Merge remote-tracking branch 'regulator/topic/da9063' into regulator-next
[deliverable/linux.git] / arch / mips / mm / c-r4k.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/hardirq.h>
11 #include <linux/init.h>
12 #include <linux/highmem.h>
13 #include <linux/kernel.h>
14 #include <linux/linkage.h>
15 #include <linux/preempt.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/bitops.h>
21
22 #include <asm/bcache.h>
23 #include <asm/bootinfo.h>
24 #include <asm/cache.h>
25 #include <asm/cacheops.h>
26 #include <asm/cpu.h>
27 #include <asm/cpu-features.h>
28 #include <asm/cpu-type.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/r4kcache.h>
33 #include <asm/sections.h>
34 #include <asm/mmu_context.h>
35 #include <asm/war.h>
36 #include <asm/cacheflush.h> /* for run_uncached() */
37 #include <asm/traps.h>
38 #include <asm/dma-coherence.h>
39
40 /*
41 * Special Variant of smp_call_function for use by cache functions:
42 *
43 * o No return value
44 * o collapses to normal function call on UP kernels
45 * o collapses to normal function call on systems with a single shared
46 * primary cache.
47 * o doesn't disable interrupts on the local CPU
48 */
49 static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
50 {
51 preempt_disable();
52
53 #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
54 smp_call_function(func, info, 1);
55 #endif
56 func(info);
57 preempt_enable();
58 }
59
60 #if defined(CONFIG_MIPS_CMP)
61 #define cpu_has_safe_index_cacheops 0
62 #else
63 #define cpu_has_safe_index_cacheops 1
64 #endif
65
66 /*
67 * Must die.
68 */
69 static unsigned long icache_size __read_mostly;
70 static unsigned long dcache_size __read_mostly;
71 static unsigned long scache_size __read_mostly;
72
73 /*
74 * Dummy cache handling routines for machines without boardcaches
75 */
76 static void cache_noop(void) {}
77
78 static struct bcache_ops no_sc_ops = {
79 .bc_enable = (void *)cache_noop,
80 .bc_disable = (void *)cache_noop,
81 .bc_wback_inv = (void *)cache_noop,
82 .bc_inv = (void *)cache_noop
83 };
84
85 struct bcache_ops *bcops = &no_sc_ops;
86
87 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
88 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
89
90 #define R4600_HIT_CACHEOP_WAR_IMPL \
91 do { \
92 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
93 *(volatile unsigned long *)CKSEG1; \
94 if (R4600_V1_HIT_CACHEOP_WAR) \
95 __asm__ __volatile__("nop;nop;nop;nop"); \
96 } while (0)
97
98 static void (*r4k_blast_dcache_page)(unsigned long addr);
99
100 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
101 {
102 R4600_HIT_CACHEOP_WAR_IMPL;
103 blast_dcache32_page(addr);
104 }
105
106 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
107 {
108 R4600_HIT_CACHEOP_WAR_IMPL;
109 blast_dcache64_page(addr);
110 }
111
112 static void r4k_blast_dcache_page_setup(void)
113 {
114 unsigned long dc_lsize = cpu_dcache_line_size();
115
116 if (dc_lsize == 0)
117 r4k_blast_dcache_page = (void *)cache_noop;
118 else if (dc_lsize == 16)
119 r4k_blast_dcache_page = blast_dcache16_page;
120 else if (dc_lsize == 32)
121 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
122 else if (dc_lsize == 64)
123 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
124 }
125
126 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
127
128 static void r4k_blast_dcache_page_indexed_setup(void)
129 {
130 unsigned long dc_lsize = cpu_dcache_line_size();
131
132 if (dc_lsize == 0)
133 r4k_blast_dcache_page_indexed = (void *)cache_noop;
