Merge remote-tracking branches 'spi/topic/loopback', 'spi/topic/meson', 'spi/topic...
[deliverable/linux.git] / arch / mips / kvm / mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <asm/fpu.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgtable.h>
25
26 #include <linux/kvm_host.h>
27
28 #include "interrupt.h"
29 #include "commpage.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #ifndef VECTORSPACING
35 #define VECTORSPACING 0x100 /* for EI/VI mode */
36 #endif
37
38 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
39 struct kvm_stats_debugfs_item debugfs_entries[] = {
40 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
41 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
42 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
43 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
44 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
45 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
46 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
47 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
48 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
49 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
50 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
51 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
52 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
53 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
54 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
55 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
56 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
57 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
58 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
59 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
60 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
61 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
62 {NULL}
63 };
64
65 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
66 {
67 int i;
68
69 for_each_possible_cpu(i) {
70 vcpu->arch.guest_kernel_asid[i] = 0;
71 vcpu->arch.guest_user_asid[i] = 0;
72 }
73
74 return 0;
75 }
76
77 /*
78 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
79 * Config7, so we are "runnable" if interrupts are pending
80 */
81 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
82 {
83 return !!(vcpu->arch.pending_exceptions);
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88 return 1;
89 }
90
91 int kvm_arch_hardware_enable(void)
92 {
93 return 0;
94 }
95
96 int kvm_arch_hardware_setup(void)
97 {
98 return 0;
99 }
100
101 void kvm_arch_check_processor_compat(void *rtn)
102 {
103 *(int *)rtn = 0;
104 }
105
106 static void kvm_mips_init_tlbs(struct kvm *kvm)
107 {
108 unsigned long wired;
109
110 /*
111 * Add a wired entry to the TLB, it is used to map the commpage to
112 * the Guest kernel
113 */
114 wired = read_c0_wired();
115 write_c0_wired(wired + 1);
116 mtc0_tlbw_hazard();
117 kvm->arch.commpage_tlb = wired;
118
119 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
120 kvm->arch.commpage_tlb);
121 }
122
123 static void kvm_mips_init_vm_percpu(void *arg)
124 {
125 struct kvm *kvm = (struct kvm *)arg;
126
127 kvm_mips_init_tlbs(kvm);
128 kvm_mips_callbacks->vm_init(kvm);
129
130 }
131
132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 {
134 if (atomic_inc_return(&kvm_mips_instance) == 1) {
135 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
136 __func__);
137 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
138 }
139
140 return 0;
141 }
142
143 void kvm_mips_free_vcpus(struct kvm *kvm)
144 {
145 unsigned int i;
146 struct kvm_vcpu *vcpu;
147
148 /* Put the pages we reserved for the guest pmap */
149 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
150 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
151 kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
152 }
153 kfree(kvm->arch.guest_pmap);
154
155 kvm_for_each_vcpu(i, vcpu, kvm) {
156 kvm_arch_vcpu_free(vcpu);
157 }
158
159 mutex_lock(&kvm->lock);
160
161 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
162 kvm->vcpus[i] = NULL;
163
164 atomic_set(&kvm->online_vcpus, 0);
165
166 mutex_unlock(&kvm->lock);
167 }
168
169 static void kvm_mips_uninit_tlbs(void *arg)
170 {
171 /* Restore wired count */
172 write_c0_wired(0);
173 mtc0_tlbw_hazard();
174 /* Clear out all the TLBs */
175 kvm_local_flush_tlb_all();
176 }
177
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180 kvm_mips_free_vcpus(kvm);
181
182 /* If this is the last instance, restore wired count */
183 if (atomic_dec_return(&kvm_mips_instance) == 0) {
184 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
185 __func__);
186 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
187 }
188 }
189
190 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
191 unsigned long arg)
192 {
193 return -ENOIOCTLCMD;
194 }
195
196 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
197 unsigned long npages)
198 {
199 return 0;
200 }
201
202 int kvm_arch_prepare_memory_region(struct kvm *kvm,
203 struct kvm_memory_slot *memslot,
204 const struct kvm_userspace_memory_region *mem,
205 enum kvm_mr_change change)
206 {
207 return 0;
208 }
209
210 void kvm_arch_commit_memory_region(struct kvm *kvm,
211 const struct kvm_userspace_memory_region *mem,
212 const struct kvm_memory_slot *old,
213 const struct kvm_memory_slot *new,
214 enum kvm_mr_change change)
215 {
216 unsigned long npages = 0;
217 int i;
218
219 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
220 __func__, kvm, mem->slot, mem->guest_phys_addr,
221 mem->memory_size, mem->userspace_addr);
222
223 /* Setup Guest PMAP table */
224 if (!kvm->arch.guest_pmap) {
225 if (mem->slot == 0)
226 npages = mem->memory_size >> PAGE_SHIFT;
227
228 if (npages) {
229 kvm->arch.guest_pmap_npages = npages;
230 kvm->arch.guest_pmap =
231 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
232
233 if (!kvm->arch.guest_pmap) {
234 kvm_err("Failed to allocate guest PMAP\n");
235 return;
236 }
237
238 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
239 npages, kvm->arch.guest_pmap);
240
241 /* Now setup the page table */
242 for (i = 0; i < npages; i++)
243 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
244 }
245 }
246 }
247
248 static inline void dump_handler(const char *symbol, void *start, void *end)
249 {
250 u32 *p;
251
252 pr_debug("LEAF(%s)\n", symbol);
253
254 pr_debug("\t.set push\n");
255 pr_debug("\t.set noreorder\n");
256
257 for (p = start; p < (u32 *)end; ++p)
258 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
259
260 pr_debug("\t.set\tpop\n");
261
262 pr_debug("\tEND(%s)\n", symbol);
263 }
264
265 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
266 {
267 int err, size;
268 void *gebase, *p, *handler;
269 int i;
270
271 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
272
273 if (!vcpu) {
274 err = -ENOMEM;
275 goto out;
276 }
277
278 err = kvm_vcpu_init(vcpu, kvm, id);
279
280 if (err)
281 goto out_free_cpu;
282
283 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
284
285 /*
286 * Allocate space for host mode exception handlers that handle
287 * guest mode exits
288 */
289 if (cpu_has_veic || cpu_has_vint)
290 size = 0x200 + VECTORSPACING * 64;
291 else
292 size = 0x4000;
293
294 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
295
296 if (!gebase) {
297 err = -ENOMEM;
298 goto out_uninit_cpu;
299 }
300 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
301 ALIGN(size, PAGE_SIZE), gebase);
302
303 /*
304 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
305 * limits us to the low 512MB of physical address space. If the memory
306 * we allocate is out of range, just give up now.
