8c495104b321c54078bee3dd18bfefc02f63eb05
[deliverable/linux.git] / arch / mips / mips-boards / malta / malta_int.c
1 /*
2 * Carsten Langgaard, carstenl@mips.com
3 * Copyright (C) 2000, 2001, 2004 MIPS Technologies, Inc.
4 * Copyright (C) 2001 Ralf Baechle
5 *
6 * This program is free software; you can distribute it and/or modify it
7 * under the terms of the GNU General Public License (Version 2) as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
18 *
19 * Routines for generic manipulation of the interrupts found on the MIPS
20 * Malta board.
21 * The interrupt controller is located in the South Bridge a PIIX4 device
22 * with two internal 82C95 interrupt controllers.
23 */
24 #include <linux/init.h>
25 #include <linux/irq.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/kernel.h>
32 #include <linux/random.h>
33
34 #include <asm/traps.h>
35 #include <asm/i8259.h>
36 #include <asm/irq_cpu.h>
37 #include <asm/irq_regs.h>
38 #include <asm/mips-boards/malta.h>
39 #include <asm/mips-boards/maltaint.h>
40 #include <asm/mips-boards/piix4.h>
41 #include <asm/gt64120.h>
42 #include <asm/mips-boards/generic.h>
43 #include <asm/mips-boards/msc01_pci.h>
44 #include <asm/msc01_ic.h>
45 #include <asm/gic.h>
46 #include <asm/gcmpregs.h>
47
48 int gcmp_present = -1;
49 int gic_present;
50 static unsigned long _msc01_biu_base;
51 static unsigned long _gcmp_base;
52 static unsigned int ipi_map[NR_CPUS];
53
54 static DEFINE_SPINLOCK(mips_irq_lock);
55
56 static inline int mips_pcibios_iack(void)
57 {
58 int irq;
59 u32 dummy;
60
61 /*
62 * Determine highest priority pending interrupt by performing
63 * a PCI Interrupt Acknowledge cycle.
64 */
65 switch (mips_revision_sconid) {
66 case MIPS_REVISION_SCON_SOCIT:
67 case MIPS_REVISION_SCON_ROCIT:
68 case MIPS_REVISION_SCON_SOCITSC:
69 case MIPS_REVISION_SCON_SOCITSCP:
70 MSC_READ(MSC01_PCI_IACK, irq);
71 irq &= 0xff;
72 break;
73 case MIPS_REVISION_SCON_GT64120:
74 irq = GT_READ(GT_PCI0_IACK_OFS);
75 irq &= 0xff;
76 break;
77 case MIPS_REVISION_SCON_BONITO:
78 /* The following will generate a PCI IACK cycle on the
79 * Bonito controller. It's a little bit kludgy, but it
80 * was the easiest way to implement it in hardware at
81 * the given time.
82 */
83 BONITO_PCIMAP_CFG = 0x20000;
84
85 /* Flush Bonito register block */
86 dummy = BONITO_PCIMAP_CFG;
87 iob(); /* sync */
88
89 irq = readl((u32 *)_pcictrl_bonito_pcicfg);
90 iob(); /* sync */
91 irq &= 0xff;
92 BONITO_PCIMAP_CFG = 0;
93 break;
94 default:
95 printk(KERN_WARNING "Unknown system controller.\n");
96 return -1;
97 }
98 return irq;
99 }
100
101 static inline int get_int(void)
102 {
103 unsigned long flags;
104 int irq;
105 spin_lock_irqsave(&mips_irq_lock, flags);
106
107 irq = mips_pcibios_iack();
108
109 /*
110 * The only way we can decide if an interrupt is spurious
111 * is by checking the 8259 registers. This needs a spinlock
112 * on an SMP system, so leave it up to the generic code...
