Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[deliverable/linux.git] / arch / mips / kvm / mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100 /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
40 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
41 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
42 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
49 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
51 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
52 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
54 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
60 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
61 {NULL}
62 };
63
64 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
65 {
66 int i;
67
68 for_each_possible_cpu(i) {
69 vcpu->arch.guest_kernel_asid[i] = 0;
70 vcpu->arch.guest_user_asid[i] = 0;
71 }
72
73 return 0;
74 }
75
76 /*
77 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
78 * Config7, so we are "runnable" if interrupts are pending
79 */
80 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
81 {
82 return !!(vcpu->arch.pending_exceptions);
83 }
84
85 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
86 {
87 return 1;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92 return 0;
93 }
94
95 int kvm_arch_hardware_setup(void)
96 {
97 return 0;
98 }
99
100 void kvm_arch_check_processor_compat(void *rtn)
101 {
102 *(int *)rtn = 0;
103 }
104
105 static void kvm_mips_init_tlbs(struct kvm *kvm)
106 {
107 unsigned long wired;
108
109 /*
110 * Add a wired entry to the TLB, it is used to map the commpage to
111 * the Guest kernel
112 */
113 wired = read_c0_wired();
114 write_c0_wired(wired + 1);
115 mtc0_tlbw_hazard();
116 kvm->arch.commpage_tlb = wired;
117
118 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
119 kvm->arch.commpage_tlb);
120 }
121
122 static void kvm_mips_init_vm_percpu(void *arg)
123 {
124 struct kvm *kvm = (struct kvm *)arg;
125
126 kvm_mips_init_tlbs(kvm);
127 kvm_mips_callbacks->vm_init(kvm);
128
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133 if (atomic_inc_return(&kvm_mips_instance) == 1) {
134 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
135 __func__);
136 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
137 }
138
139 return 0;
140 }
141
142 void kvm_mips_free_vcpus(struct kvm *kvm)
143 {
144 unsigned int i;
145 struct kvm_vcpu *vcpu;
146
147 /* Put the pages we reserved for the guest pmap */
148 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
149 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
150 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
151 }
152 kfree(kvm->arch.guest_pmap);
153
154 kvm_for_each_vcpu(i, vcpu, kvm) {
155 kvm_arch_vcpu_free(vcpu);
156 }
157
158 mutex_lock(&kvm->lock);
159
160 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
161 kvm->vcpus[i] = NULL;
162
163 atomic_set(&kvm->online_vcpus, 0);
164
165 mutex_unlock(&kvm->lock);
166 }
167
168 static void kvm_mips_uninit_tlbs(void *arg)
169 {
170 /* Restore wired count */
171 write_c0_wired(0);
172 mtc0_tlbw_hazard();
173 /* Clear out all the TLBs */
174 kvm_local_flush_tlb_all();
175 }
176
177 void kvm_arch_destroy_vm(struct kvm *kvm)
178 {
179 kvm_mips_free_vcpus(kvm);
180
181 /* If this is the last instance, restore wired count */
182 if (atomic_dec_return(&kvm_mips_instance) == 0) {
183 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
184 __func__);
185 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
186 }
187 }
188
189 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
190 unsigned long arg)
191 {
192 return -ENOIOCTLCMD;
193 }
194
195 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
196 unsigned long npages)
197 {
198 return 0;
199 }
200
201 int kvm_arch_prepare_memory_region(struct kvm *kvm,
202 struct kvm_memory_slot *memslot,
203 const struct kvm_userspace_memory_region *mem,
204 enum kvm_mr_change change)
205 {
206 return 0;
207 }
208
209 void kvm_arch_commit_memory_region(struct kvm *kvm,
210 const struct kvm_userspace_memory_region *mem,
211 const struct kvm_memory_slot *old,
212 const struct kvm_memory_slot *new,
213 enum kvm_mr_change change)
214 {
215 unsigned long npages = 0;
216 int i;
217
218 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
219 __func__, kvm, mem->slot, mem->guest_phys_addr,
220 mem->memory_size, mem->userspace_addr);
221
222 /* Setup Guest PMAP table */
223 if (!kvm->arch.guest_pmap) {
224 if (mem->slot == 0)
225 npages = mem->memory_size >> PAGE_SHIFT;
226
227 if (npages) {
228 kvm->arch.guest_pmap_npages = npages;
229 kvm->arch.guest_pmap =
230 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
231
232 if (!kvm->arch.guest_pmap) {
233 kvm_err("Failed to allocate guest PMAP\n");
234 return;
235 }
236
237 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
238 npages, kvm->arch.guest_pmap);
239
240 /* Now setup the page table */
241 for (i = 0; i < npages; i++)
242 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
243 }
244 }
245 }
246
247 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
248 {
249 int err, size, offset;
250 void *gebase;
251 int i;
252
253 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
254
255 if (!vcpu) {
256 err = -ENOMEM;
257 goto out;
258 }
259
260 err = kvm_vcpu_init(vcpu, kvm, id);
261
262 if (err)
263 goto out_free_cpu;
264
265 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
266
267 /*
268 * Allocate space for host mode exception handlers that handle
269 * guest mode exits
