MIPS: c-r4k: Split r4k_flush_kernel_vmap_range()
[deliverable/linux.git] / arch / mips / mm / c-r4k.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cm.h>
41
42 /*
43 * Bits describing what cache ops an SMP callback function may perform.
44 *
45 * R4K_HIT - Virtual user or kernel address based cache operations. The
46 * active_mm must be checked before using user addresses, falling
47 * back to kmap.
48 * R4K_INDEX - Index based cache operations.
49 */
50
51 #define R4K_HIT BIT(0)
52 #define R4K_INDEX BIT(1)
53
54 /**
55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
57 *
58 * Decides whether a cache op needs to be performed on every core in the system.
59 * This may change depending on the @type of cache operation, as well as the set
60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61 * hotplug from changing the result.
62 *
63 * Returns: 1 if the cache operation @type should be done on every core in
64 * the system.
65 * 0 if the cache operation @type is globalized and only needs to
66 * be performed on a simple CPU.
67 */
68 static inline bool r4k_op_needs_ipi(unsigned int type)
69 {
70 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 if (mips_cm_present())
72 return false;
73
74 /*
75 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 * be needed, but only if there are foreign CPUs (non-siblings with
77 * separate caches).
78 */
79 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81 return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83 return false;
84 #endif
85 }
86
87 /*
88 * Special Variant of smp_call_function for use by cache functions:
89 *
90 * o No return value
91 * o collapses to normal function call on UP kernels
92 * o collapses to normal function call on systems with a single shared
93 * primary cache.
94 * o doesn't disable interrupts on the local CPU
95 */
96 static inline void r4k_on_each_cpu(unsigned int type,
97 void (*func)(void *info), void *info)
98 {
99 preempt_disable();
100 if (r4k_op_needs_ipi(type))
101 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 func, info, 1);
103 func(info);
104 preempt_enable();
105 }
106
107 /*
108 * Must die.
109 */
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
114
115 /*
116 * Dummy cache handling routines for machines without boardcaches
117 */
118 static void cache_noop(void) {}
119
120 static struct bcache_ops no_sc_ops = {
121 .bc_enable = (void *)cache_noop,
122 .bc_disable = (void *)cache_noop,
123 .bc_wback_inv = (void *)cache_noop,
124 .bc_inv = (void *)cache_noop
125 };
126
127 struct bcache_ops *bcops = &no_sc_ops;
128
129 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
131
132 #define R4600_HIT_CACHEOP_WAR_IMPL \
133 do { \
134 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (R4600_V1_HIT_CACHEOP_WAR) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
138 } while (0)
139
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 R4600_HIT_CACHEOP_WAR_IMPL;
145 blast_dcache32_page(addr);
146 }
147
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 blast_dcache64_page(addr);
151 }
152
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 blast_dcache128_page(addr);
156 }
157
158 static void r4k_blast_dcache_page_setup(void)
159 {
160 unsigned long dc_lsize = cpu_dcache_line_size();
161
162 switch (dc_lsize) {
163 case 0:
164 r4k_blast_dcache_page = (void *)cache_noop;
165 break;
166 case 16:
167 r4k_blast_dcache_page = blast_dcache16_page;
168 break;
169 case 32:
170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 break;
172 case 64:
173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 break;
175 case 128:
176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 break;
178 default:
179 break;
180 }
181 }
182
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page r4k_blast_dcache_page
185 #else
186
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 unsigned long dc_lsize = cpu_dcache_line_size();
192
193 if (dc_lsize == 0)
194 r4k_blast_dcache_user_page = (void *)cache_noop;
195 else if (dc_lsize == 16)
196 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 else if (dc_lsize == 32)
198 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 else if (dc_lsize == 64)
200 r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202
203 #endif
204
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 unsigned long dc_lsize = cpu_dcache_line_size();
210
211 if (dc_lsize == 0)
212 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 else if (dc_lsize == 16)
214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 else if (dc_lsize == 32)
216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 else if (dc_lsize == 64)
218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 else if (dc_lsize == 128)
220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225
226 static void r4k_blast_dcache_setup(void)
227 {
228 unsigned long dc_lsize = cpu_dcache_line_size();
229
230 if (dc_lsize == 0)
231 r4k_blast_dcache = (void *)cache_noop;
232 else if (dc_lsize == 16)
233 r4k_blast_dcache = blast_dcache16;
234 else if (dc_lsize == 32)
235 r4k_blast_dcache = blast_dcache32;
236 else if (dc_lsize == 64)
237 r4k_blast_dcache = blast_dcache64;
238 else if (dc_lsize == 128)
239 r4k_blast_dcache = blast_dcache128;
240 }
241
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
245 "b\t1f\n\t" \
246 ".align\t" #order "\n\t" \
247 "1:\n\t" \
248 )
249 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
252 static inline void blast_r4600_v1_icache32(void)
253 {
254 unsigned long flags;
255
256 local_irq_save(flags);
257 blast_icache32();
258 local_irq_restore(flags);
259 }
260
261 static inline void tx49_blast_icache32(void)
262 {
263 unsigned long start = INDEX_BASE;
264 unsigned long end = start + current_cpu_data.icache.waysize;
265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 unsigned long ws_end = current_cpu_data.icache.ways <<
267 current_cpu_data.icache.waybit;
268 unsigned long ws, addr;
269
270 CACHE32_UNROLL32_ALIGN2;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws = 0; ws < ws_end; ws += ws_inc)
273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 cache32_unroll32(addr|ws, Index_Invalidate_I);
275 CACHE32_UNROLL32_ALIGN;
276 /* I'm in odd chunk. blast even chunks */
277 for (ws = 0; ws < ws_end; ws += ws_inc)
278 for (addr = start; addr < end; addr += 0x400 * 2)
279 cache32_unroll32(addr|ws, Index_Invalidate_I);
280 }
281
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
283 {
284 unsigned long flags;
285
286 local_irq_save(flags);
287 blast_icache32_page_indexed(page);
288 local_irq_restore(flags);
289 }
290
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
292 {
293 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294 unsigned long start = INDEX_BASE + (page & indexmask);
295 unsigned long end = start + PAGE_SIZE;
296 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297 unsigned long ws_end = current_cpu_data.icache.ways <<
298 current_cpu_data.icache.waybit;
299 unsigned long ws, addr;
300
301 CACHE32_UNROLL32_ALIGN2;
302 /* I'm in even chunk. blast odd chunks */
303 for (ws = 0; ws < ws_end; ws += ws_inc)
304 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305 cache32_unroll32(addr|ws, Index_Invalidate_I);
306 CACHE32_UNROLL32_ALIGN;
307 /* I'm in odd chunk. blast even chunks */
