MIPS: lantiq: adds static clock for PP32
[deliverable/linux.git] / arch / mips / lantiq / xway / sysctrl.c
1 /*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License version 2 as published
4 * by the Free Software Foundation.
5 *
6 * Copyright (C) 2011-2012 John Crispin <blogic@openwrt.org>
7 */
8
9 #include <linux/ioport.h>
10 #include <linux/export.h>
11 #include <linux/clkdev.h>
12 #include <linux/of.h>
13 #include <linux/of_platform.h>
14 #include <linux/of_address.h>
15
16 #include <lantiq_soc.h>
17
18 #include "../clk.h"
19 #include "../prom.h"
20
21 /* clock control register */
22 #define CGU_IFCCR 0x0018
23 #define CGU_IFCCR_VR9 0x0024
24 /* system clock register */
25 #define CGU_SYS 0x0010
26 /* pci control register */
27 #define CGU_PCICR 0x0034
28 #define CGU_PCICR_VR9 0x0038
29 /* ephy configuration register */
30 #define CGU_EPHY 0x10
31 /* power control register */
32 #define PMU_PWDCR 0x1C
33 /* power status register */
34 #define PMU_PWDSR 0x20
35 /* power control register */
36 #define PMU_PWDCR1 0x24
37 /* power status register */
38 #define PMU_PWDSR1 0x28
39 /* power control register */
40 #define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
41 /* power status register */
42 #define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
43
44 /* clock gates that we can en/disable */
45 #define PMU_USB0_P BIT(0)
46 #define PMU_PCI BIT(4)
47 #define PMU_DMA BIT(5)
48 #define PMU_USB0 BIT(6)
49 #define PMU_ASC0 BIT(7)
50 #define PMU_EPHY BIT(7) /* ase */
51 #define PMU_SPI BIT(8)
52 #define PMU_DFE BIT(9)
53 #define PMU_EBU BIT(10)
54 #define PMU_STP BIT(11)
55 #define PMU_GPT BIT(12)
56 #define PMU_AHBS BIT(13) /* vr9 */
57 #define PMU_FPI BIT(14)
58 #define PMU_AHBM BIT(15)
59 #define PMU_ASC1 BIT(17)
60 #define PMU_PPE_QSB BIT(18)
61 #define PMU_PPE_SLL01 BIT(19)
62 #define PMU_PPE_TC BIT(21)
63 #define PMU_PPE_EMA BIT(22)
64 #define PMU_PPE_DPLUM BIT(23)
65 #define PMU_PPE_DPLUS BIT(24)
66 #define PMU_USB1_P BIT(26)
67 #define PMU_USB1 BIT(27)
68 #define PMU_SWITCH BIT(28)
69 #define PMU_PPE_TOP BIT(29)
70 #define PMU_GPHY BIT(30)
71 #define PMU_PCIE_CLK BIT(31)
72
73 #define PMU1_PCIE_PHY BIT(0)
74 #define PMU1_PCIE_CTL BIT(1)
75 #define PMU1_PCIE_PDI BIT(4)
76 #define PMU1_PCIE_MSI BIT(5)
77
78 #define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y))
79 #define pmu_r32(x) ltq_r32(pmu_membase + (x))
80
81 static void __iomem *pmu_membase;
82 void __iomem *ltq_cgu_membase;
83 void __iomem *ltq_ebu_membase;
84
85 static u32 ifccr = CGU_IFCCR;
86 static u32 pcicr = CGU_PCICR;
87
88 /* legacy function kept alive to ease clkdev transition */
89 void ltq_pmu_enable(unsigned int module)
90 {
91 int err = 1000000;
92
93 pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
94 do {} while (--err && (pmu_r32(PMU_PWDSR) & module));
95
96 if (!err)
97 panic("activating PMU module failed!");
98 }
99 EXPORT_SYMBOL(ltq_pmu_enable);
100
101 /* legacy function kept alive to ease clkdev transition */
102 void ltq_pmu_disable(unsigned int module)
103 {
104 pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
105 }
106 EXPORT_SYMBOL(ltq_pmu_disable);
107
108 /* enable a hw clock */
109 static int cgu_enable(struct clk *clk)
110 {
111 ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
112 return 0;
113 }
114
115 /* disable a hw clock */
116 static void cgu_disable(struct clk *clk)
117 {
118 ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
119 }
120
121 /* enable a clock gate */
122 static int pmu_enable(struct clk *clk)
123 {
124 int retry = 1000000;
125
126 pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
127 PWDCR(clk->module));
128 do {} while (--retry && (pmu_r32(PWDSR(clk->module)) & clk->bits));
129
130 if (!retry)
131 panic("activating PMU module failed!\n");
132
133 return 0;
134 }
135
136 /* disable a clock gate */
137 static void pmu_disable(struct clk *clk)
138 {
139 pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
140 PWDCR(clk->module));
141 }
142
143 /* the pci enable helper */