270 */
271 if (cpu_has_veic || cpu_has_vint)
272 size = 0x200 + VECTORSPACING * 64;
273 else
274 size = 0x4000;
275
276 /* Save Linux EBASE */
277 vcpu->arch.host_ebase = (void *)read_c0_ebase();
278
279 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
280
281 if (!gebase) {
282 err = -ENOMEM;
283 goto out_uninit_cpu;
284 }
285 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
286 ALIGN(size, PAGE_SIZE), gebase);
287
288 /* Save new ebase */
289 vcpu->arch.guest_ebase = gebase;
290
291 /* Copy L1 Guest Exception handler to correct offset */
292
293 /* TLB Refill, EXL = 0 */
294 memcpy(gebase, mips32_exception,
295 mips32_exceptionEnd - mips32_exception);
296
297 /* General Exception Entry point */
298 memcpy(gebase + 0x180, mips32_exception,
299 mips32_exceptionEnd - mips32_exception);
300
301 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
302 for (i = 0; i < 8; i++) {
303 kvm_debug("L1 Vectored handler @ %p\n",
304 gebase + 0x200 + (i * VECTORSPACING));
305 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
306 mips32_exceptionEnd - mips32_exception);
307 }
308
309 /* General handler, relocate to unmapped space for sanity's sake */
310 offset = 0x2000;
311 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
312 gebase + offset,
313 mips32_GuestExceptionEnd - mips32_GuestException);
314
315 memcpy(gebase + offset, mips32_GuestException,
316 mips32_GuestExceptionEnd - mips32_GuestException);
317
318 /* Invalidate the icache for these ranges */
319 local_flush_icache_range((unsigned long)gebase,
320 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
321
322 /*
323 * Allocate comm page for guest kernel, a TLB will be reserved for
324 * mapping GVA @ 0xFFFF8000 to this page
325 */
326 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
327
328 if (!vcpu->arch.kseg0_commpage) {
329 err = -ENOMEM;
330 goto out_free_gebase;
331 }
332
333 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
334 kvm_mips_commpage_init(vcpu);
335
336 /* Init */
337 vcpu->arch.last_sched_cpu = -1;
338
339 /* Start off the timer */
340 kvm_mips_init_count(vcpu);
341
342 return vcpu;
343
344 out_free_gebase:
345 kfree(gebase);
346
347 out_uninit_cpu:
348 kvm_vcpu_uninit(vcpu);
349
350 out_free_cpu:
351 kfree(vcpu);
352
353 out:
354 return ERR_PTR(err);
355 }
356
357 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
358 {
359 hrtimer_cancel(&vcpu->arch.comparecount_timer);
360
361 kvm_vcpu_uninit(vcpu);
362
363 kvm_mips_dump_stats(vcpu);
364
365 kfree(vcpu->arch.guest_ebase);
366 kfree(vcpu->arch.kseg0_commpage);
367 kfree(vcpu);
368 }
369
370 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
371 {
372 kvm_arch_vcpu_free(vcpu);
373 }
374
375 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
376 struct kvm_guest_debug *dbg)
377 {
378 return -ENOIOCTLCMD;
379 }
380
381 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
382 {
383 int r = 0;
384 sigset_t sigsaved;
385
386 if (vcpu->sigset_active)
387 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
388
389 if (vcpu->mmio_needed) {
390 if (!vcpu->mmio_is_write)
391 kvm_mips_complete_mmio_load(vcpu, run);
392 vcpu->mmio_needed = 0;
393 }
394
395 lose_fpu(1);
396
397 local_irq_disable();
398 /* Check if we have any exceptions/interrupts pending */
399 kvm_mips_deliver_interrupts(vcpu,
400 kvm_read_c0_guest_cause(vcpu->arch.cop0));
401
402 __kvm_guest_enter();
403
404 /* Disable hardware page table walking while in guest */
405 htw_stop();
406
407 r = __kvm_mips_vcpu_run(run, vcpu);
408
409 /* Re-enable HTW before enabling interrupts */
410 htw_start();
411
412 __kvm_guest_exit();
413 local_irq_enable();
414
415 if (vcpu->sigset_active)
416 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
417
418 return r;
419 }
420
421 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
422 struct kvm_mips_interrupt *irq)
423 {
424 int intr = (int)irq->irq;
425 struct kvm_vcpu *dvcpu = NULL;
426
427 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
428 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
429 (int)intr);
430
431 if (irq->cpu == -1)
432 dvcpu = vcpu;
433 else
434 dvcpu = vcpu->kvm->vcpus[irq->cpu];
435
436 if (intr == 2 || intr == 3 || intr == 4) {
437 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
438
439 } else if (intr == -2 || intr == -3 || intr == -4) {
440 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
441 } else {
442 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
443 irq->cpu, irq->irq);
444 return -EINVAL;
445 }
446
447 dvcpu->arch.wait = 0;
448
449 if (swait_active(&dvcpu->wq))
450 swake_up(&dvcpu->wq);
451
452 return 0;
453 }
454
455 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
456 struct kvm_mp_state *mp_state)
457 {
458 return -ENOIOCTLCMD;
459 }
460
461 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
462 struct kvm_mp_state *mp_state)
463 {
464 return -ENOIOCTLCMD;
465 }
466
467 static u64 kvm_mips_get_one_regs[] = {
468 KVM_REG_MIPS_R0,
469 KVM_REG_MIPS_R1,
470 KVM_REG_MIPS_R2,
471 KVM_REG_MIPS_R3,
472 KVM_REG_MIPS_R4,
473 KVM_REG_MIPS_R5,
474 KVM_REG_MIPS_R6,
475 KVM_REG_MIPS_R7,
476 KVM_REG_MIPS_R8,
477 KVM_REG_MIPS_R9,
478 KVM_REG_MIPS_R10,
479 KVM_REG_MIPS_R11,
480 KVM_REG_MIPS_R12,
481 KVM_REG_MIPS_R13,
482 KVM_REG_MIPS_R14,
483 KVM_REG_MIPS_R15,
484 KVM_REG_MIPS_R16,
485 KVM_REG_MIPS_R17,
486 KVM_REG_MIPS_R18,
487 KVM_REG_MIPS_R19,
488 KVM_REG_MIPS_R20,
489 KVM_REG_MIPS_R21,
490 KVM_REG_MIPS_R22,
491 KVM_REG_MIPS_R23,
492 KVM_REG_MIPS_R24,
493 KVM_REG_MIPS_R25,
494 KVM_REG_MIPS_R26,
