Merge remote-tracking branches 'regulator/topic/load', 'regulator/topic/max77802...
[deliverable/linux.git] / arch / mips / kvm / mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100 /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
40 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
41 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
42 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
49 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
51 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
52 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
54 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
60 {NULL}
61 };
62
63 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
64 {
65 int i;
66
67 for_each_possible_cpu(i) {
68 vcpu->arch.guest_kernel_asid[i] = 0;
69 vcpu->arch.guest_user_asid[i] = 0;
70 }
71
72 return 0;
73 }
74
75 /*
76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
77 * Config7, so we are "runnable" if interrupts are pending
78 */
79 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
80 {
81 return !!(vcpu->arch.pending_exceptions);
82 }
83
84 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
85 {
86 return 1;
87 }
88
89 int kvm_arch_hardware_enable(void)
90 {
91 return 0;
92 }
93
94 int kvm_arch_hardware_setup(void)
95 {
96 return 0;
97 }
98
99 void kvm_arch_check_processor_compat(void *rtn)
100 {
101 *(int *)rtn = 0;
102 }
103
104 static void kvm_mips_init_tlbs(struct kvm *kvm)
105 {
106 unsigned long wired;
107
108 /*
109 * Add a wired entry to the TLB, it is used to map the commpage to
110 * the Guest kernel
111 */
112 wired = read_c0_wired();
113 write_c0_wired(wired + 1);
114 mtc0_tlbw_hazard();
115 kvm->arch.commpage_tlb = wired;
116
117 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118 kvm->arch.commpage_tlb);
119 }
120
121 static void kvm_mips_init_vm_percpu(void *arg)
122 {
123 struct kvm *kvm = (struct kvm *)arg;
124
125 kvm_mips_init_tlbs(kvm);
126 kvm_mips_callbacks->vm_init(kvm);
127
128 }
129
130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131 {
132 if (atomic_inc_return(&kvm_mips_instance) == 1) {
133 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
134 __func__);
135 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
136 }
137
138 return 0;
139 }
140
141 void kvm_mips_free_vcpus(struct kvm *kvm)
142 {
143 unsigned int i;
144 struct kvm_vcpu *vcpu;
145
146 /* Put the pages we reserved for the guest pmap */
147 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
148 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
149 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
150 }
151 kfree(kvm->arch.guest_pmap);
152
153 kvm_for_each_vcpu(i, vcpu, kvm) {
154 kvm_arch_vcpu_free(vcpu);
155 }
156
157 mutex_lock(&kvm->lock);
158
159 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
160 kvm->vcpus[i] = NULL;
161
162 atomic_set(&kvm->online_vcpus, 0);
163
164 mutex_unlock(&kvm->lock);
165 }
166
167 static void kvm_mips_uninit_tlbs(void *arg)
168 {
169 /* Restore wired count */
170 write_c0_wired(0);
171 mtc0_tlbw_hazard();
172 /* Clear out all the TLBs */
173 kvm_local_flush_tlb_all();
174 }
175
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 kvm_mips_free_vcpus(kvm);
179
180 /* If this is the last instance, restore wired count */
181 if (atomic_dec_return(&kvm_mips_instance) == 0) {
182 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
183 __func__);
184 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
185 }
186 }
187
188 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
189 unsigned long arg)
190 {
191 return -ENOIOCTLCMD;
192 }
193
194 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
195 unsigned long npages)
196 {
197 return 0;
198 }
199
200 int kvm_arch_prepare_memory_region(struct kvm *kvm,
201 struct kvm_memory_slot *memslot,
202 const struct kvm_userspace_memory_region *mem,
203 enum kvm_mr_change change)
204 {
205 return 0;
206 }
207
208 void kvm_arch_commit_memory_region(struct kvm *kvm,
209 const struct kvm_userspace_memory_region *mem,
210 const struct kvm_memory_slot *old,
211 const struct kvm_memory_slot *new,
212 enum kvm_mr_change change)
213 {
214 unsigned long npages = 0;
215 int i;
216
217 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
218 __func__, kvm, mem->slot, mem->guest_phys_addr,
219 mem->memory_size, mem->userspace_addr);
220
221 /* Setup Guest PMAP table */
222 if (!kvm->arch.guest_pmap) {
223 if (mem->slot == 0)
224 npages = mem->memory_size >> PAGE_SHIFT;
225
226 if (npages) {
227 kvm->arch.guest_pmap_npages = npages;
228 kvm->arch.guest_pmap =
229 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
230
231 if (!kvm->arch.guest_pmap) {
232 kvm_err("Failed to allocate guest PMAP");
233 return;
234 }
235
236 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
237 npages, kvm->arch.guest_pmap);
238
239 /* Now setup the page table */
240 for (i = 0; i < npages; i++)
241 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
242 }
243 }
244 }
245
246 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
247 {
248 int err, size, offset;
249 void *gebase;
250 int i;
251
252 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
253
254 if (!vcpu) {
255 err = -ENOMEM;
256 goto out;
257 }
258
259 err = kvm_vcpu_init(vcpu, kvm, id);
260
261 if (err)
262 goto out_free_cpu;
263
264 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
265
266 /*
267 * Allocate space for host mode exception handlers that handle