307 */
308 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
309 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
310 gebase);
311 err = -ENOMEM;
312 goto out_free_gebase;
313 }
314
315 /* Save new ebase */
316 vcpu->arch.guest_ebase = gebase;
317
318 /* Build guest exception vectors dynamically in unmapped memory */
319 handler = gebase + 0x2000;
320
321 /* TLB Refill, EXL = 0 */
322 kvm_mips_build_exception(gebase, handler);
323
324 /* General Exception Entry point */
325 kvm_mips_build_exception(gebase + 0x180, handler);
326
327 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
328 for (i = 0; i < 8; i++) {
329 kvm_debug("L1 Vectored handler @ %p\n",
330 gebase + 0x200 + (i * VECTORSPACING));
331 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
332 handler);
333 }
334
335 /* General exit handler */
336 p = handler;
337 p = kvm_mips_build_exit(p);
338
339 /* Guest entry routine */
340 vcpu->arch.vcpu_run = p;
341 p = kvm_mips_build_vcpu_run(p);
342
343 /* Dump the generated code */
344 pr_debug("#include <asm/asm.h>\n");
345 pr_debug("#include <asm/regdef.h>\n");
346 pr_debug("\n");
347 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
348 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
349 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
350
351 /* Invalidate the icache for these ranges */
352 local_flush_icache_range((unsigned long)gebase,
353 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
354
355 /*
356 * Allocate comm page for guest kernel, a TLB will be reserved for
357 * mapping GVA @ 0xFFFF8000 to this page
358 */
359 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
360
361 if (!vcpu->arch.kseg0_commpage) {
362 err = -ENOMEM;
363 goto out_free_gebase;
364 }
365
366 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
367 kvm_mips_commpage_init(vcpu);
368
369 /* Init */
370 vcpu->arch.last_sched_cpu = -1;
371
372 /* Start off the timer */
373 kvm_mips_init_count(vcpu);
374
375 return vcpu;
376
377 out_free_gebase:
378 kfree(gebase);
379
380 out_uninit_cpu:
381 kvm_vcpu_uninit(vcpu);
382
383 out_free_cpu:
384 kfree(vcpu);
385
386 out:
387 return ERR_PTR(err);
388 }
389
390 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
391 {
392 hrtimer_cancel(&vcpu->arch.comparecount_timer);
393
394 kvm_vcpu_uninit(vcpu);
395
396 kvm_mips_dump_stats(vcpu);
397
398 kfree(vcpu->arch.guest_ebase);
399 kfree(vcpu->arch.kseg0_commpage);
400 kfree(vcpu);
401 }
402
403 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
404 {
405 kvm_arch_vcpu_free(vcpu);
406 }
407
408 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
409 struct kvm_guest_debug *dbg)
410 {
411 return -ENOIOCTLCMD;
412 }
413
414 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
415 {
416 int r = 0;
417 sigset_t sigsaved;
418
419 if (vcpu->sigset_active)
420 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
421
422 if (vcpu->mmio_needed) {
423 if (!vcpu->mmio_is_write)
424 kvm_mips_complete_mmio_load(vcpu, run);
425 vcpu->mmio_needed = 0;
426 }
427
428 lose_fpu(1);
429
430 local_irq_disable();
431 /* Check if we have any exceptions/interrupts pending */
432 kvm_mips_deliver_interrupts(vcpu,
433 kvm_read_c0_guest_cause(vcpu->arch.cop0));
434
435 guest_enter_irqoff();
436
437 /* Disable hardware page table walking while in guest */
438 htw_stop();
439
440 trace_kvm_enter(vcpu);
441 r = vcpu->arch.vcpu_run(run, vcpu);
442 trace_kvm_out(vcpu);
443
444 /* Re-enable HTW before enabling interrupts */
445 htw_start();
446
447 guest_exit_irqoff();
448 local_irq_enable();
449
450 if (vcpu->sigset_active)
451 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
452
453 return r;
454 }
455
456 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
457 struct kvm_mips_interrupt *irq)
458 {
459 int intr = (int)irq->irq;
460 struct kvm_vcpu *dvcpu = NULL;
461
462 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
463 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
464 (int)intr);
465
466 if (irq->cpu == -1)
467 dvcpu = vcpu;
468 else
469 dvcpu = vcpu->kvm->vcpus[irq->cpu];
470
471 if (intr == 2 || intr == 3 || intr == 4) {
472 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
473
474 } else if (intr == -2 || intr == -3 || intr == -4) {
475 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
476 } else {
477 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
478 irq->cpu, irq->irq);
479 return -EINVAL;
480 }
481
482 dvcpu->arch.wait = 0;
483
484 if (swait_active(&dvcpu->wq))
485 swake_up(&dvcpu->wq);
486
487 return 0;
488 }
489
490 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
491 struct kvm_mp_state *mp_state)
492 {
493 return -ENOIOCTLCMD;
494 }
495
496 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
497 struct kvm_mp_state *mp_state)
498 {
499 return -ENOIOCTLCMD;
500 }
501
502 static u64 kvm_mips_get_one_regs[] = {
503 KVM_REG_MIPS_R0,
504 KVM_REG_MIPS_R1,
505 KVM_REG_MIPS_R2,
506 KVM_REG_MIPS_R3,
507 KVM_REG_MIPS_R4,
508 KVM_REG_MIPS_R5,
509 KVM_REG_MIPS_R6,
510 KVM_REG_MIPS_R7,
511 KVM_REG_MIPS_R8,
512 KVM_REG_MIPS_R9,
513 KVM_REG_MIPS_R10,
514 KVM_REG_MIPS_R11,
515 KVM_REG_MIPS_R12,
516 KVM_REG_MIPS_R13,
517 KVM_REG_MIPS_R14,
518 KVM_REG_MIPS_R15,
519 KVM_REG_MIPS_R16,
520 KVM_REG_MIPS_R17,
521 KVM_REG_MIPS_R18,
522 KVM_REG_MIPS_R19,
523 KVM_REG_MIPS_R20,
524 KVM_REG_MIPS_R21,
525 KVM_REG_MIPS_R22,
526 KVM_REG_MIPS_R23,
527 KVM_REG_MIPS_R24,
528 KVM_REG_MIPS_R25,
529 KVM_REG_MIPS_R26,
530 KVM_REG_MIPS_R27,
531 KVM_REG_MIPS_R28,
532 KVM_REG_MIPS_R29,
533 KVM_REG_MIPS_R30,
534 KVM_REG_MIPS_R31,
535
536 #ifndef CONFIG_CPU_MIPSR6
537 KVM_REG_MIPS_HI,
538 KVM_REG_MIPS_LO,
539 #endif
540 KVM_REG_MIPS_PC,
541
542 KVM_REG_MIPS_CP0_INDEX,
543 KVM_REG_MIPS_CP0_CONTEXT,
544 KVM_REG_MIPS_CP0_USERLOCAL,
545 KVM_REG_MIPS_CP0_PAGEMASK,
546 KVM_REG_MIPS_CP0_WIRED,
547 KVM_REG_MIPS_CP0_HWRENA,