495 KVM_REG_MIPS_R27,
496 KVM_REG_MIPS_R28,
497 KVM_REG_MIPS_R29,
498 KVM_REG_MIPS_R30,
499 KVM_REG_MIPS_R31,
500
501 KVM_REG_MIPS_HI,
502 KVM_REG_MIPS_LO,
503 KVM_REG_MIPS_PC,
504
505 KVM_REG_MIPS_CP0_INDEX,
506 KVM_REG_MIPS_CP0_CONTEXT,
507 KVM_REG_MIPS_CP0_USERLOCAL,
508 KVM_REG_MIPS_CP0_PAGEMASK,
509 KVM_REG_MIPS_CP0_WIRED,
510 KVM_REG_MIPS_CP0_HWRENA,
511 KVM_REG_MIPS_CP0_BADVADDR,
512 KVM_REG_MIPS_CP0_COUNT,
513 KVM_REG_MIPS_CP0_ENTRYHI,
514 KVM_REG_MIPS_CP0_COMPARE,
515 KVM_REG_MIPS_CP0_STATUS,
516 KVM_REG_MIPS_CP0_CAUSE,
517 KVM_REG_MIPS_CP0_EPC,
518 KVM_REG_MIPS_CP0_PRID,
519 KVM_REG_MIPS_CP0_CONFIG,
520 KVM_REG_MIPS_CP0_CONFIG1,
521 KVM_REG_MIPS_CP0_CONFIG2,
522 KVM_REG_MIPS_CP0_CONFIG3,
523 KVM_REG_MIPS_CP0_CONFIG4,
524 KVM_REG_MIPS_CP0_CONFIG5,
525 KVM_REG_MIPS_CP0_CONFIG7,
526 KVM_REG_MIPS_CP0_ERROREPC,
527
528 KVM_REG_MIPS_COUNT_CTL,
529 KVM_REG_MIPS_COUNT_RESUME,
530 KVM_REG_MIPS_COUNT_HZ,
531 };
532
533 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
534 const struct kvm_one_reg *reg)
535 {
536 struct mips_coproc *cop0 = vcpu->arch.cop0;
537 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
538 int ret;
539 s64 v;
540 s64 vs[2];
541 unsigned int idx;
542
543 switch (reg->id) {
544 /* General purpose registers */
545 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
546 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
547 break;
548 case KVM_REG_MIPS_HI:
549 v = (long)vcpu->arch.hi;
550 break;
551 case KVM_REG_MIPS_LO:
552 v = (long)vcpu->arch.lo;
553 break;
554 case KVM_REG_MIPS_PC:
555 v = (long)vcpu->arch.pc;
556 break;
557
558 /* Floating point registers */
559 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
560 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
561 return -EINVAL;
562 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
563 /* Odd singles in top of even double when FR=0 */
564 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
565 v = get_fpr32(&fpu->fpr[idx], 0);
566 else
567 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
568 break;
569 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
570 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
571 return -EINVAL;
572 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
573 /* Can't access odd doubles in FR=0 mode */
574 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
575 return -EINVAL;
576 v = get_fpr64(&fpu->fpr[idx], 0);
577 break;
578 case KVM_REG_MIPS_FCR_IR:
579 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
580 return -EINVAL;
581 v = boot_cpu_data.fpu_id;
582 break;
583 case KVM_REG_MIPS_FCR_CSR:
584 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
585 return -EINVAL;
586 v = fpu->fcr31;
587 break;
588
589 /* MIPS SIMD Architecture (MSA) registers */
590 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
591 if (!kvm_mips_guest_has_msa(&vcpu->arch))
592 return -EINVAL;
593 /* Can't access MSA registers in FR=0 mode */
594 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
595 return -EINVAL;
596 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
597 #ifdef CONFIG_CPU_LITTLE_ENDIAN
598 /* least significant byte first */
599 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
600 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
601 #else
602 /* most significant byte first */
603 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
604 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
605 #endif
606 break;
607 case KVM_REG_MIPS_MSA_IR:
608 if (!kvm_mips_guest_has_msa(&vcpu->arch))
609 return -EINVAL;
610 v = boot_cpu_data.msa_id;
611 break;
612 case KVM_REG_MIPS_MSA_CSR:
613 if (!kvm_mips_guest_has_msa(&vcpu->arch))
614 return -EINVAL;
615 v = fpu->msacsr;
616 break;
617
618 /* Co-processor 0 registers */
619 case KVM_REG_MIPS_CP0_INDEX:
620 v = (long)kvm_read_c0_guest_index(cop0);
621 break;
622 case KVM_REG_MIPS_CP0_CONTEXT:
623 v = (long)kvm_read_c0_guest_context(cop0);
624 break;
625 case KVM_REG_MIPS_CP0_USERLOCAL:
626 v = (long)kvm_read_c0_guest_userlocal(cop0);
627 break;
628 case KVM_REG_MIPS_CP0_PAGEMASK:
629 v = (long)kvm_read_c0_guest_pagemask(cop0);
630 break;
631 case KVM_REG_MIPS_CP0_WIRED:
632 v = (long)kvm_read_c0_guest_wired(cop0);
633 break;
634 case KVM_REG_MIPS_CP0_HWRENA:
635 v = (long)kvm_read_c0_guest_hwrena(cop0);
636 break;
637 case KVM_REG_MIPS_CP0_BADVADDR:
638 v = (long)kvm_read_c0_guest_badvaddr(cop0);
639 break;
640 case KVM_REG_MIPS_CP0_ENTRYHI:
641 v = (long)kvm_read_c0_guest_entryhi(cop0);
642 break;
643 case KVM_REG_MIPS_CP0_COMPARE:
644 v = (long)kvm_read_c0_guest_compare(cop0);
645 break;
646 case KVM_REG_MIPS_CP0_STATUS:
647 v = (long)kvm_read_c0_guest_status(cop0);
648 break;
649 case KVM_REG_MIPS_CP0_CAUSE:
650 v = (long)kvm_read_c0_guest_cause(cop0);
651 break;
652 case KVM_REG_MIPS_CP0_EPC:
653 v = (long)kvm_read_c0_guest_epc(cop0);
654 break;
655 case KVM_REG_MIPS_CP0_PRID:
656 v = (long)kvm_read_c0_guest_prid(cop0);
657 break;
658 case KVM_REG_MIPS_CP0_CONFIG:
659 v = (long)kvm_read_c0_guest_config(cop0);
660 break;
661 case KVM_REG_MIPS_CP0_CONFIG1:
662 v = (long)kvm_read_c0_guest_config1(cop0);
663 break;
664 case KVM_REG_MIPS_CP0_CONFIG2:
665 v = (long)kvm_read_c0_guest_config2(cop0);
666 break;
667 case KVM_REG_MIPS_CP0_CONFIG3:
668 v = (long)kvm_read_c0_guest_config3(cop0);
669 break;
670 case KVM_REG_MIPS_CP0_CONFIG4:
671 v = (long)kvm_read_c0_guest_config4(cop0);
672 break;
673 case KVM_REG_MIPS_CP0_CONFIG5:
674 v = (long)kvm_read_c0_guest_config5(cop0);
675 break;
