[MIPS] Make sure cpu_has_fpu is used only in atomic context
[deliverable/linux.git] / arch / mips / math-emu / cp1emu.c
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3 *
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
7 *
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.
10 *
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 *
24 * A complete emulator for MIPS coprocessor 1 instructions. This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
27 *
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc). It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
33 *
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
36 */
37 #include <linux/sched.h>
38
39 #include <asm/inst.h>
40 #include <asm/bootinfo.h>
41 #include <asm/processor.h>
42 #include <asm/ptrace.h>
43 #include <asm/signal.h>
44 #include <asm/mipsregs.h>
45 #include <asm/fpu_emulator.h>
46 #include <asm/uaccess.h>
47 #include <asm/branch.h>
48
49 #include "ieee754.h"
50 #include "dsemul.h"
51
52 /* Strap kernel emulator for full MIPS IV emulation */
53
54 #ifdef __mips
55 #undef __mips
56 #endif
57 #define __mips 4
58
59 /* Function which emulates a floating point instruction. */
60
61 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
62 mips_instruction);
63
64 #if __mips >= 4 && __mips != 32
65 static int fpux_emu(struct pt_regs *,
66 struct mips_fpu_struct *, mips_instruction);
67 #endif
68
69 /* Further private data for which no space exists in mips_fpu_struct */
70
71 struct mips_fpu_emulator_stats fpuemustats;
72
73 /* Control registers */
74
75 #define FPCREG_RID 0 /* $0 = revision id */
76 #define FPCREG_CSR 31 /* $31 = csr */
77
78 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
79 static const unsigned char ieee_rm[4] = {
80 [FPU_CSR_RN] = IEEE754_RN,
81 [FPU_CSR_RZ] = IEEE754_RZ,
82 [FPU_CSR_RU] = IEEE754_RU,
83 [FPU_CSR_RD] = IEEE754_RD,
84 };
85 /* Convert IEEE library modes to Mips rounding mode (0..3). */
86 static const unsigned char mips_rm[4] = {
87 [IEEE754_RN] = FPU_CSR_RN,
88 [IEEE754_RZ] = FPU_CSR_RZ,
89 [IEEE754_RD] = FPU_CSR_RD,
90 [IEEE754_RU] = FPU_CSR_RU,
91 };
92
93 #if __mips >= 4
94 /* convert condition code register number to csr bit */
95 static const unsigned int fpucondbit[8] = {
96 FPU_CSR_COND0,
97 FPU_CSR_COND1,
98 FPU_CSR_COND2,
99 FPU_CSR_COND3,
100 FPU_CSR_COND4,
101 FPU_CSR_COND5,
102 FPU_CSR_COND6,
103 FPU_CSR_COND7
104 };
105 #endif
106
107
108 /*
109 * Redundant with logic already in kernel/branch.c,
110 * embedded in compute_return_epc. At some point,
111 * a single subroutine should be used across both
112 * modules.
113 */
114 static int isBranchInstr(mips_instruction * i)
115 {
116 switch (MIPSInst_OPCODE(*i)) {
117 case spec_op:
118 switch (MIPSInst_FUNC(*i)) {
119 case jalr_op:
120 case jr_op:
121 return 1;
122 }
123 break;
124
125 case bcond_op:
126 switch (MIPSInst_RT(*i)) {
127 case bltz_op:
128 case bgez_op:
129 case bltzl_op:
130 case bgezl_op:
131 case bltzal_op:
132 case bgezal_op:
133 case bltzall_op:
134 case bgezall_op:
135 return 1;
136 }
137 break;
138
139 case j_op:
140 case jal_op:
141 case jalx_op:
142 case beq_op:
143 case bne_op:
144 case blez_op:
145 case bgtz_op:
146 case beql_op:
147 case bnel_op:
148 case blezl_op:
149 case bgtzl_op:
150 return 1;
151
152 case cop0_op:
153 case cop1_op:
154 case cop2_op:
155 case cop1x_op:
156 if (MIPSInst_RS(*i) == bc_op)
157 return 1;
158 break;
159 }
160
161 return 0;
162 }
163
164 /*
165 * In the Linux kernel, we support selection of FPR format on the
166 * basis of the Status.FR bit. This does imply that, if a full 32
167 * FPRs are desired, there needs to be a flip-flop that can be written
168 * to one at that bit position. In any case, O32 MIPS ABI uses
169 * only the even FPRs (Status.FR = 0).