548 KVM_REG_MIPS_CP0_BADVADDR,
549 KVM_REG_MIPS_CP0_COUNT,
550 KVM_REG_MIPS_CP0_ENTRYHI,
551 KVM_REG_MIPS_CP0_COMPARE,
552 KVM_REG_MIPS_CP0_STATUS,
553 KVM_REG_MIPS_CP0_CAUSE,
554 KVM_REG_MIPS_CP0_EPC,
555 KVM_REG_MIPS_CP0_PRID,
556 KVM_REG_MIPS_CP0_CONFIG,
557 KVM_REG_MIPS_CP0_CONFIG1,
558 KVM_REG_MIPS_CP0_CONFIG2,
559 KVM_REG_MIPS_CP0_CONFIG3,
560 KVM_REG_MIPS_CP0_CONFIG4,
561 KVM_REG_MIPS_CP0_CONFIG5,
562 KVM_REG_MIPS_CP0_CONFIG7,
563 KVM_REG_MIPS_CP0_ERROREPC,
564
565 KVM_REG_MIPS_COUNT_CTL,
566 KVM_REG_MIPS_COUNT_RESUME,
567 KVM_REG_MIPS_COUNT_HZ,
568 };
569
570 static u64 kvm_mips_get_one_regs_fpu[] = {
571 KVM_REG_MIPS_FCR_IR,
572 KVM_REG_MIPS_FCR_CSR,
573 };
574
575 static u64 kvm_mips_get_one_regs_msa[] = {
576 KVM_REG_MIPS_MSA_IR,
577 KVM_REG_MIPS_MSA_CSR,
578 };
579
580 static u64 kvm_mips_get_one_regs_kscratch[] = {
581 KVM_REG_MIPS_CP0_KSCRATCH1,
582 KVM_REG_MIPS_CP0_KSCRATCH2,
583 KVM_REG_MIPS_CP0_KSCRATCH3,
584 KVM_REG_MIPS_CP0_KSCRATCH4,
585 KVM_REG_MIPS_CP0_KSCRATCH5,
586 KVM_REG_MIPS_CP0_KSCRATCH6,
587 };
588
589 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
590 {
591 unsigned long ret;
592
593 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
594 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
595 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
596 /* odd doubles */
597 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
598 ret += 16;
599 }
600 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
601 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
602 ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
603 ret += kvm_mips_callbacks->num_regs(vcpu);
604
605 return ret;
606 }
607
608 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
609 {
610 u64 index;
611 unsigned int i;
612
613 if (copy_to_user(indices, kvm_mips_get_one_regs,
614 sizeof(kvm_mips_get_one_regs)))
615 return -EFAULT;
616 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
617
618 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
619 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
620 sizeof(kvm_mips_get_one_regs_fpu)))
621 return -EFAULT;
622 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
623
624 for (i = 0; i < 32; ++i) {
625 index = KVM_REG_MIPS_FPR_32(i);
626 if (copy_to_user(indices, &index, sizeof(index)))
627 return -EFAULT;
628 ++indices;
629
630 /* skip odd doubles if no F64 */
631 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
632 continue;
633
634 index = KVM_REG_MIPS_FPR_64(i);
635 if (copy_to_user(indices, &index, sizeof(index)))
636 return -EFAULT;
637 ++indices;
638 }
639 }
640
641 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
642 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
643 sizeof(kvm_mips_get_one_regs_msa)))
644 return -EFAULT;
645 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
646
647 for (i = 0; i < 32; ++i) {
648 index = KVM_REG_MIPS_VEC_128(i);
649 if (copy_to_user(indices, &index, sizeof(index)))
650 return -EFAULT;
651 ++indices;
652 }
653 }
654
655 for (i = 0; i < 6; ++i) {
656 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
657 continue;
658
659 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
660 sizeof(kvm_mips_get_one_regs_kscratch[i])))
661 return -EFAULT;
662 ++indices;
663 }
664
665 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
666 }
667
668 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
669 const struct kvm_one_reg *reg)
670 {
671 struct mips_coproc *cop0 = vcpu->arch.cop0;
672 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
673 int ret;
674 s64 v;
675 s64 vs[2];
676 unsigned int idx;
677
678 switch (reg->id) {
679 /* General purpose registers */
680 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
681 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
682 break;
683 #ifndef CONFIG_CPU_MIPSR6
684 case KVM_REG_MIPS_HI:
685 v = (long)vcpu->arch.hi;
686 break;
687 case KVM_REG_MIPS_LO:
688 v = (long)vcpu->arch.lo;
689 break;
690 #endif
691 case KVM_REG_MIPS_PC:
692 v = (long)vcpu->arch.pc;
693 break;
694
695 /* Floating point registers */
696 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
697 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 return -EINVAL;
699 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
700 /* Odd singles in top of even double when FR=0 */
701 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
702 v = get_fpr32(&fpu->fpr[idx], 0);
703 else
704 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
705 break;
706 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
707 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708 return -EINVAL;
709 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
710 /* Can't access odd doubles in FR=0 mode */
711 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
712 return -EINVAL;
713 v = get_fpr64(&fpu->fpr[idx], 0);
714 break;
715 case KVM_REG_MIPS_FCR_IR:
716 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
717 return -EINVAL;
718 v = boot_cpu_data.fpu_id;
719 break;
720 case KVM_REG_MIPS_FCR_CSR:
721 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
722 return -EINVAL;
723 v = fpu->fcr31;
724 break;
725
726 /* MIPS SIMD Architecture (MSA) registers */
727 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
728 if (!kvm_mips_guest_has_msa(&vcpu->arch))
729 return -EINVAL;
730 /* Can't access MSA registers in FR=0 mode */
731 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
732 return -EINVAL;
733 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
734 #ifdef CONFIG_CPU_LITTLE_ENDIAN
735 /* least significant byte first */
736 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
737 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
738 #else
739 /* most significant byte first */
740 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
741 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