676 case KVM_REG_MIPS_CP0_CONFIG7:
677 v = (long)kvm_read_c0_guest_config7(cop0);
678 break;
679 case KVM_REG_MIPS_CP0_ERROREPC:
680 v = (long)kvm_read_c0_guest_errorepc(cop0);
681 break;
682 /* registers to be handled specially */
683 case KVM_REG_MIPS_CP0_COUNT:
684 case KVM_REG_MIPS_COUNT_CTL:
685 case KVM_REG_MIPS_COUNT_RESUME:
686 case KVM_REG_MIPS_COUNT_HZ:
687 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
688 if (ret)
689 return ret;
690 break;
691 default:
692 return -EINVAL;
693 }
694 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
695 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
696
697 return put_user(v, uaddr64);
698 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
699 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
700 u32 v32 = (u32)v;
701
702 return put_user(v32, uaddr32);
703 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
704 void __user *uaddr = (void __user *)(long)reg->addr;
705
706 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
707 } else {
708 return -EINVAL;
709 }
710 }
711
712 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
713 const struct kvm_one_reg *reg)
714 {
715 struct mips_coproc *cop0 = vcpu->arch.cop0;
716 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
717 s64 v;
718 s64 vs[2];
719 unsigned int idx;
720
721 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
722 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
723
724 if (get_user(v, uaddr64) != 0)
725 return -EFAULT;
726 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
727 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
728 s32 v32;
729
730 if (get_user(v32, uaddr32) != 0)
731 return -EFAULT;
732 v = (s64)v32;
733 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
734 void __user *uaddr = (void __user *)(long)reg->addr;
735
736 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
737 } else {
738 return -EINVAL;
739 }
740
741 switch (reg->id) {
742 /* General purpose registers */
743 case KVM_REG_MIPS_R0:
744 /* Silently ignore requests to set $0 */
745 break;
746 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
747 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
748 break;
749 case KVM_REG_MIPS_HI:
750 vcpu->arch.hi = v;
751 break;
752 case KVM_REG_MIPS_LO:
753 vcpu->arch.lo = v;
754 break;
755 case KVM_REG_MIPS_PC:
756 vcpu->arch.pc = v;
757 break;
758
759 /* Floating point registers */
760 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
761 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
762 return -EINVAL;
763 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
764 /* Odd singles in top of even double when FR=0 */
765 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
766 set_fpr32(&fpu->fpr[idx], 0, v);
767 else
768 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
769 break;
770 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
771 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
772 return -EINVAL;
773 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
774 /* Can't access odd doubles in FR=0 mode */
775 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
776 return -EINVAL;
777 set_fpr64(&fpu->fpr[idx], 0, v);
778 break;
779 case KVM_REG_MIPS_FCR_IR:
780 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
781 return -EINVAL;
782 /* Read-only */
783 break;
784 case KVM_REG_MIPS_FCR_CSR:
785 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
786 return -EINVAL;
787 fpu->fcr31 = v;
788 break;
789
790 /* MIPS SIMD Architecture (MSA) registers */
791 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
792 if (!kvm_mips_guest_has_msa(&vcpu->arch))
793 return -EINVAL;
794 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
795 #ifdef CONFIG_CPU_LITTLE_ENDIAN
796 /* least significant byte first */
797 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
798 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
799 #else
800 /* most significant byte first */
801 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
802 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
803 #endif
804 break;
805 case KVM_REG_MIPS_MSA_IR:
806 if (!kvm_mips_guest_has_msa(&vcpu->arch))
807 return -EINVAL;
808 /* Read-only */
809 break;
810 case KVM_REG_MIPS_MSA_CSR:
811 if (!kvm_mips_guest_has_msa(&vcpu->arch))
812 return -EINVAL;
813 fpu->msacsr = v;
814 break;
815
816 /* Co-processor 0 registers */
817 case KVM_REG_MIPS_CP0_INDEX:
818 kvm_write_c0_guest_index(cop0, v);
819 break;
820 case KVM_REG_MIPS_CP0_CONTEXT:
821 kvm_write_c0_guest_context(cop0, v);
822 break;
823 case KVM_REG_MIPS_CP0_USERLOCAL:
824 kvm_write_c0_guest_userlocal(cop0, v);
825 break;
826 case KVM_REG_MIPS_CP0_PAGEMASK:
827 kvm_write_c0_guest_pagemask(cop0, v);
828 break;
829 case KVM_REG_MIPS_CP0_WIRED:
830 kvm_write_c0_guest_wired(cop0, v);
831 break;
832 case KVM_REG_MIPS_CP0_HWRENA:
833 kvm_write_c0_guest_hwrena(cop0, v);
834 break;
835 case KVM_REG_MIPS_CP0_BADVADDR:
836 kvm_write_c0_guest_badvaddr(cop0, v);
837 break;
838 case KVM_REG_MIPS_CP0_ENTRYHI:
839 kvm_write_c0_guest_entryhi(cop0, v);
840 break;
841 case KVM_REG_MIPS_CP0_STATUS:
842 kvm_write_c0_guest_status(cop0, v);
843 break;
844 case KVM_REG_MIPS_CP0_EPC:
845 kvm_write_c0_guest_epc(cop0, v);
846 break;
847 case KVM_REG_MIPS_CP0_PRID:
848 kvm_write_c0_guest_prid(cop0, v);
849 break;
850 case KVM_REG_MIPS_CP0_ERROREPC:
851 kvm_write_c0_guest_errorepc(cop0, v);
852 break;
853 /* registers to be handled specially */
854 case KVM_REG_MIPS_CP0_COUNT:
855 case KVM_REG_MIPS_CP0_COMPARE:
856 case KVM_REG_MIPS_CP0_CAUSE:
857 case KVM_REG_MIPS_CP0_CONFIG:
858 case KVM_REG_MIPS_CP0_CONFIG1:
859 case KVM_REG_MIPS_CP0_CONFIG2:
860 case KVM_REG_MIPS_CP0_CONFIG3:
861 case KVM_REG_MIPS_CP0_CONFIG4:
862 case KVM_REG_MIPS_CP0_CONFIG5:
863 case KVM_REG_MIPS_COUNT_CTL:
864 case KVM_REG_MIPS_COUNT_RESUME:
865 case KVM_REG_MIPS_COUNT_HZ:
866 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
867 default:
868 return -EINVAL;
869 }
870 return 0;
871 }
872
873 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
874 struct kvm_enable_cap *cap)
875 {
876 int r = 0;
877
878 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
879 return -EINVAL;
880 if (cap->flags)
881 return -EINVAL;
882 if (cap->args[0])
883 return -EINVAL;
884
885 switch (cap->cap) {
886 case KVM_CAP_MIPS_FPU:
887 vcpu->arch.fpu_enabled = true;
888 break;
889 case KVM_CAP_MIPS_MSA:
890 vcpu->arch.msa_enabled = true;
891 break;
892 default:
893 r = -EINVAL;
894 break;
895 }
896
897 return r;
898 }
899
900 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
901 unsigned long arg)
902 {
903 struct kvm_vcpu *vcpu = filp->private_data;
904 void __user *argp = (void __user *)arg;
905 long r;
906
907 switch (ioctl) {
908 case KVM_SET_ONE_REG:
909 case KVM_GET_ONE_REG: {
910 struct kvm_one_reg reg;
911
912 if (copy_from_user(&reg, argp, sizeof(reg)))
913 return -EFAULT;
914 if (ioctl == KVM_SET_ONE_REG)
915 return kvm_mips_set_reg(vcpu, &reg);
916 else
917 return kvm_mips_get_reg(vcpu, &reg);
918 }
919 case KVM_GET_REG_LIST: {
920 struct kvm_reg_list __user *user_list = argp;
921 u64 __user *reg_dest;
922 struct kvm_reg_list reg_list;
923 unsigned n;
924
925 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
926 return -EFAULT;
927 n = reg_list.n;
928 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
929 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
930 return -EFAULT;
931 if (n < reg_list.n)
932 return -E2BIG;
933 reg_dest = user_list->reg;
934 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
935 sizeof(kvm_mips_get_one_regs)))
936 return -EFAULT;
937 return 0;
938 }
939 case KVM_NMI:
940 /* Treat the NMI as a CPU reset */
941 r = kvm_mips_reset_vcpu(vcpu);
942 break;
943 case KVM_INTERRUPT:
944 {
945 struct kvm_mips_interrupt irq;
946
947 r = -EFAULT;
948 if (copy_from_user(&irq, argp, sizeof(irq)))
949 goto out;
950
951 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
952 irq.irq);
953
954 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
955 break;
956 }
957 case KVM_ENABLE_CAP: {
958 struct kvm_enable_cap cap;
959
960 r = -EFAULT;
961 if (copy_from_user(&cap, argp, sizeof(cap)))
962 goto out;
963 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
964 break;
965 }
966 default:
967 r = -ENOIOCTLCMD;
968 }
969
970 out:
971 return r;
972 }
973
974 /* Get (and clear) the dirty memory log for a memory slot. */
975 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
976 {
977 struct kvm_memslots *slots;
978 struct kvm_memory_slot *memslot;
979 unsigned long ga, ga_end;
980 int is_dirty = 0;
981 int r;
982 unsigned long n;
983
984 mutex_lock(&kvm->slots_lock);
985
986 r = kvm_get_dirty_log(kvm, log, &is_dirty);
987 if (r)
988 goto out;
989
990 /* If nothing is dirty, don't bother messing with page tables. */
991 if (is_dirty) {
992 slots = kvm_memslots(kvm);
993 memslot = id_to_memslot(slots, log->slot);
994
995 ga = memslot->base_gfn << PAGE_SHIFT;
996 ga_end = ga + (memslot->npages << PAGE_SHIFT);
997
998 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
999 ga_end);
1000
1001 n = kvm_dirty_bitmap_bytes(memslot);
1002 memset(memslot->dirty_bitmap, 0, n);
1003 }
1004
1005 r = 0;
1006 out:
1007 mutex_unlock(&kvm->slots_lock);
1008 return r;
1009
1010 }
1011
1012 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1013 {
1014 long r;
1015
1016 switch (ioctl) {
1017 default:
1018 r = -ENOIOCTLCMD;
1019 }
1020
1021 return r;
1022 }
1023
1024 int kvm_arch_init(void *opaque)
1025 {
1026 if (kvm_mips_callbacks) {
1027 kvm_err("kvm: module already exists\n");
1028 return -EEXIST;
1029 }
1030
1031 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1032 }
1033
1034 void kvm_arch_exit(void)
1035 {
1036 kvm_mips_callbacks = NULL;
1037 }
1038
1039 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1040 struct kvm_sregs *sregs)
1041 {
1042 return -ENOIOCTLCMD;
1043 }
1044
1045 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1046 struct kvm_sregs *sregs)
1047 {
1048 return -ENOIOCTLCMD;
1049 }
1050
1051 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1052 {
1053 }
1054
1055 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1056 {
1057 return -ENOIOCTLCMD;
1058 }
1059
1060 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1061 {
1062 return -ENOIOCTLCMD;
1063 }
1064
1065 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1066 {
1067 return VM_FAULT_SIGBUS;
1068 }
1069
1070 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1071 {
1072 int r;
1073
1074 switch (ext) {
1075 case KVM_CAP_ONE_REG:
1076 case KVM_CAP_ENABLE_CAP:
1077 r = 1;
1078 break;
1079 case KVM_CAP_COALESCED_MMIO:
1080 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1081 break;
1082 case KVM_CAP_MIPS_FPU:
1083 /* We don't handle systems with inconsistent cpu_has_fpu */
1084 r = !!raw_cpu_has_fpu;
1085 break;
1086 case KVM_CAP_MIPS_MSA:
1087 /*
1088 * We don't support MSA vector partitioning yet:
1089 * 1) It would require explicit support which can't be tested
1090 * yet due to lack of support in current hardware.