308 for (ws = 0; ws < ws_end; ws += ws_inc)
309 for (addr = start; addr < end; addr += 0x400 * 2)
310 cache32_unroll32(addr|ws, Index_Invalidate_I);
311 }
312
313 static void (* r4k_blast_icache_page)(unsigned long addr);
314
315 static void r4k_blast_icache_page_setup(void)
316 {
317 unsigned long ic_lsize = cpu_icache_line_size();
318
319 if (ic_lsize == 0)
320 r4k_blast_icache_page = (void *)cache_noop;
321 else if (ic_lsize == 16)
322 r4k_blast_icache_page = blast_icache16_page;
323 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324 r4k_blast_icache_page = loongson2_blast_icache32_page;
325 else if (ic_lsize == 32)
326 r4k_blast_icache_page = blast_icache32_page;
327 else if (ic_lsize == 64)
328 r4k_blast_icache_page = blast_icache64_page;
329 else if (ic_lsize == 128)
330 r4k_blast_icache_page = blast_icache128_page;
331 }
332
333 #ifndef CONFIG_EVA
334 #define r4k_blast_icache_user_page r4k_blast_icache_page
335 #else
336
337 static void (*r4k_blast_icache_user_page)(unsigned long addr);
338
339 static void r4k_blast_icache_user_page_setup(void)
340 {
341 unsigned long ic_lsize = cpu_icache_line_size();
342
343 if (ic_lsize == 0)
344 r4k_blast_icache_user_page = (void *)cache_noop;
345 else if (ic_lsize == 16)
346 r4k_blast_icache_user_page = blast_icache16_user_page;
347 else if (ic_lsize == 32)
348 r4k_blast_icache_user_page = blast_icache32_user_page;
349 else if (ic_lsize == 64)
350 r4k_blast_icache_user_page = blast_icache64_user_page;
351 }
352
353 #endif
354
355 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
356
357 static void r4k_blast_icache_page_indexed_setup(void)
358 {
359 unsigned long ic_lsize = cpu_icache_line_size();
360
361 if (ic_lsize == 0)
362 r4k_blast_icache_page_indexed = (void *)cache_noop;
363 else if (ic_lsize == 16)
364 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365 else if (ic_lsize == 32) {
366 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367 r4k_blast_icache_page_indexed =
368 blast_icache32_r4600_v1_page_indexed;
369 else if (TX49XX_ICACHE_INDEX_INV_WAR)
370 r4k_blast_icache_page_indexed =
371 tx49_blast_icache32_page_indexed;
372 else if (current_cpu_type() == CPU_LOONGSON2)
373 r4k_blast_icache_page_indexed =
374 loongson2_blast_icache32_page_indexed;
375 else
376 r4k_blast_icache_page_indexed =
377 blast_icache32_page_indexed;
378 } else if (ic_lsize == 64)
379 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
380 }
381
382 void (* r4k_blast_icache)(void);
383 EXPORT_SYMBOL(r4k_blast_icache);
384
385 static void r4k_blast_icache_setup(void)
386 {
387 unsigned long ic_lsize = cpu_icache_line_size();
388
389 if (ic_lsize == 0)
390 r4k_blast_icache = (void *)cache_noop;
391 else if (ic_lsize == 16)
392 r4k_blast_icache = blast_icache16;
393 else if (ic_lsize == 32) {
394 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395 r4k_blast_icache = blast_r4600_v1_icache32;
396 else if (TX49XX_ICACHE_INDEX_INV_WAR)
397 r4k_blast_icache = tx49_blast_icache32;
398 else if (current_cpu_type() == CPU_LOONGSON2)
399 r4k_blast_icache = loongson2_blast_icache32;
400 else
401 r4k_blast_icache = blast_icache32;
402 } else if (ic_lsize == 64)
403 r4k_blast_icache = blast_icache64;
404 else if (ic_lsize == 128)
405 r4k_blast_icache = blast_icache128;
406 }
407
408 static void (* r4k_blast_scache_page)(unsigned long addr);
409
410 static void r4k_blast_scache_page_setup(void)
411 {
412 unsigned long sc_lsize = cpu_scache_line_size();
413
414 if (scache_size == 0)
415 r4k_blast_scache_page = (void *)cache_noop;
416 else if (sc_lsize == 16)
417 r4k_blast_scache_page = blast_scache16_page;
418 else if (sc_lsize == 32)
419 r4k_blast_scache_page = blast_scache32_page;
420 else if (sc_lsize == 64)
421 r4k_blast_scache_page = blast_scache64_page;
422 else if (sc_lsize == 128)
423 r4k_blast_scache_page = blast_scache128_page;
424 }
425
426 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
427
428 static void r4k_blast_scache_page_indexed_setup(void)
429 {
430 unsigned long sc_lsize = cpu_scache_line_size();
431
432 if (scache_size == 0)
433 r4k_blast_scache_page_indexed = (void *)cache_noop;
434 else if (sc_lsize == 16)
435 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436 else if (sc_lsize == 32)
437 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438 else if (sc_lsize == 64)
439 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440 else if (sc_lsize == 128)
441 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
442 }
443
444 static void (* r4k_blast_scache)(void);
445
446 static void r4k_blast_scache_setup(void)
447 {
448 unsigned long sc_lsize = cpu_scache_line_size();
449
450 if (scache_size == 0)
451 r4k_blast_scache = (void *)cache_noop;
452 else if (sc_lsize == 16)
453 r4k_blast_scache = blast_scache16;
454 else if (sc_lsize == 32)
455 r4k_blast_scache = blast_scache32;
456 else if (sc_lsize == 64)
457 r4k_blast_scache = blast_scache64;
458 else if (sc_lsize == 128)
459 r4k_blast_scache = blast_scache128;
460 }
461
462 static inline void local_r4k___flush_cache_all(void * args)
463 {
464 switch (current_cpu_type()) {
465 case CPU_LOONGSON2:
466 case CPU_LOONGSON3:
467 case CPU_R4000SC:
468 case CPU_R4000MC:
469 case CPU_R4400SC:
470 case CPU_R4400MC:
471 case CPU_R10000:
472 case CPU_R12000:
473 case CPU_R14000:
474 case CPU_R16000:
475 /*
476 * These caches are inclusive caches, that is, if something
477 * is not cached in the S-cache, we know it also won't be
478 * in one of the primary caches.
479 */
480 r4k_blast_scache();
481 break;
482
483 case CPU_BMIPS5000:
484 r4k_blast_scache();
485 __sync();
486 break;
487
488 default:
489 r4k_blast_dcache();
490 r4k_blast_icache();
491 break;
492 }
493 }
494
495 static void r4k___flush_cache_all(void)
496 {
497 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
498 }
499
500 /**
501 * has_valid_asid() - Determine if an mm already has an ASID.
502 * @mm: Memory map.
503 * @type: R4K_HIT or R4K_INDEX, type of cache op.
504 *
505 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
506 * of type @type within an r4k_on_each_cpu() call will affect. If
507 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
508 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
509 * will need to be checked.
510 *
511 * Must be called in non-preemptive context.
512 *
513 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
514 * 0 otherwise.
515 */
516 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
517 {
518 unsigned int i;
519 const cpumask_t *mask = cpu_present_mask;
520
521 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
522 #ifdef CONFIG_SMP
523 /*
524 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
525 * each foreign core, so we only need to worry about siblings.
526 * Otherwise we need to worry about all present CPUs.
527 */
528 if (r4k_op_needs_ipi(type))
529 mask = &cpu_sibling_map[smp_processor_id()];
530 #endif
531 for_each_cpu(i, mask)
532 if (cpu_context(i, mm))
533 return 1;
534 return 0;
535 }
536
537 static void r4k__flush_cache_vmap(void)
538 {
539 r4k_blast_dcache();
540 }
541
542 static void r4k__flush_cache_vunmap(void)
543 {
544 r4k_blast_dcache();
545 }
546
547 /*
548 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
549 * whole caches when vma is executable.
