc);
2028 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2029 }
2030
2031 kvm_change_c0_guest_cause(cop0, (0xff),
2032 (EXCCODE_MOD << CAUSEB_EXCCODE));
2033
2034 /* setup badvaddr, context and entryhi registers for the guest */
2035 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2036 /* XXXKYMA: is the context register used by linux??? */
2037 kvm_write_c0_guest_entryhi(cop0, entryhi);
2038 /* Blow away the shadow host TLBs */
2039 kvm_mips_flush_host_tlb(1);
2040
2041 return EMULATE_DONE;
2042 }
2043
2044 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2045 uint32_t *opc,
2046 struct kvm_run *run,
2047 struct kvm_vcpu *vcpu)
2048 {
2049 struct mips_coproc *cop0 = vcpu->arch.cop0;
2050 struct kvm_vcpu_arch *arch = &vcpu->arch;
2051
2052 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2053 /* save old pc */
2054 kvm_write_c0_guest_epc(cop0, arch->pc);
2055 kvm_set_c0_guest_status(cop0, ST0_EXL);
2056
2057 if (cause & CAUSEF_BD)
2058 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2059 else
2060 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2061
2062 }
2063
2064 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2065
2066 kvm_change_c0_guest_cause(cop0, (0xff),
2067 (EXCCODE_CPU << CAUSEB_EXCCODE));
2068 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2069
2070 return EMULATE_DONE;
2071 }
2072
2073 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2074 uint32_t *opc,
2075 struct kvm_run *run,
2076 struct kvm_vcpu *vcpu)
2077 {
2078 struct mips_coproc *cop0 = vcpu->arch.cop0;
2079 struct kvm_vcpu_arch *arch = &vcpu->arch;
2080 enum emulation_result er = EMULATE_DONE;
2081
2082 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2083 /* save old pc */
2084 kvm_write_c0_guest_epc(cop0, arch->pc);
2085 kvm_set_c0_guest_status(cop0, ST0_EXL);
2086
2087 if (cause & CAUSEF_BD)
2088 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2089 else
2090 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2091
2092 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2093
2094 kvm_change_c0_guest_cause(cop0, (0xff),
2095 (EXCCODE_RI << CAUSEB_EXCCODE));
2096
2097 /* Set PC to the exception entry point */
2098 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2099
2100 } else {
2101 kvm_err("Trying to deliver RI when EXL is already set\n");
2102 er = EMULATE_FAIL;
2103 }
2104
2105 return er;
2106 }
2107
2108 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2109 uint32_t *opc,
2110 struct kvm_run *run,
2111 struct kvm_vcpu *vcpu)
2112 {
2113 struct mips_coproc *cop0 = vcpu->arch.cop0;
2114 struct kvm_vcpu_arch *arch = &vcpu->arch;
2115 enum emulation_result er = EMULATE_DONE;
2116
2117 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2118 /* save old pc */
2119 kvm_write_c0_guest_epc(cop0, arch->pc);
2120 kvm_set_c0_guest_status(cop0, ST0_EXL);
2121
2122 if (cause & CAUSEF_BD)
2123 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2124 else
2125 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2126
2127 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2128
2129 kvm_change_c0_guest_cause(cop0, (0xff),
2130 (EXCCODE_BP << CAUSEB_EXCCODE));
2131
2132 /* Set PC to the exception entry point */
2133 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2134
2135 } else {
2136 kvm_err("Trying to deliver BP when EXL is already set\n");
2137 er = EMULATE_FAIL;
2138 }
2139
2140 return er;
2141 }
2142
2143 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2144 uint32_t *opc,
2145 struct kvm_run *run,
2146 struct kvm_vcpu *vcpu)
2147 {
2148 struct mips_coproc *cop0 = vcpu->arch.cop0;
2149 struct kvm_vcpu_arch *arch = &vcpu->arch;
2150 enum emulation_result er = EMULATE_DONE;
2151
2152 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2153 /* save old pc */
2154 kvm_write_c0_guest_epc(cop0, arch->pc);
2155 kvm_set_c0_guest_status(cop0, ST0_EXL);
2156
2157 if (cause & CAUSEF_BD)
2158 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2159 else
2160 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2161
2162 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2163
2164 kvm_change_c0_guest_cause(cop0, (0xff),
2165 (EXCCODE_TR << CAUSEB_EXCCODE));
2166
2167 /* Set PC to the exception entry point */
2168 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2169
2170 } else {
2171 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2172 er = EMULATE_FAIL;