742 #endif
743 break;
744 case KVM_REG_MIPS_MSA_IR:
745 if (!kvm_mips_guest_has_msa(&vcpu->arch))
746 return -EINVAL;
747 v = boot_cpu_data.msa_id;
748 break;
749 case KVM_REG_MIPS_MSA_CSR:
750 if (!kvm_mips_guest_has_msa(&vcpu->arch))
751 return -EINVAL;
752 v = fpu->msacsr;
753 break;
754
755 /* Co-processor 0 registers */
756 case KVM_REG_MIPS_CP0_INDEX:
757 v = (long)kvm_read_c0_guest_index(cop0);
758 break;
759 case KVM_REG_MIPS_CP0_CONTEXT:
760 v = (long)kvm_read_c0_guest_context(cop0);
761 break;
762 case KVM_REG_MIPS_CP0_USERLOCAL:
763 v = (long)kvm_read_c0_guest_userlocal(cop0);
764 break;
765 case KVM_REG_MIPS_CP0_PAGEMASK:
766 v = (long)kvm_read_c0_guest_pagemask(cop0);
767 break;
768 case KVM_REG_MIPS_CP0_WIRED:
769 v = (long)kvm_read_c0_guest_wired(cop0);
770 break;
771 case KVM_REG_MIPS_CP0_HWRENA:
772 v = (long)kvm_read_c0_guest_hwrena(cop0);
773 break;
774 case KVM_REG_MIPS_CP0_BADVADDR:
775 v = (long)kvm_read_c0_guest_badvaddr(cop0);
776 break;
777 case KVM_REG_MIPS_CP0_ENTRYHI:
778 v = (long)kvm_read_c0_guest_entryhi(cop0);
779 break;
780 case KVM_REG_MIPS_CP0_COMPARE:
781 v = (long)kvm_read_c0_guest_compare(cop0);
782 break;
783 case KVM_REG_MIPS_CP0_STATUS:
784 v = (long)kvm_read_c0_guest_status(cop0);
785 break;
786 case KVM_REG_MIPS_CP0_CAUSE:
787 v = (long)kvm_read_c0_guest_cause(cop0);
788 break;
789 case KVM_REG_MIPS_CP0_EPC:
790 v = (long)kvm_read_c0_guest_epc(cop0);
791 break;
792 case KVM_REG_MIPS_CP0_PRID:
793 v = (long)kvm_read_c0_guest_prid(cop0);
794 break;
795 case KVM_REG_MIPS_CP0_CONFIG:
796 v = (long)kvm_read_c0_guest_config(cop0);
797 break;
798 case KVM_REG_MIPS_CP0_CONFIG1:
799 v = (long)kvm_read_c0_guest_config1(cop0);
800 break;
801 case KVM_REG_MIPS_CP0_CONFIG2:
802 v = (long)kvm_read_c0_guest_config2(cop0);
803 break;
804 case KVM_REG_MIPS_CP0_CONFIG3:
805 v = (long)kvm_read_c0_guest_config3(cop0);
806 break;
807 case KVM_REG_MIPS_CP0_CONFIG4:
808 v = (long)kvm_read_c0_guest_config4(cop0);
809 break;
810 case KVM_REG_MIPS_CP0_CONFIG5:
811 v = (long)kvm_read_c0_guest_config5(cop0);
812 break;
813 case KVM_REG_MIPS_CP0_CONFIG7:
814 v = (long)kvm_read_c0_guest_config7(cop0);
815 break;
816 case KVM_REG_MIPS_CP0_ERROREPC:
817 v = (long)kvm_read_c0_guest_errorepc(cop0);
818 break;
819 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
820 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
821 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
822 return -EINVAL;
823 switch (idx) {
824 case 2:
825 v = (long)kvm_read_c0_guest_kscratch1(cop0);
826 break;
827 case 3:
828 v = (long)kvm_read_c0_guest_kscratch2(cop0);
829 break;
830 case 4:
831 v = (long)kvm_read_c0_guest_kscratch3(cop0);
832 break;
833 case 5:
834 v = (long)kvm_read_c0_guest_kscratch4(cop0);
835 break;
836 case 6:
837 v = (long)kvm_read_c0_guest_kscratch5(cop0);
838 break;
839 case 7:
840 v = (long)kvm_read_c0_guest_kscratch6(cop0);
841 break;
842 }
843 break;
844 /* registers to be handled specially */
845 default:
846 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
847 if (ret)
848 return ret;
849 break;
850 }
851 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
852 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
853
854 return put_user(v, uaddr64);
855 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
856 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
857 u32 v32 = (u32)v;
858
859 return put_user(v32, uaddr32);
860 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
861 void __user *uaddr = (void __user *)(long)reg->addr;
862
863 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
864 } else {
865 return -EINVAL;
866 }
867 }
868
869 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
870 const struct kvm_one_reg *reg)
871 {
872 struct mips_coproc *cop0 = vcpu->arch.cop0;
873 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
874 s64 v;
875 s64 vs[2];
876 unsigned int idx;
877
878 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
879 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
880
881 if (get_user(v, uaddr64) != 0)
882 return -EFAULT;
883 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
884 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
885 s32 v32;
886
887 if (get_user(v32, uaddr32) != 0)
888 return -EFAULT;
889 v = (s64)v32;
890 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
891 void __user *uaddr = (void __user *)(long)reg->addr;
892
893 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
894 } else {
895 return -EINVAL;
896 }
897
898 switch (reg->id) {
899 /* General purpose registers */
900 case KVM_REG_MIPS_R0:
901 /* Silently ignore requests to set $0 */
902 break;
903 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
904 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
905 break;
906 #ifndef CONFIG_CPU_MIPSR6
907 case KVM_REG_MIPS_HI:
908 vcpu->arch.hi = v;
909 break;
910 case KVM_REG_MIPS_LO:
911 vcpu->arch.lo = v;
912 break;
913 #endif
914 case KVM_REG_MIPS_PC:
915 vcpu->arch.pc = v;
916 break;
917
918 /* Floating point registers */
919 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
920 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
921 return -EINVAL;
922 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
923 /* Odd singles in top of even double when FR=0 */
924 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
925 set_fpr32(&fpu->fpr[idx], 0, v);
926 else
927 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
928 break;
929 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
930 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
931 return -EINVAL;
932 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
933 /* Can't access odd doubles in FR=0 mode */
934 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
935 return -EINVAL;
936 set_fpr64(&fpu->fpr[idx], 0, v);
937 break;