113 */
114
115 spin_unlock_irqrestore(&mips_irq_lock, flags);
116
117 return irq;
118 }
119
120 static void malta_hw0_irqdispatch(void)
121 {
122 int irq;
123
124 irq = get_int();
125 if (irq < 0) {
126 /* interrupt has already been cleared */
127 return;
128 }
129
130 do_IRQ(MALTA_INT_BASE + irq);
131 }
132
133 static void malta_ipi_irqdispatch(void)
134 {
135 int irq;
136
137 irq = gic_get_int();
138 if (irq < 0)
139 return; /* interrupt has already been cleared */
140
141 do_IRQ(MIPS_GIC_IRQ_BASE + irq);
142 }
143
144 static void corehi_irqdispatch(void)
145 {
146 unsigned int intedge, intsteer, pcicmd, pcibadaddr;
147 unsigned int pcimstat, intisr, inten, intpol;
148 unsigned int intrcause, datalo, datahi;
149 struct pt_regs *regs = get_irq_regs();
150
151 printk(KERN_EMERG "CoreHI interrupt, shouldn't happen, we die here!\n");
152 printk(KERN_EMERG "epc : %08lx\nStatus: %08lx\n"
153 "Cause : %08lx\nbadVaddr : %08lx\n",
154 regs->cp0_epc, regs->cp0_status,
155 regs->cp0_cause, regs->cp0_badvaddr);
156
157 /* Read all the registers and then print them as there is a
158 problem with interspersed printk's upsetting the Bonito controller.
159 Do it for the others too.
160 */
161
162 switch (mips_revision_sconid) {
163 case MIPS_REVISION_SCON_SOCIT:
164 case MIPS_REVISION_SCON_ROCIT:
165 case MIPS_REVISION_SCON_SOCITSC:
166 case MIPS_REVISION_SCON_SOCITSCP:
167 ll_msc_irq();
168 break;
169 case MIPS_REVISION_SCON_GT64120:
170 intrcause = GT_READ(GT_INTRCAUSE_OFS);
171 datalo = GT_READ(GT_CPUERR_ADDRLO_OFS);
172 datahi = GT_READ(GT_CPUERR_ADDRHI_OFS);
173 printk(KERN_EMERG "GT_INTRCAUSE = %08x\n", intrcause);
174 printk(KERN_EMERG "GT_CPUERR_ADDR = %02x%08x\n",
175 datahi, datalo);
176 break;
177 case MIPS_REVISION_SCON_BONITO:
178 pcibadaddr = BONITO_PCIBADADDR;
179 pcimstat = BONITO_PCIMSTAT;
180 intisr = BONITO_INTISR;
181 inten = BONITO_INTEN;
182 intpol = BONITO_INTPOL;
183 intedge = BONITO_INTEDGE;
184 intsteer = BONITO_INTSTEER;
185 pcicmd = BONITO_PCICMD;
186 printk(KERN_EMERG "BONITO_INTISR = %08x\n", intisr);
187 printk(KERN_EMERG "BONITO_INTEN = %08x\n", inten);
188 printk(KERN_EMERG "BONITO_INTPOL = %08x\n", intpol);
189 printk(KERN_EMERG "BONITO_INTEDGE = %08x\n", intedge);
190 printk(KERN_EMERG "BONITO_INTSTEER = %08x\n", intsteer);
191 printk(KERN_EMERG "BONITO_PCICMD = %08x\n", pcicmd);
192 printk(KERN_EMERG "BONITO_PCIBADADDR = %08x\n", pcibadaddr);
193 printk(KERN_EMERG "BONITO_PCIMSTAT = %08x\n", pcimstat);
194 break;
195 }
196
197 die("CoreHi interrupt", regs);
198 }
199
200 static inline int clz(unsigned long x)
201 {
202 __asm__(
203 " .set push \n"
204 " .set mips32 \n"
205 " clz %0, %1 \n"
206 " .set pop \n"
207 : "=r" (x)
208 : "r" (x));
209
210 return x;
211 }
212
213 /*
214 * Version of ffs that only looks at bits 12..15.