144 static int pci_enable(struct clk *clk)
145 {
146 unsigned int val = ltq_cgu_r32(ifccr);
147 /* set bus clock speed */
148 if (of_machine_is_compatible("lantiq,ar9") ||
149 of_machine_is_compatible("lantiq,vr9")) {
150 val &= ~0x1f00000;
151 if (clk->rate == CLOCK_33M)
152 val |= 0xe00000;
153 else
154 val |= 0x700000; /* 62.5M */
155 } else {
156 val &= ~0xf00000;
157 if (clk->rate == CLOCK_33M)
158 val |= 0x800000;
159 else
160 val |= 0x400000; /* 62.5M */
161 }
162 ltq_cgu_w32(val, ifccr);
163 pmu_enable(clk);
164 return 0;
165 }
166
167 /* enable the external clock as a source */
168 static int pci_ext_enable(struct clk *clk)
169 {
170 ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
171 ltq_cgu_w32((1 << 30), pcicr);
172 return 0;
173 }
174
175 /* disable the external clock as a source */
176 static void pci_ext_disable(struct clk *clk)
177 {
178 ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
179 ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
180 }
181
182 /* enable a clockout source */
183 static int clkout_enable(struct clk *clk)
184 {
185 int i;
186
187 /* get the correct rate */
188 for (i = 0; i < 4; i++) {
189 if (clk->rates[i] == clk->rate) {
190 int shift = 14 - (2 * clk->module);
191 int enable = 7 - clk->module;
192 unsigned int val = ltq_cgu_r32(ifccr);
193
194 val &= ~(3 << shift);
195 val |= i << shift;
196 val |= enable;
197 ltq_cgu_w32(val, ifccr);
198 return 0;
199 }
200 }
201 return -1;
202 }
203
204 /* manage the clock gates via PMU */
205 static void clkdev_add_pmu(const char *dev, const char *con,
206 unsigned int module, unsigned int bits)
207 {
208 struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
209
210 clk->cl.dev_id = dev;
211 clk->cl.con_id = con;
212 clk->cl.clk = clk;
213 clk->enable = pmu_enable;
214 clk->disable = pmu_disable;
215 clk->module = module;
216 clk->bits = bits;
217 clkdev_add(&clk->cl);
218 }
219
220 /* manage the clock generator */
221 static void clkdev_add_cgu(const char *dev, const char *con,
222 unsigned int bits)
223 {
224 struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
225
226 clk->cl.dev_id = dev;
227 clk->cl.con_id = con;
228 clk->cl.clk = clk;
229 clk->enable = cgu_enable;
230 clk->disable = cgu_disable;
231 clk->bits = bits;
232 clkdev_add(&clk->cl);
233 }
234
235 /* pci needs its own enable function as the setup is a bit more complex */
236 static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};
237
238 static void clkdev_add_pci(void)
239 {
240 struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
241 struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
242
243 /* main pci clock */
244 clk->cl.dev_id = "17000000.pci";
245 clk->cl.con_id = NULL;
246 clk->cl.clk = clk;
247 clk->rate = CLOCK_33M;
248 clk->rates = valid_pci_rates;
249 clk->enable = pci_enable;
250 clk->disable = pmu_disable;
251 clk->module = 0;
252 clk->bits = PMU_PCI;
253 clkdev_add(&clk->cl);
254
255 /* use internal/external bus clock */
256 clk_ext->cl.dev_id = "17000000.pci";
257 clk_ext->cl.con_id = "external";
258 clk_ext->cl.clk = clk_ext;
259 clk_ext->enable = pci_ext_enable;
260 clk_ext->disable = pci_ext_disable;
261 clkdev_add(&clk_ext->cl);
262 }
263
264 /* xway socs can generate clocks on gpio pins */
265 static unsigned long valid_clkout_rates[4][5] = {
266 {CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
267 {CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
268 {CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
269 {CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
270 };
271
272 static void clkdev_add_clkout(void)
273 {
274 int i;
275
276 for (i = 0; i < 4; i++) {
277 struct clk *clk;
278 char *name;
279
280 name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
281 sprintf(name, "clkout%d", i);
282
283 clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
284 clk->cl.dev_id = "1f103000.cgu";
285 clk->cl.con_id = name;
286 clk->cl.clk = clk;
287 clk->rate = 0;
288 clk->rates = valid_clkout_rates[i];
289 clk->enable = clkout_enable;