550 */
551 static inline void local_r4k_flush_cache_range(void * args)
552 {
553 struct vm_area_struct *vma = args;
554 int exec = vma->vm_flags & VM_EXEC;
555
556 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
557 return;
558
559 /*
560 * If dcache can alias, we must blast it since mapping is changing.
561 * If executable, we must ensure any dirty lines are written back far
562 * enough to be visible to icache.
563 */
564 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
565 r4k_blast_dcache();
566 /* If executable, blast stale lines from icache */
567 if (exec)
568 r4k_blast_icache();
569 }
570
571 static void r4k_flush_cache_range(struct vm_area_struct *vma,
572 unsigned long start, unsigned long end)
573 {
574 int exec = vma->vm_flags & VM_EXEC;
575
576 if (cpu_has_dc_aliases || exec)
577 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
578 }
579
580 static inline void local_r4k_flush_cache_mm(void * args)
581 {
582 struct mm_struct *mm = args;
583
584 if (!has_valid_asid(mm, R4K_INDEX))
585 return;
586
587 /*
588 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
589 * only flush the primary caches but R1x000 behave sane ...
590 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
591 * caches, so we can bail out early.
592 */
593 if (current_cpu_type() == CPU_R4000SC ||
594 current_cpu_type() == CPU_R4000MC ||
595 current_cpu_type() == CPU_R4400SC ||
596 current_cpu_type() == CPU_R4400MC) {
597 r4k_blast_scache();
598 return;
599 }
600
601 r4k_blast_dcache();
602 }
603
604 static void r4k_flush_cache_mm(struct mm_struct *mm)
605 {
606 if (!cpu_has_dc_aliases)
607 return;
608
609 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
610 }
611
612 struct flush_cache_page_args {
613 struct vm_area_struct *vma;
614 unsigned long addr;
615 unsigned long pfn;
616 };
617
618 static inline void local_r4k_flush_cache_page(void *args)
619 {
620 struct flush_cache_page_args *fcp_args = args;
621 struct vm_area_struct *vma = fcp_args->vma;
622 unsigned long addr = fcp_args->addr;
623 struct page *page = pfn_to_page(fcp_args->pfn);
624 int exec = vma->vm_flags & VM_EXEC;
625 struct mm_struct *mm = vma->vm_mm;
626 int map_coherent = 0;
627 pgd_t *pgdp;
628 pud_t *pudp;
629 pmd_t *pmdp;
630 pte_t *ptep;
631 void *vaddr;
632
633 /*
634 * If owns no valid ASID yet, cannot possibly have gotten
635 * this page into the cache.
636 */
637 if (!has_valid_asid(mm, R4K_HIT))
638 return;
639
640 addr &= PAGE_MASK;
641 pgdp = pgd_offset(mm, addr);
642 pudp = pud_offset(pgdp, addr);
643 pmdp = pmd_offset(pudp, addr);
644 ptep = pte_offset(pmdp, addr);
645
646 /*
647 * If the page isn't marked valid, the page cannot possibly be
648 * in the cache.
649 */
650 if (!(pte_present(*ptep)))
651 return;
652
653 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
654 vaddr = NULL;
655 else {
656 /*
657 * Use kmap_coherent or kmap_atomic to do flushes for
658 * another ASID than the current one.
659 */
660 map_coherent = (cpu_has_dc_aliases &&
661 page_mapcount(page) &&
662 !Page_dcache_dirty(page));
663 if (map_coherent)
664 vaddr = kmap_coherent(page, addr);
665 else
666 vaddr = kmap_atomic(page);
667 addr = (unsigned long)vaddr;
668 }
669
670 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
671 vaddr ? r4k_blast_dcache_page(addr) :
672 r4k_blast_dcache_user_page(addr);
673 if (exec && !cpu_icache_snoops_remote_store)
674 r4k_blast_scache_page(addr);
675 }
676 if (exec) {
677 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
678 int cpu = smp_processor_id();
679
680 if (cpu_context(cpu, mm) != 0)
681 drop_mmu_context(mm, cpu);
682 } else
683 vaddr ? r4k_blast_icache_page(addr) :
684 r4k_blast_icache_user_page(addr);
685 }
686
687 if (vaddr) {
688 if (map_coherent)
689 kunmap_coherent();
690 else
691 kunmap_atomic(vaddr);
692 }
693 }
694
695 static void r4k_flush_cache_page(struct vm_area_struct *vma,
696 unsigned long addr, unsigned long pfn)
697 {
698 struct flush_cache_page_args args;
699
700 args.vma = vma;
701 args.addr = addr;
702 args.pfn = pfn;
703
704 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
705 }
706
707 static inline void local_r4k_flush_data_cache_page(void * addr)
708 {
709 r4k_blast_dcache_page((unsigned long) addr);
710 }
711
712 static void r4k_flush_data_cache_page(unsigned long addr)
713 {
714 if (in_atomic())
715 local_r4k_flush_data_cache_page((void *)addr);
716 else
717 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
718 (void *) addr);
719 }
720
721 struct flush_icache_range_args {
722 unsigned long start;
723 unsigned long end;
724 };
725
726 static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
727 {
728 if (!cpu_has_ic_fills_f_dc) {
729 if (end - start >= dcache_size) {
730 r4k_blast_dcache();
731 } else {
732 R4600_HIT_CACHEOP_WAR_IMPL;
733 protected_blast_dcache_range(start, end);
734 }
735 }
736
737 if (end - start > icache_size)
738 r4k_blast_icache();
739 else {
740 switch (boot_cpu_type()) {
741 case CPU_LOONGSON2:
742 protected_loongson2_blast_icache_range(start, end);
743 break;
744
745 default:
746 protected_blast_icache_range(start, end);
747 break;
748 }
749 }
750 #ifdef CONFIG_EVA
751 /*
752 * Due to all possible segment mappings, there might cache aliases
753 * caused by the bootloader being in non-EVA mode, and the CPU switching
754 * to EVA during early kernel init. It's best to flush the scache
755 * to avoid having secondary cores fetching stale data and lead to
756 * kernel crashes.
757 */
758 bc_wback_inv(start, (end - start));
759 __sync();
760 #endif
761 }
762
763 static inline void local_r4k_flush_icache_range_ipi(void *args)
764 {
765 struct flush_icache_range_args *fir_args = args;
766 unsigned long start = fir_args->start;
767 unsigned long end = fir_args->end;
768
769 local_r4k_flush_icache_range(start, end);
770 }
771
772 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
773 {
774 struct flush_icache_range_args args;
775
776 args.start = start;
777 args.end = end;
778
779 r4k_on_each_cpu(R4K_HIT | R4K_INDEX, local_r4k_flush_icache_range_ipi,
780 &args);
781 instruction_hazard();
782 }
783
784 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
785
786 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
787 {
788 /* Catch bad driver code */
789 BUG_ON(size == 0);
790
791 preempt_disable();
792 if (cpu_has_inclusive_pcaches) {
793 if (size >= scache_size)
794 r4k_blast_scache();
795 else
796 blast_scache_range(addr, addr + size);
797 preempt_enable();
798 __sync();
799 return;
800 }
801
802 /*
803 * Either no secondary cache or the available caches don't have the
804 * subset property so we have to flush the primary caches
805 * explicitly
806 */
807 if (size >= dcache_size) {
808 r4k_blast_dcache();
809 } else {
810 R4600_HIT_CACHEOP_WAR_IMPL;
811 blast_dcache_range(addr, addr + size);
812 }
813 preempt_enable();
814
815 bc_wback_inv(addr, size);
816 __sync();
817 }
818
819 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
820 {
821 /* Catch bad driver code */
822 BUG_ON(size == 0);
823
824 preempt_disable();
825 if (cpu_has_inclusive_pcaches) {
826 if (size >= scache_size)
827 r4k_blast_scache();
828 else {
829 /*
830 * There is no clearly documented alignment requirement
831 * for the cache instruction on MIPS processors and
832 * some processors, among them the RM5200 and RM7000
833 * QED processors will throw an address error for cache
834 * hit ops with insufficient alignment. Solved by
835 * aligning the address to cache line size.