938 case KVM_REG_MIPS_FCR_IR:
939 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
940 return -EINVAL;
941 /* Read-only */
942 break;
943 case KVM_REG_MIPS_FCR_CSR:
944 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
945 return -EINVAL;
946 fpu->fcr31 = v;
947 break;
948
949 /* MIPS SIMD Architecture (MSA) registers */
950 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
951 if (!kvm_mips_guest_has_msa(&vcpu->arch))
952 return -EINVAL;
953 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
954 #ifdef CONFIG_CPU_LITTLE_ENDIAN
955 /* least significant byte first */
956 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
957 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
958 #else
959 /* most significant byte first */
960 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
961 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
962 #endif
963 break;
964 case KVM_REG_MIPS_MSA_IR:
965 if (!kvm_mips_guest_has_msa(&vcpu->arch))
966 return -EINVAL;
967 /* Read-only */
968 break;
969 case KVM_REG_MIPS_MSA_CSR:
970 if (!kvm_mips_guest_has_msa(&vcpu->arch))
971 return -EINVAL;
972 fpu->msacsr = v;
973 break;
974
975 /* Co-processor 0 registers */
976 case KVM_REG_MIPS_CP0_INDEX:
977 kvm_write_c0_guest_index(cop0, v);
978 break;
979 case KVM_REG_MIPS_CP0_CONTEXT:
980 kvm_write_c0_guest_context(cop0, v);
981 break;
982 case KVM_REG_MIPS_CP0_USERLOCAL:
983 kvm_write_c0_guest_userlocal(cop0, v);
984 break;
985 case KVM_REG_MIPS_CP0_PAGEMASK:
986 kvm_write_c0_guest_pagemask(cop0, v);
987 break;
988 case KVM_REG_MIPS_CP0_WIRED:
989 kvm_write_c0_guest_wired(cop0, v);
990 break;
991 case KVM_REG_MIPS_CP0_HWRENA:
992 kvm_write_c0_guest_hwrena(cop0, v);
993 break;
994 case KVM_REG_MIPS_CP0_BADVADDR:
995 kvm_write_c0_guest_badvaddr(cop0, v);
996 break;
997 case KVM_REG_MIPS_CP0_ENTRYHI:
998 kvm_write_c0_guest_entryhi(cop0, v);
999 break;
1000 case KVM_REG_MIPS_CP0_STATUS:
1001 kvm_write_c0_guest_status(cop0, v);
1002 break;
1003 case KVM_REG_MIPS_CP0_EPC:
1004 kvm_write_c0_guest_epc(cop0, v);
1005 break;
1006 case KVM_REG_MIPS_CP0_PRID:
1007 kvm_write_c0_guest_prid(cop0, v);
1008 break;
1009 case KVM_REG_MIPS_CP0_ERROREPC:
1010 kvm_write_c0_guest_errorepc(cop0, v);
1011 break;
1012 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1013 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1014 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1015 return -EINVAL;
1016 switch (idx) {
1017 case 2:
1018 kvm_write_c0_guest_kscratch1(cop0, v);
1019 break;
1020 case 3:
1021 kvm_write_c0_guest_kscratch2(cop0, v);
1022 break;
1023 case 4:
1024 kvm_write_c0_guest_kscratch3(cop0, v);
1025 break;
1026 case 5:
1027 kvm_write_c0_guest_kscratch4(cop0, v);
1028 break;
1029 case 6:
1030 kvm_write_c0_guest_kscratch5(cop0, v);
1031 break;
1032 case 7:
1033 kvm_write_c0_guest_kscratch6(cop0, v);
1034 break;
1035 }
1036 break;
1037 /* registers to be handled specially */
1038 default:
1039 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1040 }
1041 return 0;
1042 }
1043
1044 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1045 struct kvm_enable_cap *cap)
1046 {
1047 int r = 0;
1048
1049 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1050 return -EINVAL;
1051 if (cap->flags)
1052 return -EINVAL;
1053 if (cap->args[0])
1054 return -EINVAL;
1055
1056 switch (cap->cap) {
1057 case KVM_CAP_MIPS_FPU:
1058 vcpu->arch.fpu_enabled = true;
1059 break;
1060 case KVM_CAP_MIPS_MSA:
1061 vcpu->arch.msa_enabled = true;
1062 break;
1063 default:
1064 r = -EINVAL;
1065 break;
1066 }
1067
1068 return r;
1069 }
1070
1071 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1072 unsigned long arg)
1073 {
1074 struct kvm_vcpu *vcpu = filp->private_data;
1075 void __user *argp = (void __user *)arg;
1076 long r;
1077
1078 switch (ioctl) {
1079 case KVM_SET_ONE_REG:
1080 case KVM_GET_ONE_REG: {
1081 struct kvm_one_reg reg;
1082
1083 if (copy_from_user(&reg, argp, sizeof(reg)))
1084 return -EFAULT;
1085 if (ioctl == KVM_SET_ONE_REG)
1086 return kvm_mips_set_reg(vcpu, &reg);
1087 else
1088 return kvm_mips_get_reg(vcpu, &reg);
1089 }
1090 case KVM_GET_REG_LIST: {
1091 struct kvm_reg_list __user *user_list = argp;
1092 struct kvm_reg_list reg_list;
1093 unsigned n;
1094
1095 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1096 return -EFAULT;
1097 n = reg_list.n;
1098 reg_list.n = kvm_mips_num_regs(vcpu);
1099 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1100 return -EFAULT;
1101 if (n < reg_list.n)
1102 return -E2BIG;
1103 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1104 }
1105 case KVM_NMI:
1106 /* Treat the NMI as a CPU reset */
1107 r = kvm_mips_reset_vcpu(vcpu);
1108 break;
1109 case KVM_INTERRUPT:
1110 {
1111 struct kvm_mips_interrupt irq;
1112
1113 r = -EFAULT;
1114 if (copy_from_user(&irq, argp, sizeof(irq)))
1115 goto out;
1116
1117 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1118 irq.irq);
1119
1120 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1121 break;
1122 }
1123 case KVM_ENABLE_CAP: {
1124 struct kvm_enable_cap cap;
1125
1126 r = -EFAULT;
1127 if (copy_from_user(&cap, argp, sizeof(cap)))
1128 goto out;
1129 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1130 break;
1131 }
1132 default:
1133 r = -ENOIOCTLCMD;
1134 }
1135
1136 out:
1137 return r;
1138 }
1139
1140 /* Get (and clear) the dirty memory log for a memory slot. */
1141 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1142 {
1143 struct kvm_memslots *slots;
1144 struct kvm_memory_slot *memslot;
1145 unsigned long ga, ga_end;
1146 int is_dirty = 0;
1147 int r;
1148 unsigned long n;
1149
1150 mutex_lock(&kvm->slots_lock);
1151
1152 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1153 if (r)
1154 goto out;
1155
1156 /* If nothing is dirty, don't bother messing with page tables. */
1157 if (is_dirty) {
1158 slots = kvm_memslots(kvm);