290 clk->module = i;
291 clkdev_add(&clk->cl);
292 }
293 }
294
295 /* bring up all register ranges that we need for basic system control */
296 void __init ltq_soc_init(void)
297 {
298 struct resource res_pmu, res_cgu, res_ebu;
299 struct device_node *np_pmu =
300 of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
301 struct device_node *np_cgu =
302 of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
303 struct device_node *np_ebu =
304 of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");
305
306 /* check if all the core register ranges are available */
307 if (!np_pmu || !np_cgu || !np_ebu)
308 panic("Failed to load core nodes from devicetree");
309
310 if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
311 of_address_to_resource(np_cgu, 0, &res_cgu) ||
312 of_address_to_resource(np_ebu, 0, &res_ebu))
313 panic("Failed to get core resources");
314
315 if ((request_mem_region(res_pmu.start, resource_size(&res_pmu),
316 res_pmu.name) < 0) ||
317 (request_mem_region(res_cgu.start, resource_size(&res_cgu),
318 res_cgu.name) < 0) ||
319 (request_mem_region(res_ebu.start, resource_size(&res_ebu),
320 res_ebu.name) < 0))
321 pr_err("Failed to request core reources");
322
323 pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
324 ltq_cgu_membase = ioremap_nocache(res_cgu.start,
325 resource_size(&res_cgu));
326 ltq_ebu_membase = ioremap_nocache(res_ebu.start,
327 resource_size(&res_ebu));
328 if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
329 panic("Failed to remap core resources");
330
331 /* make sure to unprotect the memory region where flash is located */
332 ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
333
334 /* add our generic xway clocks */
335 clkdev_add_pmu("10000000.fpi", NULL, 0, PMU_FPI);
336 clkdev_add_pmu("1e100400.serial", NULL, 0, PMU_ASC0);
337 clkdev_add_pmu("1e100a00.gptu", NULL, 0, PMU_GPT);
338 clkdev_add_pmu("1e100bb0.stp", NULL, 0, PMU_STP);
339 clkdev_add_pmu("1e104100.dma", NULL, 0, PMU_DMA);
340 clkdev_add_pmu("1e100800.spi", NULL, 0, PMU_SPI);
341 clkdev_add_pmu("1e105300.ebu", NULL, 0, PMU_EBU);
342 clkdev_add_clkout();
343
344 /* add the soc dependent clocks */
345 if (of_machine_is_compatible("lantiq,vr9")) {
346 ifccr = CGU_IFCCR_VR9;
347 pcicr = CGU_PCICR_VR9;
348 } else {
349 clkdev_add_pmu("1e180000.etop", NULL, 0, PMU_PPE);
350 }
351
352 if (!of_machine_is_compatible("lantiq,ase")) {
353 clkdev_add_pmu("1e100c00.serial", NULL, 0, PMU_ASC1);
354 clkdev_add_pci();
355 }
356
357 if (of_machine_is_compatible("lantiq,ase")) {
358 if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
359 clkdev_add_static(CLOCK_266M, CLOCK_133M,
360 CLOCK_133M, CLOCK_266M);
361 else
362 clkdev_add_static(CLOCK_133M, CLOCK_133M,
363 CLOCK_133M, CLOCK_133M);
364 clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY),
365 clkdev_add_pmu("1e180000.etop", "ephy", 0, PMU_EPHY);
366 } else if (of_machine_is_compatible("lantiq,vr9")) {
367 clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
368 ltq_vr9_fpi_hz(), ltq_vr9_pp32_hz());
369 clkdev_add_pmu("1d900000.pcie", "phy", 1, PMU1_PCIE_PHY);
370 clkdev_add_pmu("1d900000.pcie", "bus", 0, PMU_PCIE_CLK);
371 clkdev_add_pmu("1d900000.pcie", "msi", 1, PMU1_PCIE_MSI);
372 clkdev_add_pmu("1d900000.pcie", "pdi", 1, PMU1_PCIE_PDI);
373 clkdev_add_pmu("1d900000.pcie", "ctl", 1, PMU1_PCIE_CTL);
374 clkdev_add_pmu("1d900000.pcie", "ahb", 0, PMU_AHBM | PMU_AHBS);
375 clkdev_add_pmu("1e108000.eth", NULL, 0,
376 PMU_SWITCH | PMU_PPE_DPLUS | PMU_PPE_DPLUM |
377 PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
378 PMU_PPE_QSB | PMU_PPE_TOP);
379 } else if (of_machine_is_compatible("lantiq,ar9")) {
380 clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
381 ltq_ar9_fpi_hz(), CLOCK_250M);
382 clkdev_add_pmu("1e180000.etop", "switch", 0, PMU_SWITCH);
383 } else {
384 clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
385 ltq_danube_fpi_hz(), ltq_danube_pp32_hz());
386 }
387 }
This page took 0.151515 seconds and 5 git commands to generate.