268 * guest mode exits
269 */
270 if (cpu_has_veic || cpu_has_vint)
271 size = 0x200 + VECTORSPACING * 64;
272 else
273 size = 0x4000;
274
275 /* Save Linux EBASE */
276 vcpu->arch.host_ebase = (void *)read_c0_ebase();
277
278 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
279
280 if (!gebase) {
281 err = -ENOMEM;
282 goto out_free_cpu;
283 }
284 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
285 ALIGN(size, PAGE_SIZE), gebase);
286
287 /* Save new ebase */
288 vcpu->arch.guest_ebase = gebase;
289
290 /* Copy L1 Guest Exception handler to correct offset */
291
292 /* TLB Refill, EXL = 0 */
293 memcpy(gebase, mips32_exception,
294 mips32_exceptionEnd - mips32_exception);
295
296 /* General Exception Entry point */
297 memcpy(gebase + 0x180, mips32_exception,
298 mips32_exceptionEnd - mips32_exception);
299
300 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
301 for (i = 0; i < 8; i++) {
302 kvm_debug("L1 Vectored handler @ %p\n",
303 gebase + 0x200 + (i * VECTORSPACING));
304 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
305 mips32_exceptionEnd - mips32_exception);
306 }
307
308 /* General handler, relocate to unmapped space for sanity's sake */
309 offset = 0x2000;
310 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
311 gebase + offset,
312 mips32_GuestExceptionEnd - mips32_GuestException);
313
314 memcpy(gebase + offset, mips32_GuestException,
315 mips32_GuestExceptionEnd - mips32_GuestException);
316
317 /* Invalidate the icache for these ranges */
318 local_flush_icache_range((unsigned long)gebase,
319 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
320
321 /*
322 * Allocate comm page for guest kernel, a TLB will be reserved for
323 * mapping GVA @ 0xFFFF8000 to this page
324 */
325 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
326
327 if (!vcpu->arch.kseg0_commpage) {
328 err = -ENOMEM;
329 goto out_free_gebase;
330 }
331
332 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
333 kvm_mips_commpage_init(vcpu);
334
335 /* Init */
336 vcpu->arch.last_sched_cpu = -1;
337
338 /* Start off the timer */
339 kvm_mips_init_count(vcpu);
340
341 return vcpu;
342
343 out_free_gebase:
344 kfree(gebase);
345
346 out_free_cpu:
347 kfree(vcpu);
348
349 out:
350 return ERR_PTR(err);
351 }
352
353 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
354 {
355 hrtimer_cancel(&vcpu->arch.comparecount_timer);
356
357 kvm_vcpu_uninit(vcpu);
358
359 kvm_mips_dump_stats(vcpu);
360
361 kfree(vcpu->arch.guest_ebase);
362 kfree(vcpu->arch.kseg0_commpage);
363 kfree(vcpu);
364 }
365
366 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
367 {
368 kvm_arch_vcpu_free(vcpu);
369 }
370
371 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
372 struct kvm_guest_debug *dbg)
373 {
374 return -ENOIOCTLCMD;
375 }
376
377 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
378 {
379 int r = 0;
380 sigset_t sigsaved;
381
382 if (vcpu->sigset_active)
383 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
384
385 if (vcpu->mmio_needed) {
386 if (!vcpu->mmio_is_write)
387 kvm_mips_complete_mmio_load(vcpu, run);
388 vcpu->mmio_needed = 0;
389 }
390
391 lose_fpu(1);
392
393 local_irq_disable();
394 /* Check if we have any exceptions/interrupts pending */
395 kvm_mips_deliver_interrupts(vcpu,
396 kvm_read_c0_guest_cause(vcpu->arch.cop0));
397
398 __kvm_guest_enter();
399
400 /* Disable hardware page table walking while in guest */
401 htw_stop();
402
403 r = __kvm_mips_vcpu_run(run, vcpu);
404
405 /* Re-enable HTW before enabling interrupts */
406 htw_start();
407
408 __kvm_guest_exit();
409 local_irq_enable();
410
411 if (vcpu->sigset_active)
412 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
413
414 return r;
415 }
416
417 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
418 struct kvm_mips_interrupt *irq)
419 {
420 int intr = (int)irq->irq;
421 struct kvm_vcpu *dvcpu = NULL;
422
423 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
424 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
425 (int)intr);
426
427 if (irq->cpu == -1)
428 dvcpu = vcpu;
429 else
430 dvcpu = vcpu->kvm->vcpus[irq->cpu];
431
432 if (intr == 2 || intr == 3 || intr == 4) {
433 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
434
435 } else if (intr == -2 || intr == -3 || intr == -4) {
436 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
437 } else {
438 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
439 irq->cpu, irq->irq);
440 return -EINVAL;
441 }
442
443 dvcpu->arch.wait = 0;
444
445 if (waitqueue_active(&dvcpu->wq))
446 wake_up_interruptible(&dvcpu->wq);
447
448 return 0;
449 }
450
451 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
452 struct kvm_mp_state *mp_state)
453 {
454 return -ENOIOCTLCMD;
455 }
456
457 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
458 struct kvm_mp_state *mp_state)
459 {
460 return -ENOIOCTLCMD;
461 }
462
463 static u64 kvm_mips_get_one_regs[] = {
464 KVM_REG_MIPS_R0,
465 KVM_REG_MIPS_R1,
466 KVM_REG_MIPS_R2,
467 KVM_REG_MIPS_R3,
468 KVM_REG_MIPS_R4,
469 KVM_REG_MIPS_R5,
470 KVM_REG_MIPS_R6,
471 KVM_REG_MIPS_R7,
472 KVM_REG_MIPS_R8,
473 KVM_REG_MIPS_R9,
474 KVM_REG_MIPS_R10,
475 KVM_REG_MIPS_R11,
476 KVM_REG_MIPS_R12,
477 KVM_REG_MIPS_R13,
478 KVM_REG_MIPS_R14,
479 KVM_REG_MIPS_R15,
480 KVM_REG_MIPS_R16,
481 KVM_REG_MIPS_R17,
482 KVM_REG_MIPS_R18,
483 KVM_REG_MIPS_R19,
484 KVM_REG_MIPS_R20,
485 KVM_REG_MIPS_R21,
486 KVM_REG_MIPS_R22,
487 KVM_REG_MIPS_R23,
488 KVM_REG_MIPS_R24,
489 KVM_REG_MIPS_R25,