134 else if (dc_lsize == 16)
135 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
136 else if (dc_lsize == 32)
137 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
138 else if (dc_lsize == 64)
139 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
140 }
141
142 void (* r4k_blast_dcache)(void);
143 EXPORT_SYMBOL(r4k_blast_dcache);
144
145 static void r4k_blast_dcache_setup(void)
146 {
147 unsigned long dc_lsize = cpu_dcache_line_size();
148
149 if (dc_lsize == 0)
150 r4k_blast_dcache = (void *)cache_noop;
151 else if (dc_lsize == 16)
152 r4k_blast_dcache = blast_dcache16;
153 else if (dc_lsize == 32)
154 r4k_blast_dcache = blast_dcache32;
155 else if (dc_lsize == 64)
156 r4k_blast_dcache = blast_dcache64;
157 }
158
159 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
160 #define JUMP_TO_ALIGN(order) \
161 __asm__ __volatile__( \
162 "b\t1f\n\t" \
163 ".align\t" #order "\n\t" \
164 "1:\n\t" \
165 )
166 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
167 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
168
169 static inline void blast_r4600_v1_icache32(void)
170 {
171 unsigned long flags;
172
173 local_irq_save(flags);
174 blast_icache32();
175 local_irq_restore(flags);
176 }
177
178 static inline void tx49_blast_icache32(void)
179 {
180 unsigned long start = INDEX_BASE;
181 unsigned long end = start + current_cpu_data.icache.waysize;
182 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
183 unsigned long ws_end = current_cpu_data.icache.ways <<
184 current_cpu_data.icache.waybit;
185 unsigned long ws, addr;
186
187 CACHE32_UNROLL32_ALIGN2;
188 /* I'm in even chunk. blast odd chunks */
189 for (ws = 0; ws < ws_end; ws += ws_inc)
190 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
191 cache32_unroll32(addr|ws, Index_Invalidate_I);
192 CACHE32_UNROLL32_ALIGN;
193 /* I'm in odd chunk. blast even chunks */
194 for (ws = 0; ws < ws_end; ws += ws_inc)
195 for (addr = start; addr < end; addr += 0x400 * 2)
196 cache32_unroll32(addr|ws, Index_Invalidate_I);
197 }
198
199 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
200 {
201 unsigned long flags;
202
203 local_irq_save(flags);
204 blast_icache32_page_indexed(page);
205 local_irq_restore(flags);
206 }
207
208 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
209 {
210 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
211 unsigned long start = INDEX_BASE + (page & indexmask);
212 unsigned long end = start + PAGE_SIZE;
213 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
214 unsigned long ws_end = current_cpu_data.icache.ways <<
215 current_cpu_data.icache.waybit;
216 unsigned long ws, addr;
217
218 CACHE32_UNROLL32_ALIGN2;
219 /* I'm in even chunk. blast odd chunks */
220 for (ws = 0; ws < ws_end; ws += ws_inc)
221 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
222 cache32_unroll32(addr|ws, Index_Invalidate_I);
223 CACHE32_UNROLL32_ALIGN;
224 /* I'm in odd chunk. blast even chunks */
225 for (ws = 0; ws < ws_end; ws += ws_inc)
226 for (addr = start; addr < end; addr += 0x400 * 2)
227 cache32_unroll32(addr|ws, Index_Invalidate_I);
228 }
229
230 static void (* r4k_blast_icache_page)(unsigned long addr);
231
232 static void r4k_blast_icache_page_setup(void)
233 {
234 unsigned long ic_lsize = cpu_icache_line_size();
235
236 if (ic_lsize == 0)
237 r4k_blast_icache_page = (void *)cache_noop;
238 else if (ic_lsize == 16)
239 r4k_blast_icache_page = blast_icache16_page;
240 else if (ic_lsize == 32)