170 */
171
172 #define CP0_STATUS_FR_SUPPORT
173
174 #ifdef CP0_STATUS_FR_SUPPORT
175 #define FR_BIT ST0_FR
176 #else
177 #define FR_BIT 0
178 #endif
179
180 #define SIFROMREG(si,x) ((si) = \
181 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
182 (int)ctx->fpr[x] : \
183 (int)(ctx->fpr[x & ~1] >> 32 ))
184 #define SITOREG(si,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
185 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
186 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
187 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
188
189 #define DIFROMREG(di,x) ((di) = \
190 ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
191 #define DITOREG(di,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
192 = (di))
193
194 #define SPFROMREG(sp,x) SIFROMREG((sp).bits,x)
195 #define SPTOREG(sp,x) SITOREG((sp).bits,x)
196 #define DPFROMREG(dp,x) DIFROMREG((dp).bits,x)
197 #define DPTOREG(dp,x) DITOREG((dp).bits,x)
198
199 /*
200 * Emulate the single floating point instruction pointed at by EPC.
201 * Two instructions if the instruction is in a branch delay slot.
202 */
203
204 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
205 {
206 mips_instruction ir;
207 void * emulpc, *contpc;
208 unsigned int cond;
209
210 if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
211 fpuemustats.errors++;
212 return SIGBUS;
213 }
214
215 /* XXX NEC Vr54xx bug workaround */
216 if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
217 xcp->cp0_cause &= ~CAUSEF_BD;
218
219 if (xcp->cp0_cause & CAUSEF_BD) {
220 /*
221 * The instruction to be emulated is in a branch delay slot
222 * which means that we have to emulate the branch instruction
223 * BEFORE we do the cop1 instruction.
224 *
225 * This branch could be a COP1 branch, but in that case we
226 * would have had a trap for that instruction, and would not
227 * come through this route.
228 *
229 * Linux MIPS branch emulator operates on context, updating the
230 * cp0_epc.
231 */
232 emulpc = (void *) (xcp->cp0_epc + 4); /* Snapshot emulation target */
233
234 if (__compute_return_epc(xcp)) {
235 #ifdef CP1DBG
236 printk("failed to emulate branch at %p\n",
237 (void *) (xcp->cp0_epc));
238 #endif
239 return SIGILL;
240 }
241 if (get_user(ir, (mips_instruction __user *) emulpc)) {
242 fpuemustats.errors++;
243 return SIGBUS;
244 }
245 /* __compute_return_epc() will have updated cp0_epc */
246 contpc = (void *) xcp->cp0_epc;
247 /* In order not to confuse ptrace() et al, tweak context */
248 xcp->cp0_epc = (unsigned long) emulpc - 4;
249 } else {
250 emulpc = (void *) xcp->cp0_epc;
251 contpc = (void *) (xcp->cp0_epc + 4);
252 }
253
254 emul:
255 fpuemustats.emulated++;
256 switch (MIPSInst_OPCODE(ir)) {
257 case ldc1_op:{
258 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
259 MIPSInst_SIMM(ir));
260 u64 val;
261
262 fpuemustats.loads++;
263 if (get_user(val, va)) {
264 fpuemustats.errors++;
265 return SIGBUS;
266 }
267 DITOREG(val, MIPSInst_RT(ir));
268 break;
269 }
270
271 case sdc1_op:{
272 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
273 MIPSInst_SIMM(ir));
274 u64 val;
275
276 fpuemustats.stores++;
277 DIFROMREG(val, MIPSInst_RT(ir));
278 if (put_user(val, va)) {
279 fpuemustats.errors++;
280 return SIGBUS;
281 }
282 break;
283 }
284
285 case lwc1_op:{
286 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
287 MIPSInst_SIMM(ir));
288 u32 val;
289
290 fpuemustats.loads++;
291 if (get_user(val, va)) {
292 fpuemustats.errors++;
293 return SIGBUS;
294 }
295 SITOREG(val, MIPSInst_RT(ir));
296 break;
297 }
298
299 case swc1_op:{
300 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
301 MIPSInst_SIMM(ir));
302 u32 val;
303
304 fpuemustats.stores++;
305 SIFROMREG(val, MIPSInst_RT(ir));
306 if (put_user(val, va)) {