490 KVM_REG_MIPS_R26,
491 KVM_REG_MIPS_R27,
492 KVM_REG_MIPS_R28,
493 KVM_REG_MIPS_R29,
494 KVM_REG_MIPS_R30,
495 KVM_REG_MIPS_R31,
496
497 KVM_REG_MIPS_HI,
498 KVM_REG_MIPS_LO,
499 KVM_REG_MIPS_PC,
500
501 KVM_REG_MIPS_CP0_INDEX,
502 KVM_REG_MIPS_CP0_CONTEXT,
503 KVM_REG_MIPS_CP0_USERLOCAL,
504 KVM_REG_MIPS_CP0_PAGEMASK,
505 KVM_REG_MIPS_CP0_WIRED,
506 KVM_REG_MIPS_CP0_HWRENA,
507 KVM_REG_MIPS_CP0_BADVADDR,
508 KVM_REG_MIPS_CP0_COUNT,
509 KVM_REG_MIPS_CP0_ENTRYHI,
510 KVM_REG_MIPS_CP0_COMPARE,
511 KVM_REG_MIPS_CP0_STATUS,
512 KVM_REG_MIPS_CP0_CAUSE,
513 KVM_REG_MIPS_CP0_EPC,
514 KVM_REG_MIPS_CP0_PRID,
515 KVM_REG_MIPS_CP0_CONFIG,
516 KVM_REG_MIPS_CP0_CONFIG1,
517 KVM_REG_MIPS_CP0_CONFIG2,
518 KVM_REG_MIPS_CP0_CONFIG3,
519 KVM_REG_MIPS_CP0_CONFIG4,
520 KVM_REG_MIPS_CP0_CONFIG5,
521 KVM_REG_MIPS_CP0_CONFIG7,
522 KVM_REG_MIPS_CP0_ERROREPC,
523
524 KVM_REG_MIPS_COUNT_CTL,
525 KVM_REG_MIPS_COUNT_RESUME,
526 KVM_REG_MIPS_COUNT_HZ,
527 };
528
529 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
530 const struct kvm_one_reg *reg)
531 {
532 struct mips_coproc *cop0 = vcpu->arch.cop0;
533 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
534 int ret;
535 s64 v;
536 s64 vs[2];
537 unsigned int idx;
538
539 switch (reg->id) {
540 /* General purpose registers */
541 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
542 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
543 break;
544 case KVM_REG_MIPS_HI:
545 v = (long)vcpu->arch.hi;
546 break;
547 case KVM_REG_MIPS_LO:
548 v = (long)vcpu->arch.lo;
549 break;
550 case KVM_REG_MIPS_PC:
551 v = (long)vcpu->arch.pc;
552 break;
553
554 /* Floating point registers */
555 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
556 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
557 return -EINVAL;
558 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
559 /* Odd singles in top of even double when FR=0 */
560 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
561 v = get_fpr32(&fpu->fpr[idx], 0);
562 else
563 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
564 break;
565 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
566 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
567 return -EINVAL;
568 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
569 /* Can't access odd doubles in FR=0 mode */
570 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
571 return -EINVAL;
572 v = get_fpr64(&fpu->fpr[idx], 0);
573 break;
574 case KVM_REG_MIPS_FCR_IR:
575 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
576 return -EINVAL;
577 v = boot_cpu_data.fpu_id;
578 break;
579 case KVM_REG_MIPS_FCR_CSR:
580 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
581 return -EINVAL;
582 v = fpu->fcr31;
583 break;
584
585 /* MIPS SIMD Architecture (MSA) registers */
586 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
587 if (!kvm_mips_guest_has_msa(&vcpu->arch))
588 return -EINVAL;
589 /* Can't access MSA registers in FR=0 mode */
590 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
591 return -EINVAL;
592 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
593 #ifdef CONFIG_CPU_LITTLE_ENDIAN
594 /* least significant byte first */
595 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
596 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
597 #else
598 /* most significant byte first */
599 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
600 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
601 #endif
602 break;
603 case KVM_REG_MIPS_MSA_IR:
604 if (!kvm_mips_guest_has_msa(&vcpu->arch))
605 return -EINVAL;
606 v = boot_cpu_data.msa_id;
607 break;
608 case KVM_REG_MIPS_MSA_CSR:
609 if (!kvm_mips_guest_has_msa(&vcpu->arch))
610 return -EINVAL;
611 v = fpu->msacsr;
612 break;
613
614 /* Co-processor 0 registers */
615 case KVM_REG_MIPS_CP0_INDEX:
616 v = (long)kvm_read_c0_guest_index(cop0);
617 break;
618 case KVM_REG_MIPS_CP0_CONTEXT:
619 v = (long)kvm_read_c0_guest_context(cop0);
620 break;
621 case KVM_REG_MIPS_CP0_USERLOCAL:
622 v = (long)kvm_read_c0_guest_userlocal(cop0);
623 break;
624 case KVM_REG_MIPS_CP0_PAGEMASK:
625 v = (long)kvm_read_c0_guest_pagemask(cop0);
626 break;
627 case KVM_REG_MIPS_CP0_WIRED:
628 v = (long)kvm_read_c0_guest_wired(cop0);
629 break;
630 case KVM_REG_MIPS_CP0_HWRENA:
631 v = (long)kvm_read_c0_guest_hwrena(cop0);
632 break;
633 case KVM_REG_MIPS_CP0_BADVADDR:
634 v = (long)kvm_read_c0_guest_badvaddr(cop0);
635 break;
636 case KVM_REG_MIPS_CP0_ENTRYHI:
637 v = (long)kvm_read_c0_guest_entryhi(cop0);
638 break;
639 case KVM_REG_MIPS_CP0_COMPARE:
640 v = (long)kvm_read_c0_guest_compare(cop0);
641 break;
642 case KVM_REG_MIPS_CP0_STATUS:
643 v = (long)kvm_read_c0_guest_status(cop0);
644 break;
645 case KVM_REG_MIPS_CP0_CAUSE:
646 v = (long)kvm_read_c0_guest_cause(cop0);
647 break;
648 case KVM_REG_MIPS_CP0_EPC:
649 v = (long)kvm_read_c0_guest_epc(cop0);
650 break;
651 case KVM_REG_MIPS_CP0_PRID:
652 v = (long)kvm_read_c0_guest_prid(cop0);
653 break;
654 case KVM_REG_MIPS_CP0_CONFIG:
655 v = (long)kvm_read_c0_guest_config(cop0);
656 break;
657 case KVM_REG_MIPS_CP0_CONFIG1:
658 v = (long)kvm_read_c0_guest_config1(cop0);
659 break;
660 case KVM_REG_MIPS_CP0_CONFIG2:
661 v = (long)kvm_read_c0_guest_config2(cop0);
662 break;
663 case KVM_REG_MIPS_CP0_CONFIG3:
664 v = (long)kvm_read_c0_guest_config3(cop0);
665 break;
666 case KVM_REG_MIPS_CP0_CONFIG4:
667 v = (long)kvm_read_c0_guest_config4(cop0);
668 break;
669 case KVM_REG_MIPS_CP0_CONFIG5:
670 v = (long)kvm_read_c0_guest_config5(cop0);