836 */
837 blast_inv_scache_range(addr, addr + size);
838 }
839 preempt_enable();
840 __sync();
841 return;
842 }
843
844 if (size >= dcache_size) {
845 r4k_blast_dcache();
846 } else {
847 R4600_HIT_CACHEOP_WAR_IMPL;
848 blast_inv_dcache_range(addr, addr + size);
849 }
850 preempt_enable();
851
852 bc_inv(addr, size);
853 __sync();
854 }
855 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
856
857 struct flush_cache_sigtramp_args {
858 struct mm_struct *mm;
859 struct page *page;
860 unsigned long addr;
861 };
862
863 /*
864 * While we're protected against bad userland addresses we don't care
865 * very much about what happens in that case. Usually a segmentation
866 * fault will dump the process later on anyway ...
867 */
868 static void local_r4k_flush_cache_sigtramp(void *args)
869 {
870 struct flush_cache_sigtramp_args *fcs_args = args;
871 unsigned long addr = fcs_args->addr;
872 struct page *page = fcs_args->page;
873 struct mm_struct *mm = fcs_args->mm;
874 int map_coherent = 0;
875 void *vaddr;
876
877 unsigned long ic_lsize = cpu_icache_line_size();
878 unsigned long dc_lsize = cpu_dcache_line_size();
879 unsigned long sc_lsize = cpu_scache_line_size();
880
881 /*
882 * If owns no valid ASID yet, cannot possibly have gotten
883 * this page into the cache.
884 */
885 if (!has_valid_asid(mm, R4K_HIT))
886 return;
887
888 if (mm == current->active_mm) {
889 vaddr = NULL;
890 } else {
891 /*
892 * Use kmap_coherent or kmap_atomic to do flushes for
893 * another ASID than the current one.
894 */
895 map_coherent = (cpu_has_dc_aliases &&
896 page_mapcount(page) &&
897 !Page_dcache_dirty(page));
898 if (map_coherent)
899 vaddr = kmap_coherent(page, addr);
900 else
901 vaddr = kmap_atomic(page);
902 addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
903 }
904
905 R4600_HIT_CACHEOP_WAR_IMPL;
906 if (!cpu_has_ic_fills_f_dc) {
907 if (dc_lsize)
908 vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
909 : protected_writeback_dcache_line(
910 addr & ~(dc_lsize - 1));
911 if (!cpu_icache_snoops_remote_store && scache_size)
912 vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
913 : protected_writeback_scache_line(
914 addr & ~(sc_lsize - 1));
915 }
916 if (ic_lsize)
917 vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
918 : protected_flush_icache_line(addr & ~(ic_lsize - 1));
919
920 if (vaddr) {
921 if (map_coherent)
922 kunmap_coherent();
923 else
924 kunmap_atomic(vaddr);
925 }
926
927 if (MIPS4K_ICACHE_REFILL_WAR) {
928 __asm__ __volatile__ (
929 ".set push\n\t"
930 ".set noat\n\t"
931 ".set "MIPS_ISA_LEVEL"\n\t"
932 #ifdef CONFIG_32BIT
933 "la $at,1f\n\t"
934 #endif
935 #ifdef CONFIG_64BIT
936 "dla $at,1f\n\t"
937 #endif
938 "cache %0,($at)\n\t"
939 "nop; nop; nop\n"
940 "1:\n\t"
941 ".set pop"
942 :
943 : "i" (Hit_Invalidate_I));
944 }
945 if (MIPS_CACHE_SYNC_WAR)
946 __asm__ __volatile__ ("sync");
947 }
948
949 static void r4k_flush_cache_sigtramp(unsigned long addr)
950 {
951 struct flush_cache_sigtramp_args args;
952 int npages;
953
954 down_read(&current->mm->mmap_sem);
955
956 npages = get_user_pages_fast(addr, 1, 0, &args.page);
957 if (npages < 1)
958 goto out;
959
960 args.mm = current->mm;
961 args.addr = addr;
962
963 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
964
965 put_page(args.page);
966 out:
967 up_read(&current->mm->mmap_sem);
968 }
969
970 static void r4k_flush_icache_all(void)
971 {
972 if (cpu_has_vtag_icache)
973 r4k_blast_icache();
974 }
975
976 struct flush_kernel_vmap_range_args {
977 unsigned long vaddr;
978 int size;
979 };
980
981 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
982 {
983 /*
984 * Aliases only affect the primary caches so don't bother with
985 * S-caches or T-caches.
986 */
987 r4k_blast_dcache();
988 }
989
990 static inline void local_r4k_flush_kernel_vmap_range(void *args)
991 {
992 struct flush_kernel_vmap_range_args *vmra = args;
993 unsigned long vaddr = vmra->vaddr;
994 int size = vmra->size;
995
996 /*
997 * Aliases only affect the primary caches so don't bother with
998 * S-caches or T-caches.
999 */
1000 R4600_HIT_CACHEOP_WAR_IMPL;
1001 blast_dcache_range(vaddr, vaddr + size);
1002 }
1003
1004 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1005 {
1006 struct flush_kernel_vmap_range_args args;
1007
1008 args.vaddr = (unsigned long) vaddr;
1009 args.size = size;
1010
1011 if (size >= dcache_size)
1012 r4k_on_each_cpu(R4K_INDEX,
1013 local_r4k_flush_kernel_vmap_range_index, NULL);
1014 else
1015 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1016 &args);
1017 }
1018
1019 static inline void rm7k_erratum31(void)
1020 {
1021 const unsigned long ic_lsize = 32;
1022 unsigned long addr;
1023
1024 /* RM7000 erratum #31. The icache is screwed at startup. */
1025 write_c0_taglo(0);
1026 write_c0_taghi(0);
1027
1028 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1029 __asm__ __volatile__ (
1030 ".set push\n\t"
1031 ".set noreorder\n\t"
1032 ".set mips3\n\t"
1033 "cache\t%1, 0(%0)\n\t"
1034 "cache\t%1, 0x1000(%0)\n\t"
1035 "cache\t%1, 0x2000(%0)\n\t"
1036 "cache\t%1, 0x3000(%0)\n\t"
1037 "cache\t%2, 0(%0)\n\t"
1038 "cache\t%2, 0x1000(%0)\n\t"
1039 "cache\t%2, 0x2000(%0)\n\t"
1040 "cache\t%2, 0x3000(%0)\n\t"
1041 "cache\t%1, 0(%0)\n\t"
1042 "cache\t%1, 0x1000(%0)\n\t"
1043 "cache\t%1, 0x2000(%0)\n\t"
1044 "cache\t%1, 0x3000(%0)\n\t"
1045 ".set pop\n"
1046 :
1047 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1048 }
1049 }
1050
1051 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1052 {
1053 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1054 unsigned int rev = c->processor_id & PRID_REV_MASK;
1055 int present = 0;
1056
1057 /*
1058 * Early versions of the 74K do not update the cache tags on a
1059 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1060 * aliases. In this case it is better to treat the cache as always
1061 * having aliases. Also disable the synonym tag update feature
1062 * where available. In this case no opportunistic tag update will
1063 * happen where a load causes a virtual address miss but a physical
1064 * address hit during a D-cache look-up.