307 fpuemustats.errors++;
308 return SIGBUS;
309 }
310 break;
311 }
312
313 case cop1_op:
314 switch (MIPSInst_RS(ir)) {
315
316 #if defined(__mips64)
317 case dmfc_op:
318 /* copregister fs -> gpr[rt] */
319 if (MIPSInst_RT(ir) != 0) {
320 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
321 MIPSInst_RD(ir));
322 }
323 break;
324
325 case dmtc_op:
326 /* copregister fs <- rt */
327 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
328 break;
329 #endif
330
331 case mfc_op:
332 /* copregister rd -> gpr[rt] */
333 if (MIPSInst_RT(ir) != 0) {
334 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
335 MIPSInst_RD(ir));
336 }
337 break;
338
339 case mtc_op:
340 /* copregister rd <- rt */
341 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
342 break;
343
344 case cfc_op:{
345 /* cop control register rd -> gpr[rt] */
346 u32 value;
347
348 if (ir == CP1UNDEF) {
349 return do_dsemulret(xcp);
350 }
351 if (MIPSInst_RD(ir) == FPCREG_CSR) {
352 value = ctx->fcr31;
353 value = (value & ~0x3) | mips_rm[value & 0x3];
354 #ifdef CSRTRACE
355 printk("%p gpr[%d]<-csr=%08x\n",
356 (void *) (xcp->cp0_epc),
357 MIPSInst_RT(ir), value);
358 #endif
359 }
360 else if (MIPSInst_RD(ir) == FPCREG_RID)
361 value = 0;
362 else
363 value = 0;
364 if (MIPSInst_RT(ir))
365 xcp->regs[MIPSInst_RT(ir)] = value;
366 break;
367 }
368
369 case ctc_op:{
370 /* copregister rd <- rt */
371 u32 value;
372
373 if (MIPSInst_RT(ir) == 0)
374 value = 0;
375 else
376 value = xcp->regs[MIPSInst_RT(ir)];
377
378 /* we only have one writable control reg
379 */
380 if (MIPSInst_RD(ir) == FPCREG_CSR) {
381 #ifdef CSRTRACE
382 printk("%p gpr[%d]->csr=%08x\n",
383 (void *) (xcp->cp0_epc),
384 MIPSInst_RT(ir), value);
385 #endif
386 value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
387 ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
388 /* convert to ieee library modes */
389 ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
390 }
391 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
392 return SIGFPE;
393 }
394 break;
395 }
396
397 case bc_op:{
398 int likely = 0;
399
400 if (xcp->cp0_cause & CAUSEF_BD)
401 return SIGILL;
402
403 #if __mips >= 4
404 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
405 #else
406 cond = ctx->fcr31 & FPU_CSR_COND;
407 #endif
408 switch (MIPSInst_RT(ir) & 3) {
409 case bcfl_op:
410 likely = 1;
411 case bcf_op:
412 cond = !cond;
413 break;
414 case bctl_op:
415 likely = 1;
416 case bct_op:
417 break;
418 default:
419 /* thats an illegal instruction */
420 return SIGILL;
421 }
422
423 xcp->cp0_cause |= CAUSEF_BD;
424 if (cond) {
425 /* branch taken: emulate dslot
426 * instruction
427 */
428 xcp->cp0_epc += 4;
429 contpc = (void *)
430 (xcp->cp0_epc +
431 (MIPSInst_SIMM(ir) << 2));
432
433 if (get_user(ir,
434 (mips_instruction __user *) xcp->cp0_epc)) {
435 fpuemustats.errors++;
436 return SIGBUS;
437 }
438
439 switch (MIPSInst_OPCODE(ir)) {
440 case lwc1_op:
441 case swc1_op:
442 #if (__mips >= 2 || defined(__mips64))
443 case ldc1_op:
444 case sdc1_op:
445 #endif
446 case cop1_op:
447 #if __mips >= 4 && __mips != 32
448 case cop1x_op:
449 #endif
450 /* its one of ours */
451 goto emul;
452 #if __mips >= 4
453 case spec_op:
454 if (MIPSInst_FUNC(ir) == movc_op)
455 goto emul;
456 break;
457 #endif
458 }
459
460 /*
461 * Single step the non-cp1
462 * instruction in the dslot
463 */
464 return mips_dsemul(xcp, ir, (unsigned long) contpc);
465 }
466 else {
467 /* branch not taken */
468 if (likely) {
469 /*
470 * branch likely nullifies
471 * dslot if not taken
472 */
473 xcp->cp0_epc += 4;
474 contpc += 4;
475 /*
476 * else continue & execute
477 * dslot as normal insn
478 */
479 }
480 }
481 break;
482 }
483
484 default:
485 if (!(MIPSInst_RS(ir) & 0x10))