215 */
216 static inline unsigned int irq_ffs(unsigned int pending)
217 {
218 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
219 return -clz(pending) + 31 - CAUSEB_IP;
220 #else
221 unsigned int a0 = 7;
222 unsigned int t0;
223
224 t0 = pending & 0xf000;
225 t0 = t0 < 1;
226 t0 = t0 << 2;
227 a0 = a0 - t0;
228 pending = pending << t0;
229
230 t0 = pending & 0xc000;
231 t0 = t0 < 1;
232 t0 = t0 << 1;
233 a0 = a0 - t0;
234 pending = pending << t0;
235
236 t0 = pending & 0x8000;
237 t0 = t0 < 1;
238 /* t0 = t0 << 2; */
239 a0 = a0 - t0;
240 /* pending = pending << t0; */
241
242 return a0;
243 #endif
244 }
245
246 /*
247 * IRQs on the Malta board look basically (barring software IRQs which we
248 * don't use at all and all external interrupt sources are combined together
249 * on hardware interrupt 0 (MIPS IRQ 2)) like:
250 *
251 * MIPS IRQ Source
252 * -------- ------
253 * 0 Software (ignored)
254 * 1 Software (ignored)
255 * 2 Combined hardware interrupt (hw0)
256 * 3 Hardware (ignored)
257 * 4 Hardware (ignored)
258 * 5 Hardware (ignored)
259 * 6 Hardware (ignored)
260 * 7 R4k timer (what we use)
261 *
262 * We handle the IRQ according to _our_ priority which is:
263 *
264 * Highest ---- R4k Timer
265 * Lowest ---- Combined hardware interrupt
266 *
267 * then we just return, if multiple IRQs are pending then we will just take
268 * another exception, big deal.
269 */
270
271 asmlinkage void plat_irq_dispatch(void)
272 {
273 unsigned int pending = read_c0_cause() & read_c0_status() & ST0_IM;
274 int irq;
275
276 irq = irq_ffs(pending);
277
278 if (irq == MIPSCPU_INT_I8259A)
279 malta_hw0_irqdispatch();
280 else if (gic_present && ((1 << irq) & ipi_map[smp_processor_id()]))
281 malta_ipi_irqdispatch();
282 else if (irq >= 0)
283 do_IRQ(MIPS_CPU_IRQ_BASE + irq);
284 else
285 spurious_interrupt();
286 }
287
288 #ifdef CONFIG_MIPS_MT_SMP
289
290
291 #define GIC_MIPS_CPU_IPI_RESCHED_IRQ 3
292 #define GIC_MIPS_CPU_IPI_CALL_IRQ 4
293
294 #define MIPS_CPU_IPI_RESCHED_IRQ 0 /* SW int 0 for resched */
295 #define C_RESCHED C_SW0
296 #define MIPS_CPU_IPI_CALL_IRQ 1 /* SW int 1 for resched */
297 #define C_CALL C_SW1
298 static int cpu_ipi_resched_irq, cpu_ipi_call_irq;
299
300 static void ipi_resched_dispatch(void)
301 {
302 do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ);
303 }
304
305 static void ipi_call_dispatch(void)
306 {
307 do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ);
308 }
309
310 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
311 {
312 return IRQ_HANDLED;
313 }
314
315 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
316 {
317 smp_call_function_interrupt();
318
319 return IRQ_HANDLED;
320 }
321
322 static struct irqaction irq_resched = {
323 .handler = ipi_resched_interrupt,
324 .flags = IRQF_DISABLED|IRQF_PERCPU,
325 .name = "IPI_resched"
326 };
327
328 static struct irqaction irq_call = {
329 .handler = ipi_call_interrupt,
330 .flags = IRQF_DISABLED|IRQF_PERCPU,
331 .name = "IPI_call"
332 };
333 #endif /* CONFIG_MIPS_MT_SMP */
334
335 static struct irqaction i8259irq = {
336 .handler = no_action,
337 .name = "XT-PIC cascade"
338 };
339
340 static struct irqaction corehi_irqaction = {
341 .handler = no_action,
342 .name = "CoreHi"
343 };
344
345 static msc_irqmap_t __initdata msc_irqmap[] = {
346 {MSC01C_INT_TMR, MSC01_IRQ_EDGE, 0},
347 {MSC01C_INT_PCI, MSC01_IRQ_LEVEL, 0},
348 };
349 static int __initdata msc_nr_irqs = ARRAY_SIZE(msc_irqmap);
350
351 static msc_irqmap_t __initdata msc_eicirqmap[] = {
352 {MSC01E_INT_SW0, MSC01_IRQ_LEVEL, 0},
353 {MSC01E_INT_SW1, MSC01_IRQ_LEVEL, 0},
354 {MSC01E_INT_I8259A, MSC01_IRQ_LEVEL, 0},
355 {MSC01E_INT_SMI, MSC01_IRQ_LEVEL, 0},
356 {MSC01E_INT_COREHI, MSC01_IRQ_LEVEL, 0},
357 {MSC01E_INT_CORELO, MSC01_IRQ_LEVEL, 0},
358 {MSC01E_INT_TMR, MSC01_IRQ_EDGE, 0},
359 {MSC01E_INT_PCI, MSC01_IRQ_LEVEL, 0},
360 {MSC01E_INT_PERFCTR, MSC01_IRQ_LEVEL, 0},
361 {MSC01E_INT_CPUCTR, MSC01_IRQ_LEVEL, 0}
362 };
363
364 static int __initdata msc_nr_eicirqs = ARRAY_SIZE(msc_eicirqmap);
365
366 /*
367 * This GIC specific tabular array defines the association between External
368 * Interrupts and CPUs/Core Interrupts. The nature of the External
369 * Interrupts is also defined here - polarity/trigger.