1065 */
1066 switch (imp) {
1067 case PRID_IMP_74K:
1068 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1069 present = 1;
1070 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1071 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1072 break;
1073 case PRID_IMP_1074K:
1074 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1075 present = 1;
1076 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1077 }
1078 break;
1079 default:
1080 BUG();
1081 }
1082
1083 return present;
1084 }
1085
1086 static void b5k_instruction_hazard(void)
1087 {
1088 __sync();
1089 __sync();
1090 __asm__ __volatile__(
1091 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1092 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1093 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1094 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1095 : : : "memory");
1096 }
1097
1098 static char *way_string[] = { NULL, "direct mapped", "2-way",
1099 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1100 "9-way", "10-way", "11-way", "12-way",
1101 "13-way", "14-way", "15-way", "16-way",
1102 };
1103
1104 static void probe_pcache(void)
1105 {
1106 struct cpuinfo_mips *c = &current_cpu_data;
1107 unsigned int config = read_c0_config();
1108 unsigned int prid = read_c0_prid();
1109 int has_74k_erratum = 0;
1110 unsigned long config1;
1111 unsigned int lsize;
1112
1113 switch (current_cpu_type()) {
1114 case CPU_R4600: /* QED style two way caches? */
1115 case CPU_R4700:
1116 case CPU_R5000:
1117 case CPU_NEVADA:
1118 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1119 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1120 c->icache.ways = 2;
1121 c->icache.waybit = __ffs(icache_size/2);
1122
1123 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1124 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1125 c->dcache.ways = 2;
1126 c->dcache.waybit= __ffs(dcache_size/2);
1127
1128 c->options |= MIPS_CPU_CACHE_CDEX_P;
1129 break;
1130
1131 case CPU_R5432:
1132 case CPU_R5500:
1133 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1134 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1135 c->icache.ways = 2;
1136 c->icache.waybit= 0;
1137
1138 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1139 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1140 c->dcache.ways = 2;
1141 c->dcache.waybit = 0;
1142
1143 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1144 break;
1145
1146 case CPU_TX49XX:
1147 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1148 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1149 c->icache.ways = 4;
1150 c->icache.waybit= 0;
1151
1152 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1153 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1154 c->dcache.ways = 4;
1155 c->dcache.waybit = 0;
1156
1157 c->options |= MIPS_CPU_CACHE_CDEX_P;
1158 c->options |= MIPS_CPU_PREFETCH;
1159 break;
1160
1161 case CPU_R4000PC:
1162 case CPU_R4000SC:
1163 case CPU_R4000MC:
1164 case CPU_R4400PC:
1165 case CPU_R4400SC:
1166 case CPU_R4400MC:
1167 case CPU_R4300:
1168 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1169 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1170 c->icache.ways = 1;
1171 c->icache.waybit = 0; /* doesn't matter */
1172
1173 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1174 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1175 c->dcache.ways = 1;
1176 c->dcache.waybit = 0; /* does not matter */
1177
1178 c->options |= MIPS_CPU_CACHE_CDEX_P;
1179 break;
1180
1181 case CPU_R10000:
1182 case CPU_R12000:
1183 case CPU_R14000:
1184 case CPU_R16000:
1185 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1186 c->icache.linesz = 64;
1187 c->icache.ways = 2;
1188 c->icache.waybit = 0;
1189
1190 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1191 c->dcache.linesz = 32;
1192 c->dcache.ways = 2;
1193 c->dcache.waybit = 0;
1194
1195 c->options |= MIPS_CPU_PREFETCH;
1196 break;
1197
1198 case CPU_VR4133:
1199 write_c0_config(config & ~VR41_CONF_P4K);
1200 case CPU_VR4131:
1201 /* Workaround for cache instruction bug of VR4131 */
1202 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1203 c->processor_id == 0x0c82U) {
1204 config |= 0x00400000U;
1205 if (c->processor_id == 0x0c80U)
1206 config |= VR41_CONF_BP;
1207 write_c0_config(config);
1208 } else
1209 c->options |= MIPS_CPU_CACHE_CDEX_P;
1210
1211 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1212 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1213 c->icache.ways = 2;
1214 c->icache.waybit = __ffs(icache_size/2);
1215
1216 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1217 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1218 c->dcache.ways = 2;
1219 c->dcache.waybit = __ffs(dcache_size/2);
1220 break;
1221
1222 case CPU_VR41XX:
1223 case CPU_VR4111:
1224 case CPU_VR4121:
1225 case CPU_VR4122:
1226 case CPU_VR4181:
1227 case CPU_VR4181A:
1228 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1229 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1230 c->icache.ways = 1;
1231 c->icache.waybit = 0; /* doesn't matter */
1232
1233 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1234 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1235 c->dcache.ways = 1;
1236 c->dcache.waybit = 0; /* does not matter */
1237
1238 c->options |= MIPS_CPU_CACHE_CDEX_P;
1239 break;
1240
1241 case CPU_RM7000:
1242 rm7k_erratum31();
1243
1244 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1245 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1246 c->icache.ways = 4;
1247 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1248
1249 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1250 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1251 c->dcache.ways = 4;
1252 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1253
1254 c->options |= MIPS_CPU_CACHE_CDEX_P;
1255 c->options |= MIPS_CPU_PREFETCH;
1256 break;
1257
1258 case CPU_LOONGSON2:
1259 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1260 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1261 if (prid & 0x3)
1262 c->icache.ways = 4;
1263 else
1264 c->icache.ways = 2;
1265 c->icache.waybit = 0;
1266
1267 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1268 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1269 if (prid & 0x3)
1270 c->dcache.ways = 4;
1271 else
1272 c->dcache.ways = 2;
1273 c->dcache.waybit = 0;
1274 break;
1275
1276 case CPU_LOONGSON3:
1277 config1 = read_c0_config1();
1278 lsize = (config1 >> 19) & 7;
1279 if (lsize)
1280 c->icache.linesz = 2 << lsize;
1281 else
1282 c->icache.linesz = 0;
1283 c->icache.sets = 64 << ((config1 >> 22) & 7);
1284 c->icache.ways = 1 + ((config1 >> 16) & 7);
1285 icache_size = c->icache.sets *
1286 c->icache.ways *
1287 c->icache.linesz;
1288 c->icache.waybit = 0;
1289
1290 lsize = (config1 >> 10) & 7;
1291 if (lsize)
1292 c->dcache.linesz = 2 << lsize;
1293 else
1294 c->dcache.linesz = 0;
1295 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1296 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1297 dcache_size = c->dcache.sets *
1298 c->dcache.ways *
1299 c->dcache.linesz;
1300 c->dcache.waybit = 0;
1301 if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
1302 c->options |= MIPS_CPU_PREFETCH;
1303 break;
1304
1305 case CPU_CAVIUM_OCTEON3:
1306 /* For now lie about the number of ways. */
1307 c->icache.linesz = 128;
1308 c->icache.sets = 16;
1309 c->icache.ways = 8;
1310 c->icache.flags |= MIPS_CACHE_VTAG;
1311 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1312
1313 c->dcache.linesz = 128;
1314 c->dcache.ways = 8;
1315 c->dcache.sets = 8;
1316 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1317 c->options |= MIPS_CPU_PREFETCH;
1318 break;
1319
1320 default:
1321 if (!(config & MIPS_CONF_M))
1322 panic("Don't know how to probe P-caches on this cpu.");
1323
1324 /*
1325 * So we seem to be a MIPS32 or MIPS64 CPU
1326 * So let's probe the I-cache ...