486 return SIGILL;
487 {
488 int sig;
489
490 /* a real fpu computation instruction */
491 if ((sig = fpu_emu(xcp, ctx, ir)))
492 return sig;
493 }
494 }
495 break;
496
497 #if __mips >= 4 && __mips != 32
498 case cop1x_op:{
499 int sig;
500
501 if ((sig = fpux_emu(xcp, ctx, ir)))
502 return sig;
503 break;
504 }
505 #endif
506
507 #if __mips >= 4
508 case spec_op:
509 if (MIPSInst_FUNC(ir) != movc_op)
510 return SIGILL;
511 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
512 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
513 xcp->regs[MIPSInst_RD(ir)] =
514 xcp->regs[MIPSInst_RS(ir)];
515 break;
516 #endif
517
518 default:
519 return SIGILL;
520 }
521
522 /* we did it !! */
523 xcp->cp0_epc = (unsigned long) contpc;
524 xcp->cp0_cause &= ~CAUSEF_BD;
525
526 return 0;
527 }
528
529 /*
530 * Conversion table from MIPS compare ops 48-63
531 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
532 */
533 static const unsigned char cmptab[8] = {
534 0, /* cmp_0 (sig) cmp_sf */
535 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
536 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
537 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
538 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
539 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
540 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
541 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
542 };
543
544
545 #if __mips >= 4 && __mips != 32
546
547 /*
548 * Additional MIPS4 instructions
549 */
550
551 #define DEF3OP(name, p, f1, f2, f3) \
552 static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
553 ieee754##p t) \
554 { \
555 struct _ieee754_csr ieee754_csr_save; \
556 s = f1 (s, t); \
557 ieee754_csr_save = ieee754_csr; \
558 s = f2 (s, r); \
559 ieee754_csr_save.cx |= ieee754_csr.cx; \
560 ieee754_csr_save.sx |= ieee754_csr.sx; \
561 s = f3 (s); \
562 ieee754_csr.cx |= ieee754_csr_save.cx; \
563 ieee754_csr.sx |= ieee754_csr_save.sx; \
564 return s; \
565 }
566
567 static ieee754dp fpemu_dp_recip(ieee754dp d)
568 {
569 return ieee754dp_div(ieee754dp_one(0), d);
570 }
571
572 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
573 {
574 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
575 }
576
577 static ieee754sp fpemu_sp_recip(ieee754sp s)
578 {
579 return ieee754sp_div(ieee754sp_one(0), s);
580 }
581
582 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
583 {
584 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
585 }
586
587 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
588 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
589 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
590 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
591 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
592 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
593 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
594 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
595
596 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
597 mips_instruction ir)
598 {
599 unsigned rcsr = 0; /* resulting csr */
600
601 fpuemustats.cp1xops++;
602
603 switch (MIPSInst_FMA_FFMT(ir)) {
604 case s_fmt:{ /* 0 */
605
606 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
607 ieee754sp fd, fr, fs, ft;
608 u32 __user *va;
609 u32 val;
610
611 switch (MIPSInst_FUNC(ir)) {
612 case lwxc1_op:
613 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
614 xcp->regs[MIPSInst_FT(ir)]);
615
616 fpuemustats.loads++;
617 if (get_user(val, va)) {
618 fpuemustats.errors++;
619 return SIGBUS;
620 }
621 SITOREG(val, MIPSInst_FD(ir));
622 break;
623
624 case swxc1_op:
625 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
626 xcp->regs[MIPSInst_FT(ir)]);
627
628 fpuemustats.stores++;