241 r4k_blast_icache_page = blast_icache32_page;
242 else if (ic_lsize == 64)
243 r4k_blast_icache_page = blast_icache64_page;
244 }
245
246
247 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
248
249 static void r4k_blast_icache_page_indexed_setup(void)
250 {
251 unsigned long ic_lsize = cpu_icache_line_size();
252
253 if (ic_lsize == 0)
254 r4k_blast_icache_page_indexed = (void *)cache_noop;
255 else if (ic_lsize == 16)
256 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
257 else if (ic_lsize == 32) {
258 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
259 r4k_blast_icache_page_indexed =
260 blast_icache32_r4600_v1_page_indexed;
261 else if (TX49XX_ICACHE_INDEX_INV_WAR)
262 r4k_blast_icache_page_indexed =
263 tx49_blast_icache32_page_indexed;
264 else
265 r4k_blast_icache_page_indexed =
266 blast_icache32_page_indexed;
267 } else if (ic_lsize == 64)
268 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
269 }
270
271 void (* r4k_blast_icache)(void);
272 EXPORT_SYMBOL(r4k_blast_icache);
273
274 static void r4k_blast_icache_setup(void)
275 {
276 unsigned long ic_lsize = cpu_icache_line_size();
277
278 if (ic_lsize == 0)
279 r4k_blast_icache = (void *)cache_noop;
280 else if (ic_lsize == 16)
281 r4k_blast_icache = blast_icache16;
282 else if (ic_lsize == 32) {
283 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
284 r4k_blast_icache = blast_r4600_v1_icache32;
285 else if (TX49XX_ICACHE_INDEX_INV_WAR)
286 r4k_blast_icache = tx49_blast_icache32;
287 else
288 r4k_blast_icache = blast_icache32;
289 } else if (ic_lsize == 64)
290 r4k_blast_icache = blast_icache64;
291 }
292
293 static void (* r4k_blast_scache_page)(unsigned long addr);
294
295 static void r4k_blast_scache_page_setup(void)
296 {
297 unsigned long sc_lsize = cpu_scache_line_size();
298
299 if (scache_size == 0)
300 r4k_blast_scache_page = (void *)cache_noop;
301 else if (sc_lsize == 16)
302 r4k_blast_scache_page = blast_scache16_page;
303 else if (sc_lsize == 32)
304 r4k_blast_scache_page = blast_scache32_page;
305 else if (sc_lsize == 64)
306 r4k_blast_scache_page = blast_scache64_page;
307 else if (sc_lsize == 128)
308 r4k_blast_scache_page = blast_scache128_page;
309 }
310
311 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
312
313 static void r4k_blast_scache_page_indexed_setup(void)
314 {
315 unsigned long sc_lsize = cpu_scache_line_size();
316
317 if (scache_size == 0)
318 r4k_blast_scache_page_indexed = (void *)cache_noop;
319 else if (sc_lsize == 16)
320 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
321 else if (sc_lsize == 32)
322 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
323 else if (sc_lsize == 64)
324 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
325 else if (sc_lsize == 128)
326 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
327 }
328
329 static void (* r4k_blast_scache)(void);
330
331 static void r4k_blast_scache_setup(void)
332 {
333 unsigned long sc_lsize = cpu_scache_line_size();
334
335 if (scache_size == 0)
336 r4k_blast_scache = (void *)cache_noop;
337 else if (sc_lsize == 16)
338 r4k_blast_scache = blast_scache16;
339 else if (sc_lsize == 32)
340 r4k_blast_scache = blast_scache32;
341 else if (sc_lsize == 64)
342 r4k_blast_scache = blast_scache64;
343 else if (sc_lsize == 128)
344 r4k_blast_scache = blast_scache128;
345 }
346
347 static inline void local_r4k___flush_cache_all(void * args)
348 {
349 #if defined(CONFIG_CPU_LOONGSON2)
350 r4k_blast_scache();
351 return;
352 #endif
353 r4k_blast_dcache();