671 break;
672 case KVM_REG_MIPS_CP0_CONFIG7:
673 v = (long)kvm_read_c0_guest_config7(cop0);
674 break;
675 case KVM_REG_MIPS_CP0_ERROREPC:
676 v = (long)kvm_read_c0_guest_errorepc(cop0);
677 break;
678 /* registers to be handled specially */
679 case KVM_REG_MIPS_CP0_COUNT:
680 case KVM_REG_MIPS_COUNT_CTL:
681 case KVM_REG_MIPS_COUNT_RESUME:
682 case KVM_REG_MIPS_COUNT_HZ:
683 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
684 if (ret)
685 return ret;
686 break;
687 default:
688 return -EINVAL;
689 }
690 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
691 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
692
693 return put_user(v, uaddr64);
694 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
695 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
696 u32 v32 = (u32)v;
697
698 return put_user(v32, uaddr32);
699 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
700 void __user *uaddr = (void __user *)(long)reg->addr;
701
702 return copy_to_user(uaddr, vs, 16);
703 } else {
704 return -EINVAL;
705 }
706 }
707
708 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
709 const struct kvm_one_reg *reg)
710 {
711 struct mips_coproc *cop0 = vcpu->arch.cop0;
712 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
713 s64 v;
714 s64 vs[2];
715 unsigned int idx;
716
717 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
718 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
719
720 if (get_user(v, uaddr64) != 0)
721 return -EFAULT;
722 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
723 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
724 s32 v32;
725
726 if (get_user(v32, uaddr32) != 0)
727 return -EFAULT;
728 v = (s64)v32;
729 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
730 void __user *uaddr = (void __user *)(long)reg->addr;
731
732 return copy_from_user(vs, uaddr, 16);
733 } else {
734 return -EINVAL;
735 }
736
737 switch (reg->id) {
738 /* General purpose registers */
739 case KVM_REG_MIPS_R0:
740 /* Silently ignore requests to set $0 */
741 break;
742 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
743 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
744 break;
745 case KVM_REG_MIPS_HI:
746 vcpu->arch.hi = v;
747 break;
748 case KVM_REG_MIPS_LO:
749 vcpu->arch.lo = v;
750 break;
751 case KVM_REG_MIPS_PC:
752 vcpu->arch.pc = v;
753 break;
754
755 /* Floating point registers */
756 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
757 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
758 return -EINVAL;
759 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
760 /* Odd singles in top of even double when FR=0 */
761 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
762 set_fpr32(&fpu->fpr[idx], 0, v);
763 else
764 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
765 break;
766 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
767 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
768 return -EINVAL;
769 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
770 /* Can't access odd doubles in FR=0 mode */
771 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
772 return -EINVAL;
773 set_fpr64(&fpu->fpr[idx], 0, v);
774 break;
775 case KVM_REG_MIPS_FCR_IR:
776 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
777 return -EINVAL;
778 /* Read-only */
779 break;
780 case KVM_REG_MIPS_FCR_CSR:
781 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
782 return -EINVAL;
783 fpu->fcr31 = v;
784 break;
785
786 /* MIPS SIMD Architecture (MSA) registers */
787 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
788 if (!kvm_mips_guest_has_msa(&vcpu->arch))
789 return -EINVAL;
790 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
791 #ifdef CONFIG_CPU_LITTLE_ENDIAN
792 /* least significant byte first */
793 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
794 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
795 #else
796 /* most significant byte first */
797 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
798 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
799 #endif
800 break;
801 case KVM_REG_MIPS_MSA_IR:
802 if (!kvm_mips_guest_has_msa(&vcpu->arch))
803 return -EINVAL;
804 /* Read-only */
805 break;
806 case KVM_REG_MIPS_MSA_CSR:
807 if (!kvm_mips_guest_has_msa(&vcpu->arch))
808 return -EINVAL;
809 fpu->msacsr = v;
810 break;
811
812 /* Co-processor 0 registers */
813 case KVM_REG_MIPS_CP0_INDEX:
814 kvm_write_c0_guest_index(cop0, v);
815 break;
816 case KVM_REG_MIPS_CP0_CONTEXT:
817 kvm_write_c0_guest_context(cop0, v);
818 break;
819 case KVM_REG_MIPS_CP0_USERLOCAL:
820 kvm_write_c0_guest_userlocal(cop0, v);
821 break;
822 case KVM_REG_MIPS_CP0_PAGEMASK:
823 kvm_write_c0_guest_pagemask(cop0, v);
824 break;
825 case KVM_REG_MIPS_CP0_WIRED:
826 kvm_write_c0_guest_wired(cop0, v);
827 break;
828 case KVM_REG_MIPS_CP0_HWRENA:
829 kvm_write_c0_guest_hwrena(cop0, v);
830 break;
831 case KVM_REG_MIPS_CP0_BADVADDR:
832 kvm_write_c0_guest_badvaddr(cop0, v);
833 break;
834 case KVM_REG_MIPS_CP0_ENTRYHI:
835 kvm_write_c0_guest_entryhi(cop0, v);
836 break;
837 case KVM_REG_MIPS_CP0_STATUS:
838 kvm_write_c0_guest_status(cop0, v);
839 break;
840 case KVM_REG_MIPS_CP0_EPC:
841 kvm_write_c0_guest_epc(cop0, v);
842 break;
843 case KVM_REG_MIPS_CP0_PRID:
844 kvm_write_c0_guest_prid(cop0, v);
845 break;
846 case KVM_REG_MIPS_CP0_ERROREPC:
847 kvm_write_c0_guest_errorepc(cop0, v);
848 break;
849 /* registers to be handled specially */
850 case KVM_REG_MIPS_CP0_COUNT:
851 case KVM_REG_MIPS_CP0_COMPARE:
852 case KVM_REG_MIPS_CP0_CAUSE:
853 case KVM_REG_MIPS_CP0_CONFIG:
854 case KVM_REG_MIPS_CP0_CONFIG1:
855 case KVM_REG_MIPS_CP0_CONFIG2:
856 case KVM_REG_MIPS_CP0_CONFIG3:
857 case KVM_REG_MIPS_CP0_CONFIG4:
858 case KVM_REG_MIPS_CP0_CONFIG5:
859 case KVM_REG_MIPS_COUNT_CTL:
860 case KVM_REG_MIPS_COUNT_RESUME:
861 case KVM_REG_MIPS_COUNT_HZ:
862 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
863 default:
864 return -EINVAL;
865 }
866 return 0;
867 }
868
869 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
870 struct kvm_enable_cap *cap)
871 {
872 int r = 0;
873
874 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
875 return -EINVAL;
876 if (cap->flags)
877 return -EINVAL;
878 if (cap->args[0])
879 return -EINVAL;
880
881 switch (cap->cap) {
882 case KVM_CAP_MIPS_FPU:
883 vcpu->arch.fpu_enabled = true;
884 break;
885 case KVM_CAP_MIPS_MSA:
886 vcpu->arch.msa_enabled = true;
887 break;
888 default:
889 r = -EINVAL;
890 break;
891 }
892
893 return r;
894 }
895
896 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
897 unsigned long arg)
898 {
899 struct kvm_vcpu *vcpu = filp->private_data;
900 void __user *argp = (void __user *)arg;
901 long r;
902
903 switch (ioctl) {
904 case KVM_SET_ONE_REG:
905 case KVM_GET_ONE_REG: {
906 struct kvm_one_reg reg;
907
908 if (copy_from_user(&reg, argp, sizeof(reg)))
909 return -EFAULT;
910 if (ioctl == KVM_SET_ONE_REG)
911 return kvm_mips_set_reg(vcpu, &reg);
912 else
913 return kvm_mips_get_reg(vcpu, &reg);
914 }
915 case KVM_GET_REG_LIST: {
916 struct kvm_reg_list __user *user_list = argp;
917 u64 __user *reg_dest;
918 struct kvm_reg_list reg_list;
919 unsigned n;
920
921 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
922 return -EFAULT;
923 n = reg_list.n;
924 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
925 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
926 return -EFAULT;
927 if (n < reg_list.n)
928 return -E2BIG;
929 reg_dest = user_list->reg;
930 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
931 sizeof(kvm_mips_get_one_regs)))
932 return -EFAULT;
933 return 0;
934 }
935 case KVM_NMI:
936 /* Treat the NMI as a CPU reset */
937 r = kvm_mips_reset_vcpu(vcpu);
938 break;
939 case KVM_INTERRUPT:
940 {
941 struct kvm_mips_interrupt irq;
942
943 r = -EFAULT;
944 if (copy_from_user(&irq, argp, sizeof(irq)))
945 goto out;
946
947 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
948 irq.irq);
949
950 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
951 break;
952 }
953 case KVM_ENABLE_CAP: {
954 struct kvm_enable_cap cap;
955
956 r = -EFAULT;
957 if (copy_from_user(&cap, argp, sizeof(cap)))
958 goto out;
959 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
960 break;
961 }
962 default:
963 r = -ENOIOCTLCMD;
964 }
965
966 out:
967 return r;
968 }
969
970 /* Get (and clear) the dirty memory log for a memory slot. */
971 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
972 {
973 struct kvm_memslots *slots;
974 struct kvm_memory_slot *memslot;
975 unsigned long ga, ga_end;
976 int is_dirty = 0;
977 int r;
978 unsigned long n;
979
980 mutex_lock(&kvm->slots_lock);
981
982 r = kvm_get_dirty_log(kvm, log, &is_dirty);
983 if (r)
984 goto out;
985
986 /* If nothing is dirty, don't bother messing with page tables. */
987 if (is_dirty) {
988 slots = kvm_memslots(kvm);
989 memslot = id_to_memslot(slots, log->slot);
990
991 ga = memslot->base_gfn << PAGE_SHIFT;
992 ga_end = ga + (memslot->npages << PAGE_SHIFT);
993
994 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
995 ga_end);
996
997 n = kvm_dirty_bitmap_bytes(memslot);
998 memset(memslot->dirty_bitmap, 0, n);
999 }
1000
1001 r = 0;
1002 out:
1003 mutex_unlock(&kvm->slots_lock);
1004 return r;
1005
1006 }
1007
1008 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1009 {
1010 long r;
1011
1012 switch (ioctl) {
1013 default:
1014 r = -ENOIOCTLCMD;
1015 }
1016
1017 return r;
1018 }
1019
1020 int kvm_arch_init(void *opaque)
1021 {
1022 if (kvm_mips_callbacks) {
1023 kvm_err("kvm: module already exists\n");
1024 return -EEXIST;
1025 }
1026
1027 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1028 }
1029
1030 void kvm_arch_exit(void)
1031 {
1032 kvm_mips_callbacks = NULL;
1033 }
1034
1035 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1036 struct kvm_sregs *sregs)
1037 {
1038 return -ENOIOCTLCMD;
1039 }
1040
1041 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1042 struct kvm_sregs *sregs)
1043 {
1044 return -ENOIOCTLCMD;
1045 }
1046
1047 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1048 {
1049 }
1050
1051 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1052 {
1053 return -ENOIOCTLCMD;
1054 }
1055
1056 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1057 {
1058 return -ENOIOCTLCMD;
1059 }
1060
1061 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1062 {
1063 return VM_FAULT_SIGBUS;
1064 }
1065
1066 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1067 {
1068 int r;
1069
1070 switch (ext) {
1071 case KVM_CAP_ONE_REG:
1072 case KVM_CAP_ENABLE_CAP:
1073 r = 1;
1074 break;
1075 case KVM_CAP_COALESCED_MMIO:
1076 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1077 break;
1078 case KVM_CAP_MIPS_FPU:
1079 r = !!cpu_has_fpu;
1080 break;
1081 case KVM_CAP_MIPS_MSA:
1082 /*
1083 * We don't support MSA vector partitioning yet:
1084 * 1) It would require explicit support which can't be tested
1085 * yet due to lack of support in current hardware.