370 */
371 static struct gic_intr_map gic_intr_map[] = {
372 { GIC_EXT_INTR(0), X, X, X, X, 0 },
373 { GIC_EXT_INTR(1), X, X, X, X, 0 },
374 { GIC_EXT_INTR(2), X, X, X, X, 0 },
375 { GIC_EXT_INTR(3), 0, GIC_CPU_INT0, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
376 { GIC_EXT_INTR(4), 0, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
377 { GIC_EXT_INTR(5), 0, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
378 { GIC_EXT_INTR(6), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
379 { GIC_EXT_INTR(7), 0, GIC_CPU_INT4, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
380 { GIC_EXT_INTR(8), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
381 { GIC_EXT_INTR(9), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
382 { GIC_EXT_INTR(10), X, X, X, X, 0 },
383 { GIC_EXT_INTR(11), X, X, X, X, 0 },
384 { GIC_EXT_INTR(12), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
385 { GIC_EXT_INTR(13), 0, GIC_MAP_TO_NMI_MSK, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
386 { GIC_EXT_INTR(14), 0, GIC_MAP_TO_NMI_MSK, GIC_POL_POS, GIC_TRIG_LEVEL, 0 },
387 { GIC_EXT_INTR(15), X, X, X, X, 0 },
388 { GIC_EXT_INTR(16), 0, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
389 { GIC_EXT_INTR(17), 0, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
390 { GIC_EXT_INTR(18), 1, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
391 { GIC_EXT_INTR(19), 1, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
392 { GIC_EXT_INTR(20), 2, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
393 { GIC_EXT_INTR(21), 2, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
394 { GIC_EXT_INTR(22), 3, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
395 { GIC_EXT_INTR(23), 3, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_EDGE, 1 },
396 };
397
398 /*
399 * GCMP needs to be detected before any SMP initialisation
400 */
401 int __init gcmp_probe(unsigned long addr, unsigned long size)
402 {
403 if (gcmp_present >= 0)
404 return gcmp_present;
405
406 _gcmp_base = (unsigned long) ioremap_nocache(GCMP_BASE_ADDR, GCMP_ADDRSPACE_SZ);
407 _msc01_biu_base = (unsigned long) ioremap_nocache(MSC01_BIU_REG_BASE, MSC01_BIU_ADDRSPACE_SZ);
408 gcmp_present = (GCMPGCB(GCMPB) & GCMP_GCB_GCMPB_GCMPBASE_MSK) == GCMP_BASE_ADDR;
409
410 if (gcmp_present)
411 printk(KERN_DEBUG "GCMP present\n");
412 return gcmp_present;
413 }
414
415 void __init fill_ipi_map(void)
416 {
417 int i;