629
630 SIFROMREG(val, MIPSInst_FS(ir));
631 if (put_user(val, va)) {
632 fpuemustats.errors++;
633 return SIGBUS;
634 }
635 break;
636
637 case madd_s_op:
638 handler = fpemu_sp_madd;
639 goto scoptop;
640 case msub_s_op:
641 handler = fpemu_sp_msub;
642 goto scoptop;
643 case nmadd_s_op:
644 handler = fpemu_sp_nmadd;
645 goto scoptop;
646 case nmsub_s_op:
647 handler = fpemu_sp_nmsub;
648 goto scoptop;
649
650 scoptop:
651 SPFROMREG(fr, MIPSInst_FR(ir));
652 SPFROMREG(fs, MIPSInst_FS(ir));
653 SPFROMREG(ft, MIPSInst_FT(ir));
654 fd = (*handler) (fr, fs, ft);
655 SPTOREG(fd, MIPSInst_FD(ir));
656
657 copcsr:
658 if (ieee754_cxtest(IEEE754_INEXACT))
659 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
660 if (ieee754_cxtest(IEEE754_UNDERFLOW))
661 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
662 if (ieee754_cxtest(IEEE754_OVERFLOW))
663 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
664 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
665 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
666
667 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
668 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
669 /*printk ("SIGFPE: fpu csr = %08x\n",
670 ctx->fcr31); */
671 return SIGFPE;
672 }
673
674 break;
675
676 default:
677 return SIGILL;
678 }
679 break;
680 }
681
682 case d_fmt:{ /* 1 */
683 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
684 ieee754dp fd, fr, fs, ft;
685 u64 __user *va;
686 u64 val;
687
688 switch (MIPSInst_FUNC(ir)) {
689 case ldxc1_op:
690 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
691 xcp->regs[MIPSInst_FT(ir)]);
692
693 fpuemustats.loads++;
694 if (get_user(val, va)) {
695 fpuemustats.errors++;
696 return SIGBUS;
697 }
698 DITOREG(val, MIPSInst_FD(ir));
699 break;
700
701 case sdxc1_op:
702 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
703 xcp->regs[MIPSInst_FT(ir)]);
704
705 fpuemustats.stores++;
706 DIFROMREG(val, MIPSInst_FS(ir));
707 if (put_user(val, va)) {
708 fpuemustats.errors++;
709 return SIGBUS;
710 }
711 break;
712
713 case madd_d_op:
714 handler = fpemu_dp_madd;
715 goto dcoptop;
716 case msub_d_op:
717 handler = fpemu_dp_msub;
718 goto dcoptop;
719 case nmadd_d_op:
720 handler = fpemu_dp_nmadd;
721 goto dcoptop;
722 case nmsub_d_op:
723 handler = fpemu_dp_nmsub;
724 goto dcoptop;
725
726 dcoptop:
727 DPFROMREG(fr, MIPSInst_FR(ir));
728 DPFROMREG(fs, MIPSInst_FS(ir));
729 DPFROMREG(ft, MIPSInst_FT(ir));
730 fd = (*handler) (fr, fs, ft);
731 DPTOREG(fd, MIPSInst_FD(ir));
732 goto copcsr;
733
734 default:
735 return SIGILL;
736 }
737 break;
738 }
739
740 case 0x7: /* 7 */
741 if (MIPSInst_FUNC(ir) != pfetch_op) {
742 return SIGILL;
743 }
744 /* ignore prefx operation */
745 break;
746
747 default:
748 return SIGILL;
749 }
750
751 return 0;
752 }
753 #endif
754
755
756
757 /*
758 * Emulate a single COP1 arithmetic instruction.
759 */
760 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
761 mips_instruction ir)
762 {
763 int rfmt; /* resulting format */
764 unsigned rcsr = 0; /* resulting csr */
765 unsigned cond;
766 union {
767 ieee754dp d;
768 ieee754sp s;
769 int w;
770 #ifdef __mips64
771 s64 l;
772 #endif
773 } rv; /* resulting value */
774
775 fpuemustats.cp1ops++;
776 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
777 case s_fmt:{ /* 0 */
778 union {
779 ieee754sp(*b) (ieee754sp, ieee754sp);
780 ieee754sp(*u) (ieee754sp);
781 } handler;
782
783 switch (MIPSInst_FUNC(ir)) {
784 /* binary ops */
785 case fadd_op:
786 handler.b = ieee754sp_add;
787 goto scopbop;
788 case fsub_op:
789 handler.b = ieee754sp_sub;
790 goto scopbop;
791 case fmul_op:
792 handler.b = ieee754sp_mul;
793 goto scopbop;
794 case fdiv_op:
795 handler.b = ieee754sp_div;
796 goto scopbop;
797
798 /* unary ops */