2173 }
2174
2175 return er;
2176 }
2177
2178 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2179 uint32_t *opc,
2180 struct kvm_run *run,
2181 struct kvm_vcpu *vcpu)
2182 {
2183 struct mips_coproc *cop0 = vcpu->arch.cop0;
2184 struct kvm_vcpu_arch *arch = &vcpu->arch;
2185 enum emulation_result er = EMULATE_DONE;
2186
2187 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2188 /* save old pc */
2189 kvm_write_c0_guest_epc(cop0, arch->pc);
2190 kvm_set_c0_guest_status(cop0, ST0_EXL);
2191
2192 if (cause & CAUSEF_BD)
2193 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2194 else
2195 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2196
2197 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2198
2199 kvm_change_c0_guest_cause(cop0, (0xff),
2200 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2201
2202 /* Set PC to the exception entry point */
2203 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2204
2205 } else {
2206 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2207 er = EMULATE_FAIL;
2208 }
2209
2210 return er;
2211 }
2212
2213 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2214 uint32_t *opc,
2215 struct kvm_run *run,
2216 struct kvm_vcpu *vcpu)
2217 {
2218 struct mips_coproc *cop0 = vcpu->arch.cop0;
2219 struct kvm_vcpu_arch *arch = &vcpu->arch;
2220 enum emulation_result er = EMULATE_DONE;
2221
2222 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2223 /* save old pc */
2224 kvm_write_c0_guest_epc(cop0, arch->pc);
2225 kvm_set_c0_guest_status(cop0, ST0_EXL);
2226
2227 if (cause & CAUSEF_BD)
2228 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2229 else
2230 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2231
2232 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2233
2234 kvm_change_c0_guest_cause(cop0, (0xff),
2235 (EXCCODE_FPE << CAUSEB_EXCCODE));
2236
2237 /* Set PC to the exception entry point */
2238 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2239
2240 } else {
2241 kvm_err("Trying to deliver FPE when EXL is already set\n");
2242 er = EMULATE_FAIL;
2243 }
2244
2245 return er;
2246 }
2247
2248 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2249 uint32_t *opc,
2250 struct kvm_run *run,
2251 struct kvm_vcpu *vcpu)
2252 {
2253 struct mips_coproc *cop0 = vcpu->arch.cop0;
2254 struct kvm_vcpu_arch *arch = &vcpu->arch;
2255 enum emulation_result er = EMULATE_DONE;
2256
2257 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2258 /* save old pc */
2259 kvm_write_c0_guest_epc(cop0, arch->pc);
2260 kvm_set_c0_guest_status(cop0, ST0_EXL);
2261
2262 if (cause & CAUSEF_BD)
2263 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2264 else
2265 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2266
2267 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2268
2269 kvm_change_c0_guest_cause(cop0, (0xff),
2270 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2271
2272 /* Set PC to the exception entry point */
2273 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2274
2275 } else {
2276 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2277 er = EMULATE_FAIL;
2278 }
2279
2280 return er;
2281 }
2282
2283 /* ll/sc, rdhwr, sync emulation */
2284
2285 #define OPCODE 0xfc000000
2286 #define BASE 0x03e00000
2287 #define RT 0x001f0000
2288 #define OFFSET 0x0000ffff
2289 #define LL 0xc0000000
2290 #define SC 0xe0000000
2291 #define SPEC0 0x00000000
2292 #define SPEC3 0x7c000000
2293 #define RD 0x0000f800
2294 #define FUNC 0x0000003f
2295 #define SYNC 0x0000000f
2296 #define RDHWR 0x0000003b
2297
2298 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2299 struct kvm_run *run,
2300 struct kvm_vcpu *vcpu)
2301 {
2302 struct mips_coproc *cop0 = vcpu->arch.cop0;
2303 struct kvm_vcpu_arch *arch = &vcpu->arch;
2304 enum emulation_result er = EMULATE_DONE;
2305 unsigned long curr_pc;
2306 uint32_t inst;
2307
2308 /*
2309 * Update PC and hold onto current PC in case there is
2310 * an error and we want to rollback the PC
2311 */
2312 curr_pc = vcpu->arch.pc;
2313 er = update_pc(vcpu, cause);
2314 if (er == EMULATE_FAIL)
2315 return er;
2316
2317 /* Fetch the instruction. */
2318 if (cause & CAUSEF_BD)
2319 opc += 1;
2320
2321 inst = kvm_get_inst(opc, vcpu);
2322
2323 if (inst == KVM_INVALID_INST) {
2324 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2325 return EMULATE_FAIL;
2326 }
2327