1327 */
1328 config1 = read_c0_config1();
1329
1330 lsize = (config1 >> 19) & 7;
1331
1332 /* IL == 7 is reserved */
1333 if (lsize == 7)
1334 panic("Invalid icache line size");
1335
1336 c->icache.linesz = lsize ? 2 << lsize : 0;
1337
1338 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1339 c->icache.ways = 1 + ((config1 >> 16) & 7);
1340
1341 icache_size = c->icache.sets *
1342 c->icache.ways *
1343 c->icache.linesz;
1344 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1345
1346 if (config & 0x8) /* VI bit */
1347 c->icache.flags |= MIPS_CACHE_VTAG;
1348
1349 /*
1350 * Now probe the MIPS32 / MIPS64 data cache.
1351 */
1352 c->dcache.flags = 0;
1353
1354 lsize = (config1 >> 10) & 7;
1355
1356 /* DL == 7 is reserved */
1357 if (lsize == 7)
1358 panic("Invalid dcache line size");
1359
1360 c->dcache.linesz = lsize ? 2 << lsize : 0;
1361
1362 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1363 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1364
1365 dcache_size = c->dcache.sets *
1366 c->dcache.ways *
1367 c->dcache.linesz;
1368 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1369
1370 c->options |= MIPS_CPU_PREFETCH;
1371 break;
1372 }
1373
1374 /*
1375 * Processor configuration sanity check for the R4000SC erratum
1376 * #5. With page sizes larger than 32kB there is no possibility
1377 * to get a VCE exception anymore so we don't care about this
1378 * misconfiguration. The case is rather theoretical anyway;
1379 * presumably no vendor is shipping his hardware in the "bad"
1380 * configuration.
1381 */
1382 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1383 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1384 !(config & CONF_SC) && c->icache.linesz != 16 &&
1385 PAGE_SIZE <= 0x8000)
1386 panic("Improper R4000SC processor configuration detected");
1387
1388 /* compute a couple of other cache variables */
1389 c->icache.waysize = icache_size / c->icache.ways;
1390 c->dcache.waysize = dcache_size / c->dcache.ways;
1391
1392 c->icache.sets = c->icache.linesz ?
1393 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1394 c->dcache.sets = c->dcache.linesz ?
1395 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1396
1397 /*
1398 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1399 * virtually indexed so normally would suffer from aliases. So
1400 * normally they'd suffer from aliases but magic in the hardware deals
1401 * with that for us so we don't need to take care ourselves.
1402 */
1403 switch (current_cpu_type()) {
1404 case CPU_20KC:
1405 case CPU_25KF:
1406 case CPU_SB1:
1407 case CPU_SB1A:
1408 case CPU_XLR:
1409 c->dcache.flags |= MIPS_CACHE_PINDEX;
1410 break;
1411
1412 case CPU_R10000:
1413 case CPU_R12000:
1414 case CPU_R14000:
1415 case CPU_R16000:
1416 break;
1417
1418 case CPU_74K:
1419 case CPU_1074K:
1420 has_74k_erratum = alias_74k_erratum(c);
1421 /* Fall through. */
1422 case CPU_M14KC:
1423 case CPU_M14KEC:
1424 case CPU_24K:
1425 case CPU_34K:
1426 case CPU_1004K:
1427 case CPU_INTERAPTIV:
1428 case CPU_P5600:
1429 case CPU_PROAPTIV:
1430 case CPU_M5150:
1431 case CPU_QEMU_GENERIC:
1432 case CPU_I6400:
1433 case CPU_P6600:
1434 case CPU_M6250:
1435 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1436 (c->icache.waysize > PAGE_SIZE))
1437 c->icache.flags |= MIPS_CACHE_ALIASES;
1438 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1439 /*
1440 * Effectively physically indexed dcache,
1441 * thus no virtual aliases.
1442 */
1443 c->dcache.flags |= MIPS_CACHE_PINDEX;
1444 break;
1445 }
1446 default:
1447 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1448 c->dcache.flags |= MIPS_CACHE_ALIASES;
1449 }
1450
1451 switch (current_cpu_type()) {
1452 case CPU_20KC:
1453 /*
1454 * Some older 20Kc chips doesn't have the 'VI' bit in
1455 * the config register.
1456 */
1457 c->icache.flags |= MIPS_CACHE_VTAG;
1458 break;
1459
1460 case CPU_ALCHEMY:
1461 case CPU_I6400:
1462 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1463 break;
1464
1465 case CPU_BMIPS5000:
1466 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1467 /* Cache aliases are handled in hardware; allow HIGHMEM */
1468 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1469 break;
1470
1471 case CPU_LOONGSON2:
1472 /*
1473 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1474 * one op will act on all 4 ways
1475 */
1476 c->icache.ways = 1;
1477 }
1478
1479 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1480 icache_size >> 10,
1481 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1482 way_string[c->icache.ways], c->icache.linesz);
1483
1484 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1485 dcache_size >> 10, way_string[c->dcache.ways],
1486 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1487 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1488 "cache aliases" : "no aliases",
1489 c->dcache.linesz);
1490 }
1491
1492 static void probe_vcache(void)
1493 {
1494 struct cpuinfo_mips *c = &current_cpu_data;
1495 unsigned int config2, lsize;
1496
1497 if (current_cpu_type() != CPU_LOONGSON3)
1498 return;
1499
1500 config2 = read_c0_config2();
1501 if ((lsize = ((config2 >> 20) & 15)))
1502 c->vcache.linesz = 2 << lsize;
1503 else
1504 c->vcache.linesz = lsize;
1505
1506 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1507 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1508
1509 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1510
1511 c->vcache.waybit = 0;
1512
1513 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1514 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1515 }
1516
1517 /*
1518 * If you even _breathe_ on this function, look at the gcc output and make sure
1519 * it does not pop things on and off the stack for the cache sizing loop that
1520 * executes in KSEG1 space or else you will crash and burn badly. You have
1521 * been warned.