799 #if __mips >= 2 || defined(__mips64)
800 case fsqrt_op:
801 handler.u = ieee754sp_sqrt;
802 goto scopuop;
803 #endif
804 #if __mips >= 4 && __mips != 32
805 case frsqrt_op:
806 handler.u = fpemu_sp_rsqrt;
807 goto scopuop;
808 case frecip_op:
809 handler.u = fpemu_sp_recip;
810 goto scopuop;
811 #endif
812 #if __mips >= 4
813 case fmovc_op:
814 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
815 if (((ctx->fcr31 & cond) != 0) !=
816 ((MIPSInst_FT(ir) & 1) != 0))
817 return 0;
818 SPFROMREG(rv.s, MIPSInst_FS(ir));
819 break;
820 case fmovz_op:
821 if (xcp->regs[MIPSInst_FT(ir)] != 0)
822 return 0;
823 SPFROMREG(rv.s, MIPSInst_FS(ir));
824 break;
825 case fmovn_op:
826 if (xcp->regs[MIPSInst_FT(ir)] == 0)
827 return 0;
828 SPFROMREG(rv.s, MIPSInst_FS(ir));
829 break;
830 #endif
831 case fabs_op:
832 handler.u = ieee754sp_abs;
833 goto scopuop;
834 case fneg_op:
835 handler.u = ieee754sp_neg;
836 goto scopuop;
837 case fmov_op:
838 /* an easy one */
839 SPFROMREG(rv.s, MIPSInst_FS(ir));
840 goto copcsr;
841
842 /* binary op on handler */
843 scopbop:
844 {
845 ieee754sp fs, ft;
846
847 SPFROMREG(fs, MIPSInst_FS(ir));
848 SPFROMREG(ft, MIPSInst_FT(ir));
849
850 rv.s = (*handler.b) (fs, ft);
851 goto copcsr;
852 }
853 scopuop:
854 {
855 ieee754sp fs;
856
857 SPFROMREG(fs, MIPSInst_FS(ir));
858 rv.s = (*handler.u) (fs);
859 goto copcsr;
860 }
861 copcsr:
862 if (ieee754_cxtest(IEEE754_INEXACT))
863 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
864 if (ieee754_cxtest(IEEE754_UNDERFLOW))
865 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
866 if (ieee754_cxtest(IEEE754_OVERFLOW))
867 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
868 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
869 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
870 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
871 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
872 break;
873
874 /* unary conv ops */
875 case fcvts_op:
876 return SIGILL; /* not defined */
877 case fcvtd_op:{
878 ieee754sp fs;
879
880 SPFROMREG(fs, MIPSInst_FS(ir));
881 rv.d = ieee754dp_fsp(fs);
882 rfmt = d_fmt;
883 goto copcsr;
884 }
885 case fcvtw_op:{
886 ieee754sp fs;
887
888 SPFROMREG(fs, MIPSInst_FS(ir));
889 rv.w = ieee754sp_tint(fs);
890 rfmt = w_fmt;
891 goto copcsr;
892 }
893
894 #if __mips >= 2 || defined(__mips64)
895 case fround_op:
896 case ftrunc_op:
897 case fceil_op:
898 case ffloor_op:{
899 unsigned int oldrm = ieee754_csr.rm;
900 ieee754sp fs;
901
902 SPFROMREG(fs, MIPSInst_FS(ir));
903 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
904 rv.w = ieee754sp_tint(fs);
905 ieee754_csr.rm = oldrm;
906 rfmt = w_fmt;
907 goto copcsr;
908 }
909 #endif /* __mips >= 2 */
910
911 #if defined(__mips64)
912 case fcvtl_op:{
913 ieee754sp fs;
914
915 SPFROMREG(fs, MIPSInst_FS(ir));
916 rv.l = ieee754sp_tlong(fs);
917 rfmt = l_fmt;
918 goto copcsr;
919 }
920
921 case froundl_op:
922 case ftruncl_op:
923 case fceill_op:
924 case ffloorl_op:{
925 unsigned int oldrm = ieee754_csr.rm;
926 ieee754sp fs;
927
928 SPFROMREG(fs, MIPSInst_FS(ir));
929 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
930 rv.l = ieee754sp_tlong(fs);
931 ieee754_csr.rm = oldrm;
932 rfmt = l_fmt;
933 goto copcsr;
934 }
935 #endif /* defined(__mips64) */
936
937 default:
938 if (MIPSInst_FUNC(ir) >= fcmp_op) {
939 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
940 ieee754sp fs, ft;
941
942 SPFROMREG(fs, MIPSInst_FS(ir));
943 SPFROMREG(ft, MIPSInst_FT(ir));
944 rv.w = ieee754sp_cmp(fs, ft,
945 cmptab[cmpop & 0x7], cmpop & 0x8);
946 rfmt = -1;
947 if ((cmpop & 0x8) && ieee754_cxtest
948 (IEEE754_INVALID_OPERATION))
949 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
950 else
951 goto copcsr;
952
953 }