1091 * 2) It extends the state that would need to be saved/restored
1092 * by e.g. QEMU for migration.
1093 *
1094 * When vector partitioning hardware becomes available, support
1095 * could be added by requiring a flag when enabling
1096 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1097 * to save/restore the appropriate extra state.
1098 */
1099 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1100 break;
1101 default:
1102 r = 0;
1103 break;
1104 }
1105 return r;
1106 }
1107
1108 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1109 {
1110 return kvm_mips_pending_timer(vcpu);
1111 }
1112
1113 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1114 {
1115 int i;
1116 struct mips_coproc *cop0;
1117
1118 if (!vcpu)
1119 return -1;
1120
1121 kvm_debug("VCPU Register Dump:\n");
1122 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1123 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1124
1125 for (i = 0; i < 32; i += 4) {
1126 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1127 vcpu->arch.gprs[i],
1128 vcpu->arch.gprs[i + 1],
1129 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1130 }
1131 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1132 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1133
1134 cop0 = vcpu->arch.cop0;
1135 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1136 kvm_read_c0_guest_status(cop0),
1137 kvm_read_c0_guest_cause(cop0));
1138
1139 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1140
1141 return 0;
1142 }
1143
1144 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1145 {
1146 int i;
1147
1148 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1149 vcpu->arch.gprs[i] = regs->gpr[i];
1150 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1151 vcpu->arch.hi = regs->hi;
1152 vcpu->arch.lo = regs->lo;
1153 vcpu->arch.pc = regs->pc;
1154
1155 return 0;
1156 }
1157
1158 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1159 {
1160 int i;
1161
1162 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1163 regs->gpr[i] = vcpu->arch.gprs[i];
1164
1165 regs->hi = vcpu->arch.hi;
1166 regs->lo = vcpu->arch.lo;
1167 regs->pc = vcpu->arch.pc;
1168
1169 return 0;
1170 }
1171
1172 static void kvm_mips_comparecount_func(unsigned long data)
1173 {
1174 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1175
1176 kvm_mips_callbacks->queue_timer_int(vcpu);
1177
1178 vcpu->arch.wait = 0;
1179 if (swait_active(&vcpu->wq))
1180 swake_up(&vcpu->wq);
1181 }
1182
1183 /* low level hrtimer wake routine */
1184 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1185 {
1186 struct kvm_vcpu *vcpu;
1187
1188 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1189 kvm_mips_comparecount_func((unsigned long) vcpu);
1190 return kvm_mips_count_timeout(vcpu);
1191 }
1192
1193 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1194 {
1195 kvm_mips_callbacks->vcpu_init(vcpu);
1196 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1197 HRTIMER_MODE_REL);
1198 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1199 return 0;
1200 }
1201
1202 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1203 struct kvm_translation *tr)
1204 {
1205 return 0;
1206 }
1207
1208 /* Initial guest state */
1209 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1210 {
1211 return kvm_mips_callbacks->vcpu_setup(vcpu);
1212 }
1213
1214 static void kvm_mips_set_c0_status(void)
1215 {
1216 uint32_t status = read_c0_status();
1217
1218 if (cpu_has_dsp)
1219 status |= (ST0_MX);
1220
1221 write_c0_status(status);
1222 ehb();
1223 }
1224
1225 /*
1226 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1227 */
1228 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1229 {
1230 uint32_t cause = vcpu->arch.host_cp0_cause;
1231 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1232 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1233 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1234 enum emulation_result er = EMULATE_DONE;
1235 int ret = RESUME_GUEST;
1236
1237 /* re-enable HTW before enabling interrupts */
1238 htw_start();
1239
1240 /* Set a default exit reason */
1241 run->exit_reason = KVM_EXIT_UNKNOWN;
1242 run->ready_for_interrupt_injection = 1;
1243
1244 /*
1245 * Set the appropriate status bits based on host CPU features,
1246 * before we hit the scheduler
1247 */
1248 kvm_mips_set_c0_status();
1249
1250 local_irq_enable();
1251
1252 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1253 cause, opc, run, vcpu);
1254
1255 /*
1256 * Do a privilege check, if in UM most of these exit conditions end up
1257 * causing an exception to be delivered to the Guest Kernel
1258 */
1259 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1260 if (er == EMULATE_PRIV_FAIL) {
1261 goto skip_emul;
1262 } else if (er == EMULATE_FAIL) {
1263 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1264 ret = RESUME_HOST;
1265 goto skip_emul;
1266 }
1267
1268 switch (exccode) {
1269 case EXCCODE_INT:
1270 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1271
1272 ++vcpu->stat.int_exits;
1273 trace_kvm_exit(vcpu, INT_EXITS);
1274
1275 if (need_resched())
1276 cond_resched();
1277
1278 ret = RESUME_GUEST;
1279 break;
1280
1281 case EXCCODE_CPU:
1282 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1283
1284 ++vcpu->stat.cop_unusable_exits;
1285 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1286 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1287 /* XXXKYMA: Might need to return to user space */
1288 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1289 ret = RESUME_HOST;
1290 break;
1291
1292 case EXCCODE_MOD:
1293 ++vcpu->stat.tlbmod_exits;
1294 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1295 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1296 break;