1522 */
1523 static int probe_scache(void)
1524 {
1525 unsigned long flags, addr, begin, end, pow2;
1526 unsigned int config = read_c0_config();
1527 struct cpuinfo_mips *c = &current_cpu_data;
1528
1529 if (config & CONF_SC)
1530 return 0;
1531
1532 begin = (unsigned long) &_stext;
1533 begin &= ~((4 * 1024 * 1024) - 1);
1534 end = begin + (4 * 1024 * 1024);
1535
1536 /*
1537 * This is such a bitch, you'd think they would make it easy to do
1538 * this. Away you daemons of stupidity!
1539 */
1540 local_irq_save(flags);
1541
1542 /* Fill each size-multiple cache line with a valid tag. */
1543 pow2 = (64 * 1024);
1544 for (addr = begin; addr < end; addr = (begin + pow2)) {
1545 unsigned long *p = (unsigned long *) addr;
1546 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1547 pow2 <<= 1;
1548 }
1549
1550 /* Load first line with zero (therefore invalid) tag. */
1551 write_c0_taglo(0);
1552 write_c0_taghi(0);
1553 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1554 cache_op(Index_Store_Tag_I, begin);
1555 cache_op(Index_Store_Tag_D, begin);
1556 cache_op(Index_Store_Tag_SD, begin);
1557
1558 /* Now search for the wrap around point. */
1559 pow2 = (128 * 1024);
1560 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1561 cache_op(Index_Load_Tag_SD, addr);
1562 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1563 if (!read_c0_taglo())
1564 break;
1565 pow2 <<= 1;
1566 }
1567 local_irq_restore(flags);
1568 addr -= begin;
1569
1570 scache_size = addr;
1571 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1572 c->scache.ways = 1;
1573 c->scache.waybit = 0; /* does not matter */
1574
1575 return 1;
1576 }
1577
1578 static void __init loongson2_sc_init(void)
1579 {
1580 struct cpuinfo_mips *c = &current_cpu_data;
1581
1582 scache_size = 512*1024;
1583 c->scache.linesz = 32;
1584 c->scache.ways = 4;
1585 c->scache.waybit = 0;
1586 c->scache.waysize = scache_size / (c->scache.ways);
1587 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1588 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1589 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1590
1591 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1592 }
1593
1594 static void __init loongson3_sc_init(void)
1595 {
1596 struct cpuinfo_mips *c = &current_cpu_data;
1597 unsigned int config2, lsize;
1598
1599 config2 = read_c0_config2();
1600 lsize = (config2 >> 4) & 15;
1601 if (lsize)
1602 c->scache.linesz = 2 << lsize;
1603 else
1604 c->scache.linesz = 0;
1605 c->scache.sets = 64 << ((config2 >> 8) & 15);
1606 c->scache.ways = 1 + (config2 & 15);
1607
1608 scache_size = c->scache.sets *
1609 c->scache.ways *
1610 c->scache.linesz;
1611 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1612 scache_size *= 4;
1613 c->scache.waybit = 0;
1614 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1615 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1616 if (scache_size)
1617 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1618 return;
1619 }
1620
1621 extern int r5k_sc_init(void);
1622 extern int rm7k_sc_init(void);
1623 extern int mips_sc_init(void);
1624
1625 static void setup_scache(void)
1626 {
1627 struct cpuinfo_mips *c = &current_cpu_data;
1628 unsigned int config = read_c0_config();
1629 int sc_present = 0;
1630
1631 /*
1632 * Do the probing thing on R4000SC and R4400SC processors. Other
1633 * processors don't have a S-cache that would be relevant to the
1634 * Linux memory management.
1635 */
1636 switch (current_cpu_type()) {
1637 case CPU_R4000SC:
1638 case CPU_R4000MC:
1639 case CPU_R4400SC:
1640 case CPU_R4400MC:
1641 sc_present = run_uncached(probe_scache);
1642 if (sc_present)
1643 c->options |= MIPS_CPU_CACHE_CDEX_S;
1644 break;
1645
1646 case CPU_R10000:
1647 case CPU_R12000:
1648 case CPU_R14000:
1649 case CPU_R16000:
1650 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1651 c->scache.linesz = 64 << ((config >> 13) & 1);
1652 c->scache.ways = 2;
1653 c->scache.waybit= 0;
1654 sc_present = 1;
1655 break;
1656
1657 case CPU_R5000:
1658 case CPU_NEVADA:
1659 #ifdef CONFIG_R5000_CPU_SCACHE
1660 r5k_sc_init();
1661 #endif
1662 return;
1663
1664 case CPU_RM7000:
1665 #ifdef CONFIG_RM7000_CPU_SCACHE
1666 rm7k_sc_init();
1667 #endif
1668 return;
1669
1670 case CPU_LOONGSON2:
1671 loongson2_sc_init();
1672 return;
1673
1674 case CPU_LOONGSON3:
1675 loongson3_sc_init();
1676 return;
1677
1678 case CPU_CAVIUM_OCTEON3:
1679 case CPU_XLP:
1680 /* don't need to worry about L2, fully coherent */
1681 return;
1682
1683 default:
1684 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1685 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1686 MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1687 #ifdef CONFIG_MIPS_CPU_SCACHE
1688 if (mips_sc_init ()) {
1689 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1690 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1691 scache_size >> 10,
1692 way_string[c->scache.ways], c->scache.linesz);
1693 }
1694 #else
1695 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1696 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1697 #endif
1698 return;
1699 }
1700 sc_present = 0;
1701 }
1702
1703 if (!sc_present)
1704 return;
1705
1706 /* compute a couple of other cache variables */
1707 c->scache.waysize = scache_size / c->scache.ways;
1708
1709 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1710
1711 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1712 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1713
1714 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1715 }
1716
1717 void au1x00_fixup_config_od(void)
1718 {
1719 /*
1720 * c0_config.od (bit 19) was write only (and read as 0)
1721 * on the early revisions of Alchemy SOCs. It disables the bus
1722 * transaction overlapping and needs to be set to fix various errata.
1723 */
1724 switch (read_c0_prid()) {
1725 case 0x00030100: /* Au1000 DA */
1726 case 0x00030201: /* Au1000 HA */
1727 case 0x00030202: /* Au1000 HB */
1728 case 0x01030200: /* Au1500 AB */
1729 /*
1730 * Au1100 errata actually keeps silence about this bit, so we set it
1731 * just in case for those revisions that require it to be set according
1732 * to the (now gone) cpu table.
1733 */
1734 case 0x02030200: /* Au1100 AB */
1735 case 0x02030201: /* Au1100 BA */
1736 case 0x02030202: /* Au1100 BC */
1737 set_c0_config(1 << 19);
1738 break;
1739 }
1740 }
1741
1742 /* CP0 hazard avoidance. */
1743 #define NXP_BARRIER() \
1744 __asm__ __volatile__( \
1745 ".set noreorder\n\t" \
1746 "nop; nop; nop; nop; nop; nop;\n\t" \
1747 ".set reorder\n\t")
1748
1749 static void nxp_pr4450_fixup_config(void)
1750 {
1751 unsigned long config0;
1752
1753 config0 = read_c0_config();
1754
1755 /* clear all three cache coherency fields */
1756 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1757 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1758 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1759 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1760 write_c0_config(config0);
1761 NXP_BARRIER();
1762 }
1763
1764 static int cca = -1;
1765
1766 static int __init cca_setup(char *str)
1767 {
1768 get_option(&str, &cca);
1769
1770 return 0;
1771 }
1772
1773 early_param("cca", cca_setup);
1774
1775 static void coherency_setup(void)
1776 {
1777 if (cca < 0 || cca > 7)
1778 cca = read_c0_config() & CONF_CM_CMASK;
1779 _page_cachable_default = cca << _CACHE_SHIFT;
1780
1781 pr_debug("Using cache attribute %d\n", cca);
1782 change_c0_config(CONF_CM_CMASK, cca);
1783
1784 /*
1785 * c0_status.cu=0 specifies that updates by the sc instruction use
1786 * the coherency mode specified by the TLB; 1 means cachable
1787 * coherent update on write will be used. Not all processors have
1788 * this bit and; some wire it to zero, others like Toshiba had the
1789 * silly idea of putting something else there ...