418
419 for (i = 0; i < ARRAY_SIZE(gic_intr_map); i++) {
420 if (gic_intr_map[i].ipiflag && (gic_intr_map[i].cpunum != X))
421 ipi_map[gic_intr_map[i].cpunum] |=
422 (1 << (gic_intr_map[i].pin + 2));
423 }
424 }
425
426 void __init arch_init_irq(void)
427 {
428 int gic_present, gcmp_present;
429
430 init_i8259_irqs();
431
432 if (!cpu_has_veic)
433 mips_cpu_irq_init();
434
435 gcmp_present = gcmp_probe(GCMP_BASE_ADDR, GCMP_ADDRSPACE_SZ);
436 if (gcmp_present) {
437 GCMPGCB(GICBA) = GIC_BASE_ADDR | GCMP_GCB_GICBA_EN_MSK;
438 gic_present = 1;
439 } else {
440 _msc01_biu_base = (unsigned long) ioremap_nocache(MSC01_BIU_REG_BASE, MSC01_BIU_ADDRSPACE_SZ);
441 gic_present = (REG(_msc01_biu_base, MSC01_SC_CFG) &
442 MSC01_SC_CFG_GICPRES_MSK) >> MSC01_SC_CFG_GICPRES_SHF;
443 }
444 if (gic_present)
445 printk(KERN_DEBUG "GIC present\n");
446
447 switch (mips_revision_sconid) {
448 case MIPS_REVISION_SCON_SOCIT:
449 case MIPS_REVISION_SCON_ROCIT:
450 if (cpu_has_veic)
451 init_msc_irqs(MIPS_MSC01_IC_REG_BASE,
452 MSC01E_INT_BASE, msc_eicirqmap,
453 msc_nr_eicirqs);
454 else
455 init_msc_irqs(MIPS_MSC01_IC_REG_BASE,
456 MSC01C_INT_BASE, msc_irqmap,
457 msc_nr_irqs);
458 break;
459
460 case MIPS_REVISION_SCON_SOCITSC:
461 case MIPS_REVISION_SCON_SOCITSCP:
462 if (cpu_has_veic)
463 init_msc_irqs(MIPS_SOCITSC_IC_REG_BASE,
464 MSC01E_INT_BASE, msc_eicirqmap,
465 msc_nr_eicirqs);
466 else
467 init_msc_irqs(MIPS_SOCITSC_IC_REG_BASE,
468 MSC01C_INT_BASE, msc_irqmap,
469 msc_nr_irqs);
470 }
471
472 if (cpu_has_veic) {
473 set_vi_handler(MSC01E_INT_I8259A, malta_hw0_irqdispatch);
474 set_vi_handler(MSC01E_INT_COREHI, corehi_irqdispatch);
475 setup_irq(MSC01E_INT_BASE+MSC01E_INT_I8259A, &i8259irq);
476 setup_irq(MSC01E_INT_BASE+MSC01E_INT_COREHI, &corehi_irqaction);
477 } else if (cpu_has_vint) {
478 set_vi_handler(MIPSCPU_INT_I8259A, malta_hw0_irqdispatch);
479 set_vi_handler(MIPSCPU_INT_COREHI, corehi_irqdispatch);
480 #ifdef CONFIG_MIPS_MT_SMTC
481 setup_irq_smtc(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq,
482 (0x100 << MIPSCPU_INT_I8259A));
483 setup_irq_smtc(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI,
484 &corehi_irqaction, (0x100 << MIPSCPU_INT_COREHI));
485 /*
486 * Temporary hack to ensure that the subsidiary device
487 * interrupts coing in via the i8259A, but associated
488 * with low IRQ numbers, will restore the Status.IM
489 * value associated with the i8259A.