1086 * 2) It extends the state that would need to be saved/restored
1087 * by e.g. QEMU for migration.
1088 *
1089 * When vector partitioning hardware becomes available, support
1090 * could be added by requiring a flag when enabling
1091 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1092 * to save/restore the appropriate extra state.
1093 */
1094 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1095 break;
1096 default:
1097 r = 0;
1098 break;
1099 }
1100 return r;
1101 }
1102
1103 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1104 {
1105 return kvm_mips_pending_timer(vcpu);
1106 }
1107
1108 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1109 {
1110 int i;
1111 struct mips_coproc *cop0;
1112
1113 if (!vcpu)
1114 return -1;
1115
1116 kvm_debug("VCPU Register Dump:\n");
1117 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1118 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1119
1120 for (i = 0; i < 32; i += 4) {
1121 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1122 vcpu->arch.gprs[i],
1123 vcpu->arch.gprs[i + 1],
1124 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1125 }
1126 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1127 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1128
1129 cop0 = vcpu->arch.cop0;
1130 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1131 kvm_read_c0_guest_status(cop0),
1132 kvm_read_c0_guest_cause(cop0));
1133
1134 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1135
1136 return 0;
1137 }
1138
1139 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1140 {
1141 int i;
1142
1143 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1144 vcpu->arch.gprs[i] = regs->gpr[i];
1145 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1146 vcpu->arch.hi = regs->hi;
1147 vcpu->arch.lo = regs->lo;
1148 vcpu->arch.pc = regs->pc;
1149
1150 return 0;
1151 }
1152
1153 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1154 {
1155 int i;
1156
1157 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1158 regs->gpr[i] = vcpu->arch.gprs[i];
1159
1160 regs->hi = vcpu->arch.hi;
1161 regs->lo = vcpu->arch.lo;
1162 regs->pc = vcpu->arch.pc;
1163
1164 return 0;
1165 }
1166
1167 static void kvm_mips_comparecount_func(unsigned long data)
1168 {
1169 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1170
1171 kvm_mips_callbacks->queue_timer_int(vcpu);
1172
1173 vcpu->arch.wait = 0;
1174 if (waitqueue_active(&vcpu->wq))
1175 wake_up_interruptible(&vcpu->wq);
1176 }
1177
1178 /* low level hrtimer wake routine */
1179 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1180 {
1181 struct kvm_vcpu *vcpu;
1182
1183 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1184 kvm_mips_comparecount_func((unsigned long) vcpu);
1185 return kvm_mips_count_timeout(vcpu);
1186 }
1187
1188 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1189 {
1190 kvm_mips_callbacks->vcpu_init(vcpu);
1191 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1192 HRTIMER_MODE_REL);
1193 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1194 return 0;
1195 }
1196
1197 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1198 struct kvm_translation *tr)
1199 {
1200 return 0;
1201 }
1202
1203 /* Initial guest state */
1204 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1205 {
1206 return kvm_mips_callbacks->vcpu_setup(vcpu);
1207 }
1208
1209 static void kvm_mips_set_c0_status(void)
1210 {
1211 uint32_t status = read_c0_status();
1212
1213 if (cpu_has_dsp)
1214 status |= (ST0_MX);
1215
1216 write_c0_status(status);
1217 ehb();
1218 }
1219
1220 /*
1221 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1222 */
1223 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1224 {
1225 uint32_t cause = vcpu->arch.host_cp0_cause;
1226 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1227 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1228 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1229 enum emulation_result er = EMULATE_DONE;
1230 int ret = RESUME_GUEST;
1231
1232 /* re-enable HTW before enabling interrupts */
1233 htw_start();
1234
1235 /* Set a default exit reason */
1236 run->exit_reason = KVM_EXIT_UNKNOWN;
1237 run->ready_for_interrupt_injection = 1;
1238
1239 /*
1240 * Set the appropriate status bits based on host CPU features,
1241 * before we hit the scheduler
1242 */
1243 kvm_mips_set_c0_status();
1244
1245 local_irq_enable();
1246
1247 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1248 cause, opc, run, vcpu);
1249
1250 /*
1251 * Do a privilege check, if in UM most of these exit conditions end up
1252 * causing an exception to be delivered to the Guest Kernel
1253 */
1254 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1255 if (er == EMULATE_PRIV_FAIL) {
1256 goto skip_emul;
1257 } else if (er == EMULATE_FAIL) {
1258 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1259 ret = RESUME_HOST;
1260 goto skip_emul;
1261 }
1262
1263 switch (exccode) {
1264 case T_INT:
1265 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1266
1267 ++vcpu->stat.int_exits;
1268 trace_kvm_exit(vcpu, INT_EXITS);
1269
1270 if (need_resched())
1271 cond_resched();
1272
1273 ret = RESUME_GUEST;
1274 break;
1275
1276 case T_COP_UNUSABLE:
1277 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1278
1279 ++vcpu->stat.cop_unusable_exits;
1280 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1281 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1282 /* XXXKYMA: Might need to return to user space */
1283 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1284 ret = RESUME_HOST;
1285 break;
1286
1287 case T_TLB_MOD:
1288 ++vcpu->stat.tlbmod_exits;
1289 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1290 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1291 break;