1790 */
1791 switch (current_cpu_type()) {
1792 case CPU_R4000PC:
1793 case CPU_R4000SC:
1794 case CPU_R4000MC:
1795 case CPU_R4400PC:
1796 case CPU_R4400SC:
1797 case CPU_R4400MC:
1798 clear_c0_config(CONF_CU);
1799 break;
1800 /*
1801 * We need to catch the early Alchemy SOCs with
1802 * the write-only co_config.od bit and set it back to one on:
1803 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1804 */
1805 case CPU_ALCHEMY:
1806 au1x00_fixup_config_od();
1807 break;
1808
1809 case PRID_IMP_PR4450:
1810 nxp_pr4450_fixup_config();
1811 break;
1812 }
1813 }
1814
1815 static void r4k_cache_error_setup(void)
1816 {
1817 extern char __weak except_vec2_generic;
1818 extern char __weak except_vec2_sb1;
1819
1820 switch (current_cpu_type()) {
1821 case CPU_SB1:
1822 case CPU_SB1A:
1823 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1824 break;
1825
1826 default:
1827 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1828 break;
1829 }
1830 }
1831
1832 void r4k_cache_init(void)
1833 {
1834 extern void build_clear_page(void);
1835 extern void build_copy_page(void);
1836 struct cpuinfo_mips *c = &current_cpu_data;
1837
1838 probe_pcache();
1839 probe_vcache();
1840 setup_scache();
1841
1842 r4k_blast_dcache_page_setup();
1843 r4k_blast_dcache_page_indexed_setup();
1844 r4k_blast_dcache_setup();
1845 r4k_blast_icache_page_setup();
1846 r4k_blast_icache_page_indexed_setup();
1847 r4k_blast_icache_setup();
1848 r4k_blast_scache_page_setup();
1849 r4k_blast_scache_page_indexed_setup();
1850 r4k_blast_scache_setup();
1851 #ifdef CONFIG_EVA
1852 r4k_blast_dcache_user_page_setup();
1853 r4k_blast_icache_user_page_setup();
1854 #endif
1855
1856 /*
1857 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1858 * This code supports virtually indexed processors and will be
1859 * unnecessarily inefficient on physically indexed processors.
1860 */
1861 if (c->dcache.linesz && cpu_has_dc_aliases)
1862 shm_align_mask = max_t( unsigned long,
1863 c->dcache.sets * c->dcache.linesz - 1,
1864 PAGE_SIZE - 1);
1865 else
1866 shm_align_mask = PAGE_SIZE-1;
1867
1868 __flush_cache_vmap = r4k__flush_cache_vmap;
1869 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1870
1871 flush_cache_all = cache_noop;
1872 __flush_cache_all = r4k___flush_cache_all;
1873 flush_cache_mm = r4k_flush_cache_mm;
1874 flush_cache_page = r4k_flush_cache_page;
1875 flush_cache_range = r4k_flush_cache_range;
1876
1877 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1878
1879 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1880 flush_icache_all = r4k_flush_icache_all;
1881 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1882 flush_data_cache_page = r4k_flush_data_cache_page;
1883 flush_icache_range = r4k_flush_icache_range;
1884 local_flush_icache_range = local_r4k_flush_icache_range;
1885
1886 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1887 if (coherentio) {
1888 _dma_cache_wback_inv = (void *)cache_noop;
1889 _dma_cache_wback = (void *)cache_noop;
1890 _dma_cache_inv = (void *)cache_noop;
1891 } else {
1892 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1893 _dma_cache_wback = r4k_dma_cache_wback_inv;
1894 _dma_cache_inv = r4k_dma_cache_inv;
1895 }
1896 #endif
1897
1898 build_clear_page();
1899 build_copy_page();
1900
1901 /*
1902 * We want to run CMP kernels on core with and without coherent
1903 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1904 * or not to flush caches.
1905 */
1906 local_r4k___flush_cache_all(NULL);
1907
1908 coherency_setup();
1909 board_cache_error_setup = r4k_cache_error_setup;
1910
1911 /*
1912 * Per-CPU overrides
1913 */
1914 switch (current_cpu_type()) {
1915 case CPU_BMIPS4350:
1916 case CPU_BMIPS4380:
1917 /* No IPI is needed because all CPUs share the same D$ */
1918 flush_data_cache_page = r4k_blast_dcache_page;
1919 break;
1920 case CPU_BMIPS5000:
1921 /* We lose our superpowers if L2 is disabled */
1922 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1923 break;
1924
1925 /* I$ fills from D$ just by emptying the write buffers */
1926 flush_cache_page = (void *)b5k_instruction_hazard;
1927 flush_cache_range = (void *)b5k_instruction_hazard;
1928 flush_cache_sigtramp = (void *)b5k_instruction_hazard;
1929 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1930 flush_data_cache_page = (void *)b5k_instruction_hazard;
1931 flush_icache_range = (void *)b5k_instruction_hazard;
1932 local_flush_icache_range = (void *)b5k_instruction_hazard;
1933
1934
1935 /* Optimization: an L2 flush implicitly flushes the L1 */
1936 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1937 break;
1938 case CPU_LOONGSON3:
1939 /* Loongson-3 maintains cache coherency by hardware */
1940 __flush_cache_all = cache_noop;
1941 __flush_cache_vmap = cache_noop;
1942 __flush_cache_vunmap = cache_noop;
1943 __flush_kernel_vmap_range = (void *)cache_noop;
1944 flush_cache_mm = (void *)cache_noop;
1945 flush_cache_page = (void *)cache_noop;
1946 flush_cache_range = (void *)cache_noop;
1947 flush_cache_sigtramp = (void *)cache_noop;
1948 flush_icache_all = (void *)cache_noop;
1949 flush_data_cache_page = (void *)cache_noop;
1950 local_flush_data_cache_page = (void *)cache_noop;
1951 break;
1952 }
1953 }
1954
1955 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1956 void *v)
1957 {
1958 switch (cmd) {
1959 case CPU_PM_ENTER_FAILED:
1960 case CPU_PM_EXIT:
1961 coherency_setup();
1962 break;
1963 }
1964
1965 return NOTIFY_OK;
1966 }
1967
1968 static struct notifier_block r4k_cache_pm_notifier_block = {
1969 .notifier_call = r4k_cache_pm_notifier,
1970 };
1971
1972 int __init r4k_cache_init_pm(void)
1973 {
1974 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1975 }
1976 arch_initcall(r4k_cache_init_pm);
This page took 0.071021 seconds and 5 git commands to generate.