1297
1298 case EXCCODE_TLBS:
1299 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1300 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1301 badvaddr);
1302
1303 ++vcpu->stat.tlbmiss_st_exits;
1304 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1305 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1306 break;
1307
1308 case EXCCODE_TLBL:
1309 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1310 cause, opc, badvaddr);
1311
1312 ++vcpu->stat.tlbmiss_ld_exits;
1313 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1314 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1315 break;
1316
1317 case EXCCODE_ADES:
1318 ++vcpu->stat.addrerr_st_exits;
1319 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1320 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1321 break;
1322
1323 case EXCCODE_ADEL:
1324 ++vcpu->stat.addrerr_ld_exits;
1325 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1326 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1327 break;
1328
1329 case EXCCODE_SYS:
1330 ++vcpu->stat.syscall_exits;
1331 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1332 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1333 break;
1334
1335 case EXCCODE_RI:
1336 ++vcpu->stat.resvd_inst_exits;
1337 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1338 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1339 break;
1340
1341 case EXCCODE_BP:
1342 ++vcpu->stat.break_inst_exits;
1343 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1344 ret = kvm_mips_callbacks->handle_break(vcpu);
1345 break;
1346
1347 case EXCCODE_TR:
1348 ++vcpu->stat.trap_inst_exits;
1349 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1350 ret = kvm_mips_callbacks->handle_trap(vcpu);
1351 break;
1352
1353 case EXCCODE_MSAFPE:
1354 ++vcpu->stat.msa_fpe_exits;
1355 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1356 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1357 break;
1358
1359 case EXCCODE_FPE:
1360 ++vcpu->stat.fpe_exits;
1361 trace_kvm_exit(vcpu, FPE_EXITS);
1362 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1363 break;
1364
1365 case EXCCODE_MSADIS:
1366 ++vcpu->stat.msa_disabled_exits;
1367 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1368 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1369 break;
1370
1371 default:
1372 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1373 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1374 kvm_read_c0_guest_status(vcpu->arch.cop0));
1375 kvm_arch_vcpu_dump_regs(vcpu);
1376 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1377 ret = RESUME_HOST;
1378 break;
1379
1380 }
1381
1382 skip_emul:
1383 local_irq_disable();
1384
1385 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1386 kvm_mips_deliver_interrupts(vcpu, cause);
1387
1388 if (!(ret & RESUME_HOST)) {
1389 /* Only check for signals if not already exiting to userspace */
1390 if (signal_pending(current)) {
1391 run->exit_reason = KVM_EXIT_INTR;
1392 ret = (-EINTR << 2) | RESUME_HOST;
1393 ++vcpu->stat.signal_exits;
1394 trace_kvm_exit(vcpu, SIGNAL_EXITS);
1395 }
1396 }
1397
1398 if (ret == RESUME_GUEST) {
1399 /*
1400 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1401 * is live), restore FCR31 / MSACSR.
1402 *
1403 * This should be before returning to the guest exception
1404 * vector, as it may well cause an [MSA] FP exception if there
1405 * are pending exception bits unmasked. (see
1406 * kvm_mips_csr_die_notifier() for how that is handled).
1407 */
1408 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1409 read_c0_status() & ST0_CU1)
1410 __kvm_restore_fcsr(&vcpu->arch);
1411
1412 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1413 read_c0_config5() & MIPS_CONF5_MSAEN)
1414 __kvm_restore_msacsr(&vcpu->arch);
1415 }
1416
1417 /* Disable HTW before returning to guest or host */
1418 htw_stop();
1419
1420 return ret;
1421 }
1422
1423 /* Enable FPU for guest and restore context */
1424 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1425 {
1426 struct mips_coproc *cop0 = vcpu->arch.cop0;
1427 unsigned int sr, cfg5;
1428
1429 preempt_disable();
1430
1431 sr = kvm_read_c0_guest_status(cop0);
1432
1433 /*
1434 * If MSA state is already live, it is undefined how it interacts with
1435 * FR=0 FPU state, and we don't want to hit reserved instruction
1436 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1437 * play it safe and save it first.
1438 *
1439 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1440 * get called when guest CU1 is set, however we can't trust the guest
1441 * not to clobber the status register directly via the commpage.
1442 */
1443 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1444 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1445 kvm_lose_fpu(vcpu);
1446
1447 /*
1448 * Enable FPU for guest
1449 * We set FR and FRE according to guest context
1450 */
1451 change_c0_status(ST0_CU1 | ST0_FR, sr);
1452 if (cpu_has_fre) {
1453 cfg5 = kvm_read_c0_guest_config5(cop0);
1454 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1455 }
1456 enable_fpu_hazard();
1457
1458 /* If guest FPU state not active, restore it now */
1459 if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1460 __kvm_restore_fpu(&vcpu->arch);
1461 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1462 }
1463
1464 preempt_enable();
1465 }
1466
1467 #ifdef CONFIG_CPU_HAS_MSA
1468 /* Enable MSA for guest and restore context */
1469 void kvm_own_msa(struct kvm_vcpu *vcpu)
1470 {
1471 struct mips_coproc *cop0 = vcpu->arch.cop0;
1472 unsigned int sr, cfg5;
1473
1474 preempt_disable();
1475
1476 /*
1477 * Enable FPU if enabled in guest, since we're restoring FPU context
1478 * anyway. We set FR and FRE according to guest context.