954 else {
955 return SIGILL;
956 }
957 break;
958 }
959 break;
960 }
961
962 case d_fmt:{
963 union {
964 ieee754dp(*b) (ieee754dp, ieee754dp);
965 ieee754dp(*u) (ieee754dp);
966 } handler;
967
968 switch (MIPSInst_FUNC(ir)) {
969 /* binary ops */
970 case fadd_op:
971 handler.b = ieee754dp_add;
972 goto dcopbop;
973 case fsub_op:
974 handler.b = ieee754dp_sub;
975 goto dcopbop;
976 case fmul_op:
977 handler.b = ieee754dp_mul;
978 goto dcopbop;
979 case fdiv_op:
980 handler.b = ieee754dp_div;
981 goto dcopbop;
982
983 /* unary ops */
984 #if __mips >= 2 || defined(__mips64)
985 case fsqrt_op:
986 handler.u = ieee754dp_sqrt;
987 goto dcopuop;
988 #endif
989 #if __mips >= 4 && __mips != 32
990 case frsqrt_op:
991 handler.u = fpemu_dp_rsqrt;
992 goto dcopuop;
993 case frecip_op:
994 handler.u = fpemu_dp_recip;
995 goto dcopuop;
996 #endif
997 #if __mips >= 4
998 case fmovc_op:
999 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1000 if (((ctx->fcr31 & cond) != 0) !=
1001 ((MIPSInst_FT(ir) & 1) != 0))
1002 return 0;
1003 DPFROMREG(rv.d, MIPSInst_FS(ir));
1004 break;
1005 case fmovz_op:
1006 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1007 return 0;
1008 DPFROMREG(rv.d, MIPSInst_FS(ir));
1009 break;
1010 case fmovn_op:
1011 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1012 return 0;
1013 DPFROMREG(rv.d, MIPSInst_FS(ir));
1014 break;
1015 #endif
1016 case fabs_op:
1017 handler.u = ieee754dp_abs;
1018 goto dcopuop;
1019
1020 case fneg_op:
1021 handler.u = ieee754dp_neg;
1022 goto dcopuop;
1023
1024 case fmov_op:
1025 /* an easy one */
1026 DPFROMREG(rv.d, MIPSInst_FS(ir));
1027 goto copcsr;
1028
1029 /* binary op on handler */
1030 dcopbop:{
1031 ieee754dp fs, ft;
1032
1033 DPFROMREG(fs, MIPSInst_FS(ir));
1034 DPFROMREG(ft, MIPSInst_FT(ir));
1035
1036 rv.d = (*handler.b) (fs, ft);
1037 goto copcsr;
1038 }
1039 dcopuop:{
1040 ieee754dp fs;
1041
1042 DPFROMREG(fs, MIPSInst_FS(ir));
1043 rv.d = (*handler.u) (fs);
1044 goto copcsr;
1045 }
1046
1047 /* unary conv ops */
1048 case fcvts_op:{
1049 ieee754dp fs;
1050
1051 DPFROMREG(fs, MIPSInst_FS(ir));
1052 rv.s = ieee754sp_fdp(fs);
1053 rfmt = s_fmt;
1054 goto copcsr;
1055 }
1056 case fcvtd_op:
1057 return SIGILL; /* not defined */
1058
1059 case fcvtw_op:{
1060 ieee754dp fs;
1061
1062 DPFROMREG(fs, MIPSInst_FS(ir));
1063 rv.w = ieee754dp_tint(fs); /* wrong */
1064 rfmt = w_fmt;
1065 goto copcsr;
1066 }
1067
1068 #if __mips >= 2 || defined(__mips64)
1069 case fround_op:
1070 case ftrunc_op:
1071 case fceil_op:
1072 case ffloor_op:{
1073 unsigned int oldrm = ieee754_csr.rm;
1074 ieee754dp fs;
1075
1076 DPFROMREG(fs, MIPSInst_FS(ir));
1077 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1078 rv.w = ieee754dp_tint(fs);
1079 ieee754_csr.rm = oldrm;
1080 rfmt = w_fmt;
1081 goto copcsr;
1082 }
1083 #endif
1084
1085 #if defined(__mips64)
1086 case fcvtl_op:{
1087 ieee754dp fs;
1088
1089 DPFROMREG(fs, MIPSInst_FS(ir));
1090 rv.l = ieee754dp_tlong(fs);
1091 rfmt = l_fmt;
1092 goto copcsr;
1093 }
1094
1095 case froundl_op:
1096 case ftruncl_op:
1097 case fceill_op:
1098 case ffloorl_op:{
1099 unsigned int oldrm = ieee754_csr.rm;
1100 ieee754dp fs;
1101
1102 DPFROMREG(fs, MIPSInst_FS(ir));
1103 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1104 rv.l = ieee754dp_tlong(fs);
1105 ieee754_csr.rm = oldrm;
1106 rfmt = l_fmt;
1107 goto copcsr;
1108 }
1109 #endif /* __mips >= 3 */
1110
1111 default:
1112 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1113 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1114 ieee754dp fs, ft;
1115
1116 DPFROMREG(fs, MIPSInst_FS(ir));
1117 DPFROMREG(ft, MIPSInst_FT(ir));
1118 rv.w = ieee754dp_cmp(fs, ft,
1119 cmptab[cmpop & 0x7], cmpop & 0x8);
1120 rfmt = -1;
1121 if ((cmpop & 0x8)
1122 &&