354 r4k_blast_icache();
355
356 switch (current_cpu_type()) {
357 case CPU_R4000SC:
358 case CPU_R4000MC:
359 case CPU_R4400SC:
360 case CPU_R4400MC:
361 case CPU_R10000:
362 case CPU_R12000:
363 case CPU_R14000:
364 r4k_blast_scache();
365 }
366 }
367
368 static void r4k___flush_cache_all(void)
369 {
370 r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
371 }
372
373 static inline int has_valid_asid(const struct mm_struct *mm)
374 {
375 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_MIPS_MT_SMTC)
376 int i;
377
378 for_each_online_cpu(i)
379 if (cpu_context(i, mm))
380 return 1;
381
382 return 0;
383 #else
384 return cpu_context(smp_processor_id(), mm);
385 #endif
386 }
387
388 static void r4k__flush_cache_vmap(void)
389 {
390 r4k_blast_dcache();
391 }
392
393 static void r4k__flush_cache_vunmap(void)
394 {
395 r4k_blast_dcache();
396 }
397
398 static inline void local_r4k_flush_cache_range(void * args)
399 {
400 struct vm_area_struct *vma = args;
401 int exec = vma->vm_flags & VM_EXEC;
402
403 if (!(has_valid_asid(vma->vm_mm)))
404 return;
405
406 r4k_blast_dcache();
407 if (exec)
408 r4k_blast_icache();
409 }
410
411 static void r4k_flush_cache_range(struct vm_area_struct *vma,
412 unsigned long start, unsigned long end)
413 {
414 int exec = vma->vm_flags & VM_EXEC;
415
416 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
417 r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
418 }
419
420 static inline void local_r4k_flush_cache_mm(void * args)
421 {
422 struct mm_struct *mm = args;
423
424 if (!has_valid_asid(mm))
425 return;
426
427 /*
428 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
429 * only flush the primary caches but R10000 and R12000 behave sane ...
430 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
431 * caches, so we can bail out early.
432 */
433 if (current_cpu_type() == CPU_R4000SC ||
434 current_cpu_type() == CPU_R4000MC ||
435 current_cpu_type() == CPU_R4400SC ||
436 current_cpu_type() == CPU_R4400MC) {
437 r4k_blast_scache();
438 return;
439 }
440
441 r4k_blast_dcache();
442 }
443
444 static void r4k_flush_cache_mm(struct mm_struct *mm)
445 {
446 if (!cpu_has_dc_aliases)
447 return;
448
449 r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
450 }
451
452 struct flush_cache_page_args {
453 struct vm_area_struct *vma;
454 unsigned long addr;
455 unsigned long pfn;
456 };
457
458 static inline void local_r4k_flush_cache_page(void *args)
459 {
460 struct flush_cache_page_args *fcp_args = args;
461 struct vm_area_struct *vma = fcp_args->vma;
462 unsigned long addr = fcp_args->addr;
463 struct page *page = pfn_to_page(fcp_args->pfn);
464 int exec = vma->vm_flags & VM_EXEC;
465 struct mm_struct *mm = vma->vm_mm;
466 int map_coherent = 0;
467 pgd_t *pgdp;
468 pud_t *pudp;
469 pmd_t *pmdp;
470 pte_t *ptep;
471 void *vaddr;
472
473 /*
474 * If ownes no valid ASID yet, cannot possibly have gotten
475 * this page into the cache.
476 */
477 if (!has_valid_asid(mm))
478 return;
479
480 addr &= PAGE_MASK;
481 pgdp = pgd_offset(mm, addr);
482 pudp = pud_offset(pgdp, addr);
483 pmdp = pmd_offset(pudp, addr);
484 ptep = pte_offset(pmdp, addr);
485
486 /*
487 * If the page isn't marked valid, the page cannot possibly be
488 * in the cache.
489 */
490 if (!(pte_present(*ptep)))
491 return;
492
493 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
494 vaddr = NULL;
495 else {
496 /*
497 * Use kmap_coherent or kmap_atomic to do flushes for
498 * another ASID than the current one.