490 */
491 {
492 int i;
493
494 for (i = 0; i < 16; i++)
495 irq_hwmask[i] = (0x100 << MIPSCPU_INT_I8259A);
496 }
497 #else /* Not SMTC */
498 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq);
499 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI,
500 &corehi_irqaction);
501 #endif /* CONFIG_MIPS_MT_SMTC */
502 } else {
503 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq);
504 setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI,
505 &corehi_irqaction);
506 }
507
508 #if defined(CONFIG_MIPS_MT_SMP)
509 if (gic_present) {
510 /* FIXME */
511 int i;
512 struct {
513 unsigned int resched;
514 unsigned int call;
515 } ipiirq[] = {
516 {
517 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE0,
518 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE0},
519 {
520 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE1,
521 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE1
522 }, {
523 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE2,
524 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE2
525 }, {
526 .resched = GIC_IPI_EXT_INTR_RESCHED_VPE3,
527 .call = GIC_IPI_EXT_INTR_CALLFNC_VPE3
528 }
529 };
530 #define NIPI (sizeof(ipiirq)/sizeof(ipiirq[0]))
531 fill_ipi_map();
532 gic_init(GIC_BASE_ADDR, GIC_ADDRSPACE_SZ, gic_intr_map, ARRAY_SIZE(gic_intr_map), MIPS_GIC_IRQ_BASE);
533 if (!gcmp_present) {
534 /* Enable the GIC */
535 i = REG(_msc01_biu_base, MSC01_SC_CFG);
536 REG(_msc01_biu_base, MSC01_SC_CFG) =
537 (i | (0x1 << MSC01_SC_CFG_GICENA_SHF));
538 pr_debug("GIC Enabled\n");
539 }
540
541 /* set up ipi interrupts */
542 if (cpu_has_vint) {
543 set_vi_handler(MIPSCPU_INT_IPI0, malta_ipi_irqdispatch);
544 set_vi_handler(MIPSCPU_INT_IPI1, malta_ipi_irqdispatch);
545 }
546 /* Argh.. this really needs sorting out.. */
547 printk("CPU%d: status register was %08x\n", smp_processor_id(), read_c0_status());
548 write_c0_status(read_c0_status() | STATUSF_IP3 | STATUSF_IP4);
549 printk("CPU%d: status register now %08x\n", smp_processor_id(), read_c0_status());
550 write_c0_status(0x1100dc00);
551 printk("CPU%d: status register frc %08x\n", smp_processor_id(), read_c0_status());
552 for (i = 0; i < NIPI; i++) {
553 setup_irq(MIPS_GIC_IRQ_BASE + ipiirq[i].resched, &irq_resched);
554 setup_irq(MIPS_GIC_IRQ_BASE + ipiirq[i].call, &irq_call);
555
556 set_irq_handler(MIPS_GIC_IRQ_BASE + ipiirq[i].resched, handle_percpu_irq);
557 set_irq_handler(MIPS_GIC_IRQ_BASE + ipiirq[i].call, handle_percpu_irq);
558 }
559 } else {
560 /* set up ipi interrupts */
561 if (cpu_has_veic) {
562 set_vi_handler (MSC01E_INT_SW0, ipi_resched_dispatch);
563 set_vi_handler (MSC01E_INT_SW1, ipi_call_dispatch);
564 cpu_ipi_resched_irq = MSC01E_INT_SW0;
565 cpu_ipi_call_irq = MSC01E_INT_SW1;
566 } else {
567 if (cpu_has_vint) {
568 set_vi_handler (MIPS_CPU_IPI_RESCHED_IRQ, ipi_resched_dispatch);
569 set_vi_handler (MIPS_CPU_IPI_CALL_IRQ, ipi_call_dispatch);
570 }
571 cpu_ipi_resched_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ;
572 cpu_ipi_call_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ;
573 }
574
575 setup_irq(cpu_ipi_resched_irq, &irq_resched);
576 setup_irq(cpu_ipi_call_irq, &irq_call);
577
578 set_irq_handler(cpu_ipi_resched_irq, handle_percpu_irq);
579 set_irq_handler(cpu_ipi_call_irq, handle_percpu_irq);
580 }
581 #endif
582 }
583
584 void malta_be_init(void)
585 {
586 if (gcmp_present) {
587 /* Could change CM error mask register */
588 }
589 }
590
591
592 static char *tr[8] = {
593 "mem", "gcr", "gic", "mmio",
594 "0x04", "0x05", "0x06", "0x07"
595 };