2328 if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2329 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2330 int rd = (inst & RD) >> 11;
2331 int rt = (inst & RT) >> 16;
2332 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2333 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2334 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2335 rd, opc);
2336 goto emulate_ri;
2337 }
2338 switch (rd) {
2339 case 0: /* CPU number */
2340 arch->gprs[rt] = 0;
2341 break;
2342 case 1: /* SYNCI length */
2343 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2344 current_cpu_data.icache.linesz);
2345 break;
2346 case 2: /* Read count register */
2347 arch->gprs[rt] = kvm_mips_read_count(vcpu);
2348 break;
2349 case 3: /* Count register resolution */
2350 switch (current_cpu_data.cputype) {
2351 case CPU_20KC:
2352 case CPU_25KF:
2353 arch->gprs[rt] = 1;
2354 break;
2355 default:
2356 arch->gprs[rt] = 2;
2357 }
2358 break;
2359 case 29:
2360 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2361 break;
2362
2363 default:
2364 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2365 goto emulate_ri;
2366 }
2367 } else {
2368 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2369 goto emulate_ri;
2370 }
2371
2372 return EMULATE_DONE;
2373
2374 emulate_ri:
2375 /*
2376 * Rollback PC (if in branch delay slot then the PC already points to
2377 * branch target), and pass the RI exception to the guest OS.
2378 */
2379 vcpu->arch.pc = curr_pc;
2380 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2381 }
2382
2383 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2384 struct kvm_run *run)
2385 {
2386 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2387 enum emulation_result er = EMULATE_DONE;
2388
2389 if (run->mmio.len > sizeof(*gpr)) {
2390 kvm_err("Bad MMIO length: %d", run->mmio.len);
2391 er = EMULATE_FAIL;
2392 goto done;
2393 }
2394
2395 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2396 if (er == EMULATE_FAIL)
2397 return er;
2398
2399 switch (run->mmio.len) {
2400 case 4:
2401 *gpr = *(int32_t *) run->mmio.data;
2402 break;
2403
2404 case 2:
2405 if (vcpu->mmio_needed == 2)
2406 *gpr = *(int16_t *) run->mmio.data;
2407 else
2408 *gpr = *(uint16_t *)run->mmio.data;
2409
2410 break;
2411 case 1:
2412 if (vcpu->mmio_needed == 2)
2413 *gpr = *(int8_t *) run->mmio.data;
2414 else
2415 *gpr = *(u8 *) run->mmio.data;
2416 break;
2417 }
2418
2419 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2420 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2421 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2422 vcpu->mmio_needed);
2423
2424 done:
2425 return er;
2426 }
2427
2428 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2429 uint32_t *opc,
2430 struct kvm_run *run,
2431 struct kvm_vcpu *vcpu)
2432 {
2433 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2434 struct mips_coproc *cop0 = vcpu->arch.cop0;
2435 struct kvm_vcpu_arch *arch = &vcpu->arch;
2436 enum emulation_result er = EMULATE_DONE;
2437
2438 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2439 /* save old pc */
2440 kvm_write_c0_guest_epc(cop0, arch->pc);
2441 kvm_set_c0_guest_status(cop0, ST0_EXL);
2442
2443 if (cause & CAUSEF_BD)
2444 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2445 else
2446 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2447
2448 kvm_change_c0_guest_cause(cop0, (0xff),
2449 (exccode << CAUSEB_EXCCODE));
2450
2451 /* Set PC to the exception entry point */
2452 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2453 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2454
2455 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2456 exccode, kvm_read_c0_guest_epc(cop0),
2457 kvm_read_c0_guest_badvaddr(cop0));
2458 } else {
2459 kvm_err("Trying to deliver EXC when EXL is already set\n");
2460 er = EMULATE_FAIL;
2461 }
2462
2463 return er;
2464 }
2465
2466 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2467 uint32_t *opc,
2468 struct kvm_run *run,
2469 struct kvm_vcpu *vcpu)
2470 {
2471 enum emulation_result er = EMULATE_DONE;
2472 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2473 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2474
2475 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2476
2477 if (usermode) {
2478 switch (exccode) {
2479 case EXCCODE_INT:
2480 case EXCCODE_SYS:
2481 case EXCCODE_BP:
2482 case EXCCODE_RI:
2483 case EXCCODE_TR:
2484 case EXCCODE_MSAFPE:
2485 case EXCCODE_FPE:
2486 case EXCCODE_MSADIS:
2487 break;
2488
2489 case EXCCODE_CPU:
2490 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2491 er = EMULATE_PRIV_FAIL;
2492 break;
2493
2494 case EXCCODE_MOD:
2495 break;
2496
2497 case EXCCODE_TLBL:
2498 /*
2499 * We we are accessing Guest kernel space, then send an
2500 * address error exception to the guest
2501 */
2502 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2503 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2504 badvaddr);
2505 cause &= ~0xff;
2506 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2507 er = EMULATE_PRIV_FAIL;
2508 }
2509 break;
2510
2511 case EXCCODE_TLBS:
2512 /*
2513 * We we are accessing Guest kernel space, then send an
2514 * address error exception to the guest
2515 */
2516 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2517 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2518 badvaddr);
2519 cause &= ~0xff;
2520 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2521 er = EMULATE_PRIV_FAIL;
2522 }
2523 break;
2524
2525 case EXCCODE_ADES:
2526 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2527 badvaddr);
2528 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2529 cause &= ~0xff;
2530 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2531 }
2532 er = EMULATE_PRIV_FAIL;
2533 break;
2534 case EXCCODE_ADEL:
2535 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2536 badvaddr);
2537 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2538 cause &= ~0xff;
2539 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2540 }
2541 er = EMULATE_PRIV_FAIL;
2542 break;
2543 default:
2544 er = EMULATE_PRIV_FAIL;
2545 break;
2546 }
2547 }
2548
2549 if (er == EMULATE_PRIV_FAIL)
2550 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2551
2552 return er;
2553 }
2554
2555 /*
2556 * User Address (UA) fault, this could happen if
2557 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2558 * case we pass on the fault to the guest kernel and let it handle it.
2559 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2560 * case we inject the TLB from the Guest TLB into the shadow host TLB
2561 */
2562 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2563 uint32_t *opc,
2564 struct kvm_run *run,
2565 struct kvm_vcpu *vcpu)
2566 {
2567 enum emulation_result er = EMULATE_DONE;
2568 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2569 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2570 int index;
2571
2572 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2573 vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2574
2575 /*
2576 * KVM would not have got the exception if this entry was valid in the
2577 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2578 * send the guest an exception. The guest exc handler should then inject
2579 * an entry into the guest TLB.
2580 */
2581 index = kvm_mips_guest_tlb_lookup(vcpu,
2582 (va & VPN2_MASK) |
2583 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2584 KVM_ENTRYHI_ASID));
2585 if (index < 0) {
2586 if (exccode == EXCCODE_TLBL) {
2587 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2588 } else if (exccode == EXCCODE_TLBS) {
2589 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2590 } else {
2591 kvm_err("%s: invalid exc code: %d\n", __func__,
2592 exccode);
2593 er = EMULATE_FAIL;
2594 }
2595 } else {
2596 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2597
2598 /*
2599 * Check if the entry is valid, if not then setup a TLB invalid
2600 * exception to the guest
2601 */
2602 if (!TLB_IS_VALID(*tlb, va)) {
2603 if (exccode == EXCCODE_TLBL) {
2604 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2605 vcpu);
2606 } else if (exccode == EXCCODE_TLBS) {
2607 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2608 vcpu);
2609 } else {
2610 kvm_err("%s: invalid exc code: %d\n", __func__,
2611 exccode);
2612 er = EMULATE_FAIL;
2613 }
2614 } else {
2615 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2616 tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2617 /*
2618 * OK we have a Guest TLB entry, now inject it into the
2619 * shadow host TLB
2620 */
2621 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2622 NULL);
2623 }
2624 }
2625
2626 return er;
2627 }
This page took 0.12017 seconds and 5 git commands to generate.