1123 ieee754_cxtest
1124 (IEEE754_INVALID_OPERATION))
1125 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1126 else
1127 goto copcsr;
1128
1129 }
1130 else {
1131 return SIGILL;
1132 }
1133 break;
1134 }
1135 break;
1136 }
1137
1138 case w_fmt:{
1139 ieee754sp fs;
1140
1141 switch (MIPSInst_FUNC(ir)) {
1142 case fcvts_op:
1143 /* convert word to single precision real */
1144 SPFROMREG(fs, MIPSInst_FS(ir));
1145 rv.s = ieee754sp_fint(fs.bits);
1146 rfmt = s_fmt;
1147 goto copcsr;
1148 case fcvtd_op:
1149 /* convert word to double precision real */
1150 SPFROMREG(fs, MIPSInst_FS(ir));
1151 rv.d = ieee754dp_fint(fs.bits);
1152 rfmt = d_fmt;
1153 goto copcsr;
1154 default:
1155 return SIGILL;
1156 }
1157 break;
1158 }
1159
1160 #if defined(__mips64)
1161 case l_fmt:{
1162 switch (MIPSInst_FUNC(ir)) {
1163 case fcvts_op:
1164 /* convert long to single precision real */
1165 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1166 rfmt = s_fmt;
1167 goto copcsr;
1168 case fcvtd_op:
1169 /* convert long to double precision real */
1170 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1171 rfmt = d_fmt;
1172 goto copcsr;
1173 default:
1174 return SIGILL;
1175 }
1176 break;
1177 }
1178 #endif
1179
1180 default:
1181 return SIGILL;
1182 }
1183
1184 /*
1185 * Update the fpu CSR register for this operation.
1186 * If an exception is required, generate a tidy SIGFPE exception,
1187 * without updating the result register.
1188 * Note: cause exception bits do not accumulate, they are rewritten
1189 * for each op; only the flag/sticky bits accumulate.
1190 */
1191 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1192 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1193 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1194 return SIGFPE;
1195 }
1196
1197 /*
1198 * Now we can safely write the result back to the register file.
1199 */
1200 switch (rfmt) {
1201 case -1:{
1202 #if __mips >= 4
1203 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1204 #else
1205 cond = FPU_CSR_COND;
1206 #endif
1207 if (rv.w)
1208 ctx->fcr31 |= cond;
1209 else
1210 ctx->fcr31 &= ~cond;
1211 break;
1212 }
1213 case d_fmt:
1214 DPTOREG(rv.d, MIPSInst_FD(ir));
1215 break;
1216 case s_fmt:
1217 SPTOREG(rv.s, MIPSInst_FD(ir));
1218 break;
1219 case w_fmt:
1220 SITOREG(rv.w, MIPSInst_FD(ir));
1221 break;
1222 #if defined(__mips64)
1223 case l_fmt:
1224 DITOREG(rv.l, MIPSInst_FD(ir));
1225 break;
1226 #endif
1227 default:
1228 return SIGILL;
1229 }
1230
1231 return 0;
1232 }
1233
1234 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1235 int has_fpu)
1236 {
1237 unsigned long oldepc, prevepc;
1238 mips_instruction insn;
1239 int sig = 0;
1240
1241 oldepc = xcp->cp0_epc;
1242 do {
1243 prevepc = xcp->cp0_epc;
1244
1245 if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1246 fpuemustats.errors++;
1247 return SIGBUS;
1248 }
1249 if (insn == 0)
1250 xcp->cp0_epc += 4; /* skip nops */
1251 else {
1252 /*
1253 * The 'ieee754_csr' is an alias of
1254 * ctx->fcr31. No need to copy ctx->fcr31 to
1255 * ieee754_csr. But ieee754_csr.rm is ieee
1256 * library modes. (not mips rounding mode)
1257 */
1258 /* convert to ieee library modes */
1259 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1260 sig = cop1Emulate(xcp, ctx);
1261 /* revert to mips rounding mode */
1262 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1263 }
1264
1265 if (has_fpu)
1266 break;
1267 if (sig)
1268 break;
1269
1270 cond_resched();
1271 } while (xcp->cp0_epc > prevepc);
1272
1273 /* SIGILL indicates a non-fpu instruction */
1274 if (sig == SIGILL && xcp->cp0_epc != oldepc)
1275 /* but if epc has advanced, then ignore it */
1276 sig = 0;
1277
1278 return sig;
1279 }
This page took 0.081228 seconds and 5 git commands to generate.