1159 memslot = id_to_memslot(slots, log->slot);
1160
1161 ga = memslot->base_gfn << PAGE_SHIFT;
1162 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1163
1164 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1165 ga_end);
1166
1167 n = kvm_dirty_bitmap_bytes(memslot);
1168 memset(memslot->dirty_bitmap, 0, n);
1169 }
1170
1171 r = 0;
1172 out:
1173 mutex_unlock(&kvm->slots_lock);
1174 return r;
1175
1176 }
1177
1178 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1179 {
1180 long r;
1181
1182 switch (ioctl) {
1183 default:
1184 r = -ENOIOCTLCMD;
1185 }
1186
1187 return r;
1188 }
1189
1190 int kvm_arch_init(void *opaque)
1191 {
1192 if (kvm_mips_callbacks) {
1193 kvm_err("kvm: module already exists\n");
1194 return -EEXIST;
1195 }
1196
1197 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1198 }
1199
1200 void kvm_arch_exit(void)
1201 {
1202 kvm_mips_callbacks = NULL;
1203 }
1204
1205 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1206 struct kvm_sregs *sregs)
1207 {
1208 return -ENOIOCTLCMD;
1209 }
1210
1211 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1212 struct kvm_sregs *sregs)
1213 {
1214 return -ENOIOCTLCMD;
1215 }
1216
1217 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1218 {
1219 }
1220
1221 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1222 {
1223 return -ENOIOCTLCMD;
1224 }
1225
1226 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1227 {
1228 return -ENOIOCTLCMD;
1229 }
1230
1231 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1232 {
1233 return VM_FAULT_SIGBUS;
1234 }
1235
1236 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1237 {
1238 int r;
1239
1240 switch (ext) {
1241 case KVM_CAP_ONE_REG:
1242 case KVM_CAP_ENABLE_CAP:
1243 r = 1;
1244 break;
1245 case KVM_CAP_COALESCED_MMIO:
1246 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1247 break;
1248 case KVM_CAP_MIPS_FPU:
1249 /* We don't handle systems with inconsistent cpu_has_fpu */
1250 r = !!raw_cpu_has_fpu;
1251 break;
1252 case KVM_CAP_MIPS_MSA:
1253 /*
1254 * We don't support MSA vector partitioning yet:
1255 * 1) It would require explicit support which can't be tested
1256 * yet due to lack of support in current hardware.
1257 * 2) It extends the state that would need to be saved/restored
1258 * by e.g. QEMU for migration.
1259 *
1260 * When vector partitioning hardware becomes available, support
1261 * could be added by requiring a flag when enabling
1262 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1263 * to save/restore the appropriate extra state.
1264 */
1265 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1266 break;
1267 default:
1268 r = 0;
1269 break;
1270 }
1271 return r;
1272 }
1273
1274 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1275 {
1276 return kvm_mips_pending_timer(vcpu);
1277 }
1278
1279 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1280 {
1281 int i;
1282 struct mips_coproc *cop0;
1283
1284 if (!vcpu)
1285 return -1;
1286
1287 kvm_debug("VCPU Register Dump:\n");
1288 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1289 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1290
1291 for (i = 0; i < 32; i += 4) {
1292 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1293 vcpu->arch.gprs[i],
1294 vcpu->arch.gprs[i + 1],
1295 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1296 }
1297 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1298 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1299
1300 cop0 = vcpu->arch.cop0;
1301 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1302 kvm_read_c0_guest_status(cop0),
1303 kvm_read_c0_guest_cause(cop0));
1304
1305 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1306
1307 return 0;
1308 }
1309
1310 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1311 {
1312 int i;
1313
1314 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1315 vcpu->arch.gprs[i] = regs->gpr[i];
1316 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1317 vcpu->arch.hi = regs->hi;
1318 vcpu->arch.lo = regs->lo;
1319 vcpu->arch.pc = regs->pc;
1320
1321 return 0;
1322 }
1323
1324 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1325 {
1326 int i;
1327
1328 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1329 regs->gpr[i] = vcpu->arch.gprs[i];
1330
1331 regs->hi = vcpu->arch.hi;
1332 regs->lo = vcpu->arch.lo;
1333 regs->pc = vcpu->arch.pc;
1334
1335 return 0;
1336 }
1337
1338 static void kvm_mips_comparecount_func(unsigned long data)
1339 {
1340 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1341
1342 kvm_mips_callbacks->queue_timer_int(vcpu);
1343
1344 vcpu->arch.wait = 0;
1345 if (swait_active(&vcpu->wq))
1346 swake_up(&vcpu->wq);
1347 }
1348
1349 /* low level hrtimer wake routine */
1350 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1351 {
1352 struct kvm_vcpu *vcpu;
1353
1354 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1355 kvm_mips_comparecount_func((unsigned long) vcpu);
1356 return kvm_mips_count_timeout(vcpu);
1357 }
1358
1359 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1360 {
1361 kvm_mips_callbacks->vcpu_init(vcpu);
1362 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1363 HRTIMER_MODE_REL);
1364 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1365 return 0;
1366 }
1367
1368 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1369 struct kvm_translation *tr)
1370 {
1371 return 0;
1372 }
1373
1374 /* Initial guest state */
1375 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1376 {
1377 return kvm_mips_callbacks->vcpu_setup(vcpu);
1378 }
1379
1380 static void kvm_mips_set_c0_status(void)
1381 {
1382 u32 status = read_c0_status();
1383
1384 if (cpu_has_dsp)
1385 status |= (ST0_MX);
1386
1387 write_c0_status(status);
1388 ehb();
1389 }
1390
1391 /*
1392 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1393 */