1479 */
1480 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1481 sr = kvm_read_c0_guest_status(cop0);
1482
1483 /*
1484 * If FR=0 FPU state is already live, it is undefined how it
1485 * interacts with MSA state, so play it safe and save it first.
1486 */
1487 if (!(sr & ST0_FR) &&
1488 (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1489 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1490 kvm_lose_fpu(vcpu);
1491
1492 change_c0_status(ST0_CU1 | ST0_FR, sr);
1493 if (sr & ST0_CU1 && cpu_has_fre) {
1494 cfg5 = kvm_read_c0_guest_config5(cop0);
1495 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1496 }
1497 }
1498
1499 /* Enable MSA for guest */
1500 set_c0_config5(MIPS_CONF5_MSAEN);
1501 enable_fpu_hazard();
1502
1503 switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1504 case KVM_MIPS_FPU_FPU:
1505 /*
1506 * Guest FPU state already loaded, only restore upper MSA state
1507 */
1508 __kvm_restore_msa_upper(&vcpu->arch);
1509 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1510 break;
1511 case 0:
1512 /* Neither FPU or MSA already active, restore full MSA state */
1513 __kvm_restore_msa(&vcpu->arch);
1514 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1515 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1516 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1517 break;
1518 default:
1519 break;
1520 }
1521
1522 preempt_enable();
1523 }
1524 #endif
1525
1526 /* Drop FPU & MSA without saving it */
1527 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1528 {
1529 preempt_disable();
1530 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1531 disable_msa();
1532 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1533 }
1534 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1535 clear_c0_status(ST0_CU1 | ST0_FR);
1536 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1537 }
1538 preempt_enable();
1539 }
1540
1541 /* Save and disable FPU & MSA */
1542 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1543 {
1544 /*
1545 * FPU & MSA get disabled in root context (hardware) when it is disabled
1546 * in guest context (software), but the register state in the hardware
1547 * may still be in use. This is why we explicitly re-enable the hardware
1548 * before saving.
1549 */
1550
1551 preempt_disable();
1552 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1553 set_c0_config5(MIPS_CONF5_MSAEN);
1554 enable_fpu_hazard();
1555
1556 __kvm_save_msa(&vcpu->arch);
1557
1558 /* Disable MSA & FPU */
1559 disable_msa();
1560 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1561 clear_c0_status(ST0_CU1 | ST0_FR);
1562 disable_fpu_hazard();
1563 }
1564 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1565 } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1566 set_c0_status(ST0_CU1);
1567 enable_fpu_hazard();
1568
1569 __kvm_save_fpu(&vcpu->arch);
1570 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1571
1572 /* Disable FPU */
1573 clear_c0_status(ST0_CU1 | ST0_FR);
1574 disable_fpu_hazard();
1575 }
1576 preempt_enable();
1577 }
1578
1579 /*
1580 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1581 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1582 * exception if cause bits are set in the value being written.
1583 */
1584 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1585 unsigned long cmd, void *ptr)
1586 {
1587 struct die_args *args = (struct die_args *)ptr;
1588 struct pt_regs *regs = args->regs;
1589 unsigned long pc;
1590
1591 /* Only interested in FPE and MSAFPE */
1592 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1593 return NOTIFY_DONE;
1594
1595 /* Return immediately if guest context isn't active */
1596 if (!(current->flags & PF_VCPU))
1597 return NOTIFY_DONE;
1598
1599 /* Should never get here from user mode */
1600 BUG_ON(user_mode(regs));
1601
1602 pc = instruction_pointer(regs);
1603 switch (cmd) {
1604 case DIE_FP:
1605 /* match 2nd instruction in __kvm_restore_fcsr */
1606 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1607 return NOTIFY_DONE;
1608 break;
1609 case DIE_MSAFP:
1610 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1611 if (!cpu_has_msa ||
1612 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1613 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1614 return NOTIFY_DONE;
1615 break;
1616 }
1617
1618 /* Move PC forward a little and continue executing */
1619 instruction_pointer(regs) += 4;
1620
1621 return NOTIFY_STOP;
1622 }
1623
1624 static struct notifier_block kvm_mips_csr_die_notifier = {
1625 .notifier_call = kvm_mips_csr_die_notify,
1626 };
1627
1628 static int __init kvm_mips_init(void)
1629 {
1630 int ret;
1631
1632 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1633
1634 if (ret)
1635 return ret;
1636
1637 register_die_notifier(&kvm_mips_csr_die_notifier);
1638
1639 /*
1640 * On MIPS, kernel modules are executed from "mapped space", which
1641 * requires TLBs. The TLB handling code is statically linked with
1642 * the rest of the kernel (tlb.c) to avoid the possibility of
1643 * double faulting. The issue is that the TLB code references
1644 * routines that are part of the the KVM module, which are only
1645 * available once the module is loaded.
1646 */
1647 kvm_mips_gfn_to_pfn = gfn_to_pfn;
1648 kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1649 kvm_mips_is_error_pfn = is_error_pfn;
1650
1651 return 0;
1652 }
1653
1654 static void __exit kvm_mips_exit(void)
1655 {
1656 kvm_exit();
1657
1658 kvm_mips_gfn_to_pfn = NULL;
1659 kvm_mips_release_pfn_clean = NULL;
1660 kvm_mips_is_error_pfn = NULL;
1661
1662 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1663 }
1664
1665 module_init(kvm_mips_init);
1666 module_exit(kvm_mips_exit);
1667
1668 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
This page took 0.063788 seconds and 6 git commands to generate.