499 */
500 map_coherent = (cpu_has_dc_aliases &&
501 page_mapped(page) && !Page_dcache_dirty(page));
502 if (map_coherent)
503 vaddr = kmap_coherent(page, addr);
504 else
505 vaddr = kmap_atomic(page);
506 addr = (unsigned long)vaddr;
507 }
508
509 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
510 r4k_blast_dcache_page(addr);
511 if (exec && !cpu_icache_snoops_remote_store)
512 r4k_blast_scache_page(addr);
513 }
514 if (exec) {
515 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
516 int cpu = smp_processor_id();
517
518 if (cpu_context(cpu, mm) != 0)
519 drop_mmu_context(mm, cpu);
520 } else
521 r4k_blast_icache_page(addr);
522 }
523
524 if (vaddr) {
525 if (map_coherent)
526 kunmap_coherent();
527 else
528 kunmap_atomic(vaddr);
529 }
530 }
531
532 static void r4k_flush_cache_page(struct vm_area_struct *vma,
533 unsigned long addr, unsigned long pfn)
534 {
535 struct flush_cache_page_args args;
536
537 args.vma = vma;
538 args.addr = addr;
539 args.pfn = pfn;
540
541 r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
542 }
543
544 static inline void local_r4k_flush_data_cache_page(void * addr)
545 {
546 r4k_blast_dcache_page((unsigned long) addr);
547 }
548
549 static void r4k_flush_data_cache_page(unsigned long addr)
550 {
551 if (in_atomic())
552 local_r4k_flush_data_cache_page((void *)addr);
553 else
554 r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
555 }
556
557 struct flush_icache_range_args {
558 unsigned long start;
559 unsigned long end;
560 };
561
562 static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
563 {
564 if (!cpu_has_ic_fills_f_dc) {
565 if (end - start >= dcache_size) {
566 r4k_blast_dcache();
567 } else {
568 R4600_HIT_CACHEOP_WAR_IMPL;
569 protected_blast_dcache_range(start, end);
570 }
571 }
572
573 if (end - start > icache_size)
574 r4k_blast_icache();
575 else
576 protected_blast_icache_range(start, end);
577 }
578
579 static inline void local_r4k_flush_icache_range_ipi(void *args)
580 {
581 struct flush_icache_range_args *fir_args = args;
582 unsigned long start = fir_args->start;
583 unsigned long end = fir_args->end;
584
585 local_r4k_flush_icache_range(start, end);
586 }
587
588 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
589 {
590 struct flush_icache_range_args args;
591
592 args.start = start;
593 args.end = end;
594
595 r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
596 instruction_hazard();
597 }
598
599 #ifdef CONFIG_DMA_NONCOHERENT
600
601 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
602 {
603 /* Catch bad driver code */
604 BUG_ON(size == 0);
605
606 preempt_disable();
607 if (cpu_has_inclusive_pcaches) {
608 if (size >= scache_size)
609 r4k_blast_scache();
610 else
611 blast_scache_range(addr, addr + size);
612 preempt_enable();
613 __sync();
614 return;
615 }
616
617 /*
618 * Either no secondary cache or the available caches don't have the
619 * subset property so we have to flush the primary caches
620 * explicitly
621 */
622 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
623 r4k_blast_dcache();
624 } else {
625 R4600_HIT_CACHEOP_WAR_IMPL;
626 blast_dcache_range(addr, addr + size);
627 }
628 preempt_enable();
629
630 bc_wback_inv(addr, size);
631 __sync();
632 }
633
634 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
635 {
636 /* Catch bad driver code */
637 BUG_ON(size == 0);
638
639 preempt_disable();
640 if (cpu_has_inclusive_pcaches) {
641 if (size >= scache_size)
642 r4k_blast_scache();
643 else {
644 /*
645 * There is no clearly documented alignment requirement
646 * for the cache instruction on MIPS processors and
647 * some processors, among them the RM5200 and RM7000
648 * QED processors will throw an address error for cache
649 * hit ops with insufficient alignment. Solved by
650 * aligning the address to cache line size.