1394 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1395 {
1396 u32 cause = vcpu->arch.host_cp0_cause;
1397 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1398 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1399 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1400 enum emulation_result er = EMULATE_DONE;
1401 int ret = RESUME_GUEST;
1402
1403 /* re-enable HTW before enabling interrupts */
1404 htw_start();
1405
1406 /* Set a default exit reason */
1407 run->exit_reason = KVM_EXIT_UNKNOWN;
1408 run->ready_for_interrupt_injection = 1;
1409
1410 /*
1411 * Set the appropriate status bits based on host CPU features,
1412 * before we hit the scheduler
1413 */
1414 kvm_mips_set_c0_status();
1415
1416 local_irq_enable();
1417
1418 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1419 cause, opc, run, vcpu);
1420 trace_kvm_exit(vcpu, exccode);
1421
1422 /*
1423 * Do a privilege check, if in UM most of these exit conditions end up
1424 * causing an exception to be delivered to the Guest Kernel
1425 */
1426 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1427 if (er == EMULATE_PRIV_FAIL) {
1428 goto skip_emul;
1429 } else if (er == EMULATE_FAIL) {
1430 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1431 ret = RESUME_HOST;
1432 goto skip_emul;
1433 }
1434
1435 switch (exccode) {
1436 case EXCCODE_INT:
1437 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1438
1439 ++vcpu->stat.int_exits;
1440
1441 if (need_resched())
1442 cond_resched();
1443
1444 ret = RESUME_GUEST;
1445 break;
1446
1447 case EXCCODE_CPU:
1448 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1449
1450 ++vcpu->stat.cop_unusable_exits;
1451 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1452 /* XXXKYMA: Might need to return to user space */
1453 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1454 ret = RESUME_HOST;
1455 break;
1456
1457 case EXCCODE_MOD:
1458 ++vcpu->stat.tlbmod_exits;
1459 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1460 break;
1461
1462 case EXCCODE_TLBS:
1463 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1464 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1465 badvaddr);
1466
1467 ++vcpu->stat.tlbmiss_st_exits;
1468 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1469 break;
1470
1471 case EXCCODE_TLBL:
1472 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1473 cause, opc, badvaddr);
1474
1475 ++vcpu->stat.tlbmiss_ld_exits;
1476 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1477 break;
1478
1479 case EXCCODE_ADES:
1480 ++vcpu->stat.addrerr_st_exits;
1481 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1482 break;
1483
1484 case EXCCODE_ADEL:
1485 ++vcpu->stat.addrerr_ld_exits;
1486 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1487 break;
1488
1489 case EXCCODE_SYS:
1490 ++vcpu->stat.syscall_exits;
1491 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1492 break;
1493
1494 case EXCCODE_RI:
1495 ++vcpu->stat.resvd_inst_exits;
1496 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1497 break;
1498
1499 case EXCCODE_BP:
1500 ++vcpu->stat.break_inst_exits;
1501 ret = kvm_mips_callbacks->handle_break(vcpu);
1502 break;
1503
1504 case EXCCODE_TR:
1505 ++vcpu->stat.trap_inst_exits;
1506 ret = kvm_mips_callbacks->handle_trap(vcpu);
1507 break;
1508
1509 case EXCCODE_MSAFPE:
1510 ++vcpu->stat.msa_fpe_exits;
1511 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1512 break;
1513
1514 case EXCCODE_FPE:
1515 ++vcpu->stat.fpe_exits;
1516 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1517 break;
1518
1519 case EXCCODE_MSADIS:
1520 ++vcpu->stat.msa_disabled_exits;
1521 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1522 break;
1523
1524 default:
1525 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1526 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1527 kvm_read_c0_guest_status(vcpu->arch.cop0));
1528 kvm_arch_vcpu_dump_regs(vcpu);
1529 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1530 ret = RESUME_HOST;
1531 break;
1532
1533 }
1534
1535 skip_emul:
1536 local_irq_disable();
1537
1538 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1539 kvm_mips_deliver_interrupts(vcpu, cause);
1540
1541 if (!(ret & RESUME_HOST)) {
1542 /* Only check for signals if not already exiting to userspace */
1543 if (signal_pending(current)) {
1544 run->exit_reason = KVM_EXIT_INTR;
1545 ret = (-EINTR << 2) | RESUME_HOST;
1546 ++vcpu->stat.signal_exits;
1547 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1548 }
1549 }
1550
1551 if (ret == RESUME_GUEST) {
1552 trace_kvm_reenter(vcpu);
1553
1554 /*
1555 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1556 * is live), restore FCR31 / MSACSR.
1557 *
1558 * This should be before returning to the guest exception
1559 * vector, as it may well cause an [MSA] FP exception if there
1560 * are pending exception bits unmasked. (see
1561 * kvm_mips_csr_die_notifier() for how that is handled).
1562 */
1563 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1564 read_c0_status() & ST0_CU1)
1565 __kvm_restore_fcsr(&vcpu->arch);
1566
1567 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1568 read_c0_config5() & MIPS_CONF5_MSAEN)
1569 __kvm_restore_msacsr(&vcpu->arch);
1570 }
1571
1572 /* Disable HTW before returning to guest or host */
1573 htw_stop();
1574
1575 return ret;
1576 }
1577
1578 /* Enable FPU for guest and restore context */
1579 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1580 {
1581 struct mips_coproc *cop0 = vcpu->arch.cop0;
1582 unsigned int sr, cfg5;
1583
1584 preempt_disable();
1585
1586 sr = kvm_read_c0_guest_status(cop0);
1587
1588 /*
1589 * If MSA state is already live, it is undefined how it interacts with
1590 * FR=0 FPU state, and we don't want to hit reserved instruction
1591 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1592 * play it safe and save it first.