596
597 static char *mcmd[32] = {
598 [0x00] = "0x00",
599 [0x01] = "Legacy Write",
600 [0x02] = "Legacy Read",
601 [0x03] = "0x03",
602 [0x04] = "0x04",
603 [0x05] = "0x05",
604 [0x06] = "0x06",
605 [0x07] = "0x07",
606 [0x08] = "Coherent Read Own",
607 [0x09] = "Coherent Read Share",
608 [0x0a] = "Coherent Read Discard",
609 [0x0b] = "Coherent Ready Share Always",
610 [0x0c] = "Coherent Upgrade",
611 [0x0d] = "Coherent Writeback",
612 [0x0e] = "0x0e",
613 [0x0f] = "0x0f",
614 [0x10] = "Coherent Copyback",
615 [0x11] = "Coherent Copyback Invalidate",
616 [0x12] = "Coherent Invalidate",
617 [0x13] = "Coherent Write Invalidate",
618 [0x14] = "Coherent Completion Sync",
619 [0x15] = "0x15",
620 [0x16] = "0x16",
621 [0x17] = "0x17",
622 [0x18] = "0x18",
623 [0x19] = "0x19",
624 [0x1a] = "0x1a",
625 [0x1b] = "0x1b",
626 [0x1c] = "0x1c",
627 [0x1d] = "0x1d",
628 [0x1e] = "0x1e",
629 [0x1f] = "0x1f"
630 };
631
632 static char *core[8] = {
633 "Invalid/OK", "Invalid/Data",
634 "Shared/OK", "Shared/Data",
635 "Modified/OK", "Modified/Data",
636 "Exclusive/OK", "Exclusive/Data"
637 };
638
639 static char *causes[32] = {
640 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
641 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
642 "0x08", "0x09", "0x0a", "0x0b",
643 "0x0c", "0x0d", "0x0e", "0x0f",
644 "0x10", "0x11", "0x12", "0x13",
645 "0x14", "0x15", "0x16", "INTVN_WR_ERR",
646 "INTVN_RD_ERR", "0x19", "0x1a", "0x1b",
647 "0x1c", "0x1d", "0x1e", "0x1f"
648 };
649
650 int malta_be_handler(struct pt_regs *regs, int is_fixup)
651 {
652 /* This duplicates the handling in do_be which seems wrong */
653 int retval = is_fixup ? MIPS_BE_FIXUP : MIPS_BE_FATAL;
654
655 if (gcmp_present) {
656 unsigned long cm_error = GCMPGCB(GCMEC);
657 unsigned long cm_addr = GCMPGCB(GCMEA);
658 unsigned long cm_other = GCMPGCB(GCMEO);
659 unsigned long cause, ocause;
660 char buf[256];
661
662 cause = (cm_error & GCMP_GCB_GMEC_ERROR_TYPE_MSK);
663 if (cause != 0) {
664 cause >>= GCMP_GCB_GMEC_ERROR_TYPE_SHF;
665 if (cause < 16) {
666 unsigned long cca_bits = (cm_error >> 15) & 7;
667 unsigned long tr_bits = (cm_error >> 12) & 7;
668 unsigned long mcmd_bits = (cm_error >> 7) & 0x1f;
669 unsigned long stag_bits = (cm_error >> 3) & 15;
670 unsigned long sport_bits = (cm_error >> 0) & 7;
671
672 snprintf(buf, sizeof(buf),
673 "CCA=%lu TR=%s MCmd=%s STag=%lu "
674 "SPort=%lu\n",
675 cca_bits, tr[tr_bits], mcmd[mcmd_bits],
676 stag_bits, sport_bits);
677 } else {
678 /* glob state & sresp together */
679 unsigned long c3_bits = (cm_error >> 18) & 7;
680 unsigned long c2_bits = (cm_error >> 15) & 7;
681 unsigned long c1_bits = (cm_error >> 12) & 7;
682 unsigned long c0_bits = (cm_error >> 9) & 7;
683 unsigned long sc_bit = (cm_error >> 8) & 1;
684 unsigned long mcmd_bits = (cm_error >> 3) & 0x1f;
685 unsigned long sport_bits = (cm_error >> 0) & 7;
686 snprintf(buf, sizeof(buf),
687 "C3=%s C2=%s C1=%s C0=%s SC=%s "
688 "MCmd=%s SPort=%lu\n",
689 core[c3_bits], core[c2_bits],
690 core[c1_bits], core[c0_bits],
691 sc_bit ? "True" : "False",
692 mcmd[mcmd_bits], sport_bits);
693 }
694
695 ocause = (cm_other & GCMP_GCB_GMEO_ERROR_2ND_MSK) >>
696 GCMP_GCB_GMEO_ERROR_2ND_SHF;
697
698 printk("CM_ERROR=%08lx %s <%s>\n", cm_error,
699 causes[cause], buf);
700 printk("CM_ADDR =%08lx\n", cm_addr);
701 printk("CM_OTHER=%08lx %s\n", cm_other, causes[ocause]);
702
703 /* reprime cause register */
704 GCMPGCB(GCMEC) = 0;
705 }
706 }
707
708 return retval;
709 }
This page took 0.044071 seconds and 4 git commands to generate.