1292
1293 case T_TLB_ST_MISS:
1294 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1295 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1296 badvaddr);
1297
1298 ++vcpu->stat.tlbmiss_st_exits;
1299 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1300 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1301 break;
1302
1303 case T_TLB_LD_MISS:
1304 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1305 cause, opc, badvaddr);
1306
1307 ++vcpu->stat.tlbmiss_ld_exits;
1308 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1309 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1310 break;
1311
1312 case T_ADDR_ERR_ST:
1313 ++vcpu->stat.addrerr_st_exits;
1314 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1315 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1316 break;
1317
1318 case T_ADDR_ERR_LD:
1319 ++vcpu->stat.addrerr_ld_exits;
1320 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1321 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1322 break;
1323
1324 case T_SYSCALL:
1325 ++vcpu->stat.syscall_exits;
1326 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1327 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1328 break;
1329
1330 case T_RES_INST:
1331 ++vcpu->stat.resvd_inst_exits;
1332 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1333 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1334 break;
1335
1336 case T_BREAK:
1337 ++vcpu->stat.break_inst_exits;
1338 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1339 ret = kvm_mips_callbacks->handle_break(vcpu);
1340 break;
1341
1342 case T_TRAP:
1343 ++vcpu->stat.trap_inst_exits;
1344 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1345 ret = kvm_mips_callbacks->handle_trap(vcpu);
1346 break;
1347
1348 case T_MSAFPE:
1349 ++vcpu->stat.msa_fpe_exits;
1350 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1351 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1352 break;
1353
1354 case T_FPE:
1355 ++vcpu->stat.fpe_exits;
1356 trace_kvm_exit(vcpu, FPE_EXITS);
1357 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1358 break;
1359
1360 case T_MSADIS:
1361 ++vcpu->stat.msa_disabled_exits;
1362 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1363 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1364 break;
1365
1366 default:
1367 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1368 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1369 kvm_read_c0_guest_status(vcpu->arch.cop0));
1370 kvm_arch_vcpu_dump_regs(vcpu);
1371 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1372 ret = RESUME_HOST;
1373 break;
1374
1375 }
1376
1377 skip_emul:
1378 local_irq_disable();
1379
1380 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1381 kvm_mips_deliver_interrupts(vcpu, cause);
1382
1383 if (!(ret & RESUME_HOST)) {
1384 /* Only check for signals if not already exiting to userspace */
1385 if (signal_pending(current)) {
1386 run->exit_reason = KVM_EXIT_INTR;
1387 ret = (-EINTR << 2) | RESUME_HOST;
1388 ++vcpu->stat.signal_exits;
1389 trace_kvm_exit(vcpu, SIGNAL_EXITS);
1390 }
1391 }
1392
1393 if (ret == RESUME_GUEST) {
1394 /*
1395 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1396 * is live), restore FCR31 / MSACSR.
1397 *
1398 * This should be before returning to the guest exception
1399 * vector, as it may well cause an [MSA] FP exception if there
1400 * are pending exception bits unmasked. (see
1401 * kvm_mips_csr_die_notifier() for how that is handled).
1402 */
1403 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1404 read_c0_status() & ST0_CU1)
1405 __kvm_restore_fcsr(&vcpu->arch);
1406
1407 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1408 read_c0_config5() & MIPS_CONF5_MSAEN)
1409 __kvm_restore_msacsr(&vcpu->arch);
1410 }
1411
1412 /* Disable HTW before returning to guest or host */
1413 htw_stop();
1414
1415 return ret;
1416 }
1417
1418 /* Enable FPU for guest and restore context */
1419 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1420 {
1421 struct mips_coproc *cop0 = vcpu->arch.cop0;
1422 unsigned int sr, cfg5;
1423
1424 preempt_disable();
1425
1426 sr = kvm_read_c0_guest_status(cop0);
1427
1428 /*
1429 * If MSA state is already live, it is undefined how it interacts with
1430 * FR=0 FPU state, and we don't want to hit reserved instruction
1431 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1432 * play it safe and save it first.
1433 *
1434 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1435 * get called when guest CU1 is set, however we can't trust the guest
1436 * not to clobber the status register directly via the commpage.
1437 */
1438 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1439 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1440 kvm_lose_fpu(vcpu);
1441
1442 /*
1443 * Enable FPU for guest
1444 * We set FR and FRE according to guest context
1445 */
1446 change_c0_status(ST0_CU1 | ST0_FR, sr);
1447 if (cpu_has_fre) {
1448 cfg5 = kvm_read_c0_guest_config5(cop0);
1449 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1450 }
1451 enable_fpu_hazard();
1452
1453 /* If guest FPU state not active, restore it now */
1454 if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1455 __kvm_restore_fpu(&vcpu->arch);
1456 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1457 }
1458
1459 preempt_enable();
1460 }
1461
1462 #ifdef CONFIG_CPU_HAS_MSA
1463 /* Enable MSA for guest and restore context */
1464 void kvm_own_msa(struct kvm_vcpu *vcpu)
1465 {
1466 struct mips_coproc *cop0 = vcpu->arch.cop0;
1467 unsigned int sr, cfg5;
1468
1469 preempt_disable();
1470
1471 /*
1472 * Enable FPU if enabled in guest, since we're restoring FPU context
1473 * anyway. We set FR and FRE according to guest context.