1593 *
1594 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1595 * get called when guest CU1 is set, however we can't trust the guest
1596 * not to clobber the status register directly via the commpage.
1597 */
1598 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1599 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1600 kvm_lose_fpu(vcpu);
1601
1602 /*
1603 * Enable FPU for guest
1604 * We set FR and FRE according to guest context
1605 */
1606 change_c0_status(ST0_CU1 | ST0_FR, sr);
1607 if (cpu_has_fre) {
1608 cfg5 = kvm_read_c0_guest_config5(cop0);
1609 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1610 }
1611 enable_fpu_hazard();
1612
1613 /* If guest FPU state not active, restore it now */
1614 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1615 __kvm_restore_fpu(&vcpu->arch);
1616 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1617 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1618 } else {
1619 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1620 }
1621
1622 preempt_enable();
1623 }
1624
1625 #ifdef CONFIG_CPU_HAS_MSA
1626 /* Enable MSA for guest and restore context */
1627 void kvm_own_msa(struct kvm_vcpu *vcpu)
1628 {
1629 struct mips_coproc *cop0 = vcpu->arch.cop0;
1630 unsigned int sr, cfg5;
1631
1632 preempt_disable();
1633
1634 /*
1635 * Enable FPU if enabled in guest, since we're restoring FPU context
1636 * anyway. We set FR and FRE according to guest context.
1637 */
1638 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1639 sr = kvm_read_c0_guest_status(cop0);
1640
1641 /*
1642 * If FR=0 FPU state is already live, it is undefined how it
1643 * interacts with MSA state, so play it safe and save it first.
1644 */
1645 if (!(sr & ST0_FR) &&
1646 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1647 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1648 kvm_lose_fpu(vcpu);
1649
1650 change_c0_status(ST0_CU1 | ST0_FR, sr);
1651 if (sr & ST0_CU1 && cpu_has_fre) {
1652 cfg5 = kvm_read_c0_guest_config5(cop0);
1653 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654 }
1655 }
1656
1657 /* Enable MSA for guest */
1658 set_c0_config5(MIPS_CONF5_MSAEN);
1659 enable_fpu_hazard();
1660
1661 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1662 case KVM_MIPS_AUX_FPU:
1663 /*
1664 * Guest FPU state already loaded, only restore upper MSA state
1665 */
1666 __kvm_restore_msa_upper(&vcpu->arch);
1667 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1668 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1669 break;
1670 case 0:
1671 /* Neither FPU or MSA already active, restore full MSA state */
1672 __kvm_restore_msa(&vcpu->arch);
1673 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1674 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1675 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1676 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1677 KVM_TRACE_AUX_FPU_MSA);
1678 break;
1679 default:
1680 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1681 break;
1682 }
1683
1684 preempt_enable();
1685 }
1686 #endif
1687
1688 /* Drop FPU & MSA without saving it */
1689 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1690 {
1691 preempt_disable();
1692 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1693 disable_msa();
1694 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1695 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1696 }
1697 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1698 clear_c0_status(ST0_CU1 | ST0_FR);
1699 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1700 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1701 }
1702 preempt_enable();
1703 }
1704
1705 /* Save and disable FPU & MSA */
1706 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1707 {
1708 /*
1709 * FPU & MSA get disabled in root context (hardware) when it is disabled
1710 * in guest context (software), but the register state in the hardware
1711 * may still be in use. This is why we explicitly re-enable the hardware
1712 * before saving.
1713 */
1714
1715 preempt_disable();
1716 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1717 set_c0_config5(MIPS_CONF5_MSAEN);
1718 enable_fpu_hazard();
1719
1720 __kvm_save_msa(&vcpu->arch);
1721 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1722
1723 /* Disable MSA & FPU */
1724 disable_msa();
1725 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1726 clear_c0_status(ST0_CU1 | ST0_FR);
1727 disable_fpu_hazard();
1728 }
1729 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1730 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1731 set_c0_status(ST0_CU1);
1732 enable_fpu_hazard();
1733
1734 __kvm_save_fpu(&vcpu->arch);
1735 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1736 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1737
1738 /* Disable FPU */
1739 clear_c0_status(ST0_CU1 | ST0_FR);
1740 disable_fpu_hazard();
1741 }
1742 preempt_enable();
1743 }
1744
1745 /*
1746 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1747 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1748 * exception if cause bits are set in the value being written.
1749 */
1750 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1751 unsigned long cmd, void *ptr)
1752 {
1753 struct die_args *args = (struct die_args *)ptr;
1754 struct pt_regs *regs = args->regs;
1755 unsigned long pc;
1756
1757 /* Only interested in FPE and MSAFPE */
1758 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1759 return NOTIFY_DONE;
1760
1761 /* Return immediately if guest context isn't active */
1762 if (!(current->flags & PF_VCPU))
1763 return NOTIFY_DONE;
1764
1765 /* Should never get here from user mode */
1766 BUG_ON(user_mode(regs));
1767
1768 pc = instruction_pointer(regs);
1769 switch (cmd) {
1770 case DIE_FP:
1771 /* match 2nd instruction in __kvm_restore_fcsr */
1772 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1773 return NOTIFY_DONE;
1774 break;
1775 case DIE_MSAFP:
1776 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1777 if (!cpu_has_msa ||
1778 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1779 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1780 return NOTIFY_DONE;
1781 break;
1782 }
1783
1784 /* Move PC forward a little and continue executing */
1785 instruction_pointer(regs) += 4;
1786
1787 return NOTIFY_STOP;
1788 }
1789
1790 static struct notifier_block kvm_mips_csr_die_notifier = {
1791 .notifier_call = kvm_mips_csr_die_notify,
1792 };
1793
1794 static int __init kvm_mips_init(void)
1795 {
1796 int ret;
1797
1798 ret = kvm_mips_entry_setup();
1799 if (ret)
1800 return ret;
1801
1802 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1803
1804 if (ret)
1805 return ret;
1806
1807 register_die_notifier(&kvm_mips_csr_die_notifier);
1808
1809 return 0;
1810 }
1811
1812 static void __exit kvm_mips_exit(void)
1813 {
1814 kvm_exit();
1815
1816 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1817 }
1818
1819 module_init(kvm_mips_init);
1820 module_exit(kvm_mips_exit);
1821
1822 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
This page took 0.112635 seconds and 5 git commands to generate.