1474 */
1475 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1476 sr = kvm_read_c0_guest_status(cop0);
1477
1478 /*
1479 * If FR=0 FPU state is already live, it is undefined how it
1480 * interacts with MSA state, so play it safe and save it first.
1481 */
1482 if (!(sr & ST0_FR) &&
1483 (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1484 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1485 kvm_lose_fpu(vcpu);
1486
1487 change_c0_status(ST0_CU1 | ST0_FR, sr);
1488 if (sr & ST0_CU1 && cpu_has_fre) {
1489 cfg5 = kvm_read_c0_guest_config5(cop0);
1490 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1491 }
1492 }
1493
1494 /* Enable MSA for guest */
1495 set_c0_config5(MIPS_CONF5_MSAEN);
1496 enable_fpu_hazard();
1497
1498 switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1499 case KVM_MIPS_FPU_FPU:
1500 /*
1501 * Guest FPU state already loaded, only restore upper MSA state
1502 */
1503 __kvm_restore_msa_upper(&vcpu->arch);
1504 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1505 break;
1506 case 0:
1507 /* Neither FPU or MSA already active, restore full MSA state */
1508 __kvm_restore_msa(&vcpu->arch);
1509 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1510 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1511 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1512 break;
1513 default:
1514 break;
1515 }
1516
1517 preempt_enable();
1518 }
1519 #endif
1520
1521 /* Drop FPU & MSA without saving it */
1522 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1523 {
1524 preempt_disable();
1525 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1526 disable_msa();
1527 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1528 }
1529 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1530 clear_c0_status(ST0_CU1 | ST0_FR);
1531 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1532 }
1533 preempt_enable();
1534 }
1535
1536 /* Save and disable FPU & MSA */
1537 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1538 {
1539 /*
1540 * FPU & MSA get disabled in root context (hardware) when it is disabled
1541 * in guest context (software), but the register state in the hardware
1542 * may still be in use. This is why we explicitly re-enable the hardware
1543 * before saving.
1544 */
1545
1546 preempt_disable();
1547 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1548 set_c0_config5(MIPS_CONF5_MSAEN);
1549 enable_fpu_hazard();
1550
1551 __kvm_save_msa(&vcpu->arch);
1552
1553 /* Disable MSA & FPU */
1554 disable_msa();
1555 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1556 clear_c0_status(ST0_CU1 | ST0_FR);
1557 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1558 } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1559 set_c0_status(ST0_CU1);
1560 enable_fpu_hazard();
1561
1562 __kvm_save_fpu(&vcpu->arch);
1563 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1564
1565 /* Disable FPU */
1566 clear_c0_status(ST0_CU1 | ST0_FR);
1567 }
1568 preempt_enable();
1569 }
1570
1571 /*
1572 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1573 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1574 * exception if cause bits are set in the value being written.
1575 */
1576 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1577 unsigned long cmd, void *ptr)
1578 {
1579 struct die_args *args = (struct die_args *)ptr;
1580 struct pt_regs *regs = args->regs;
1581 unsigned long pc;
1582
1583 /* Only interested in FPE and MSAFPE */
1584 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1585 return NOTIFY_DONE;
1586
1587 /* Return immediately if guest context isn't active */
1588 if (!(current->flags & PF_VCPU))
1589 return NOTIFY_DONE;
1590
1591 /* Should never get here from user mode */
1592 BUG_ON(user_mode(regs));
1593
1594 pc = instruction_pointer(regs);
1595 switch (cmd) {
1596 case DIE_FP:
1597 /* match 2nd instruction in __kvm_restore_fcsr */
1598 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1599 return NOTIFY_DONE;
1600 break;
1601 case DIE_MSAFP:
1602 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1603 if (!cpu_has_msa ||
1604 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1605 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1606 return NOTIFY_DONE;
1607 break;
1608 }
1609
1610 /* Move PC forward a little and continue executing */
1611 instruction_pointer(regs) += 4;
1612
1613 return NOTIFY_STOP;
1614 }
1615
1616 static struct notifier_block kvm_mips_csr_die_notifier = {
1617 .notifier_call = kvm_mips_csr_die_notify,
1618 };
1619
1620 int __init kvm_mips_init(void)
1621 {
1622 int ret;
1623
1624 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1625
1626 if (ret)
1627 return ret;
1628
1629 register_die_notifier(&kvm_mips_csr_die_notifier);
1630
1631 /*
1632 * On MIPS, kernel modules are executed from "mapped space", which
1633 * requires TLBs. The TLB handling code is statically linked with
1634 * the rest of the kernel (tlb.c) to avoid the possibility of
1635 * double faulting. The issue is that the TLB code references
1636 * routines that are part of the the KVM module, which are only
1637 * available once the module is loaded.
1638 */
1639 kvm_mips_gfn_to_pfn = gfn_to_pfn;
1640 kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1641 kvm_mips_is_error_pfn = is_error_pfn;
1642
1643 return 0;
1644 }
1645
1646 void __exit kvm_mips_exit(void)
1647 {
1648 kvm_exit();
1649
1650 kvm_mips_gfn_to_pfn = NULL;
1651 kvm_mips_release_pfn_clean = NULL;
1652 kvm_mips_is_error_pfn = NULL;
1653
1654 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1655 }
1656
1657 module_init(kvm_mips_init);
1658 module_exit(kvm_mips_exit);
1659
1660 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
This page took 0.115647 seconds and 5 git commands to generate.