651 */
652 blast_inv_scache_range(addr, addr + size);
653 }
654 preempt_enable();
655 __sync();
656 return;
657 }
658
659 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
660 r4k_blast_dcache();
661 } else {
662 R4600_HIT_CACHEOP_WAR_IMPL;
663 blast_inv_dcache_range(addr, addr + size);
664 }
665 preempt_enable();
666
667 bc_inv(addr, size);
668 __sync();
669 }
670 #endif /* CONFIG_DMA_NONCOHERENT */
671
672 /*
673 * While we're protected against bad userland addresses we don't care
674 * very much about what happens in that case. Usually a segmentation
675 * fault will dump the process later on anyway ...
676 */
677 static void local_r4k_flush_cache_sigtramp(void * arg)
678 {
679 unsigned long ic_lsize = cpu_icache_line_size();
680 unsigned long dc_lsize = cpu_dcache_line_size();
681 unsigned long sc_lsize = cpu_scache_line_size();
682 unsigned long addr = (unsigned long) arg;
683
684 R4600_HIT_CACHEOP_WAR_IMPL;
685 if (dc_lsize)
686 protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
687 if (!cpu_icache_snoops_remote_store && scache_size)
688 protected_writeback_scache_line(addr & ~(sc_lsize - 1));
689 if (ic_lsize)
690 protected_flush_icache_line(addr & ~(ic_lsize - 1));
691 if (MIPS4K_ICACHE_REFILL_WAR) {
692 __asm__ __volatile__ (
693 ".set push\n\t"
694 ".set noat\n\t"
695 ".set mips3\n\t"
696 #ifdef CONFIG_32BIT
697 "la $at,1f\n\t"
698 #endif
699 #ifdef CONFIG_64BIT
700 "dla $at,1f\n\t"
701 #endif
702 "cache %0,($at)\n\t"
703 "nop; nop; nop\n"
704 "1:\n\t"
705 ".set pop"
706 :
707 : "i" (Hit_Invalidate_I));
708 }
709 if (MIPS_CACHE_SYNC_WAR)
710 __asm__ __volatile__ ("sync");
711 }
712
713 static void r4k_flush_cache_sigtramp(unsigned long addr)
714 {
715 r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
716 }
717
718 static void r4k_flush_icache_all(void)
719 {
720 if (cpu_has_vtag_icache)
721 r4k_blast_icache();
722 }
723
724 struct flush_kernel_vmap_range_args {
725 unsigned long vaddr;
726 int size;
727 };
728
729 static inline void local_r4k_flush_kernel_vmap_range(void *args)
730 {
731 struct flush_kernel_vmap_range_args *vmra = args;
732 unsigned long vaddr = vmra->vaddr;
733 int size = vmra->size;
734
735 /*
736 * Aliases only affect the primary caches so don't bother with
737 * S-caches or T-caches.
738 */
739 if (cpu_has_safe_index_cacheops && size >= dcache_size)
740 r4k_blast_dcache();
741 else {
742 R4600_HIT_CACHEOP_WAR_IMPL;
743 blast_dcache_range(vaddr, vaddr + size);
744 }
745 }
746
747 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
748 {
749 struct flush_kernel_vmap_range_args args;
750
751 args.vaddr = (unsigned long) vaddr;
752 args.size = size;
753
754 r4k_on_each_cpu(local_r4k_flush_kernel_vmap_range, &args);
755 }
756
757 static inline void rm7k_erratum31(void)
758 {
759 const unsigned long ic_lsize = 32;
760 unsigned long addr;
761
762 /* RM7000 erratum #31. The icache is screwed at startup. */
763 write_c0_taglo(0);
764 write_c0_taghi(0);
765
766 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
767 __asm__ __volatile__ (
768 ".set push\n\t"
769 ".set noreorder\n\t"
770 ".set mips3\n\t"
771 "cache\t%1, 0(%0)\n\t"
772 "cache\t%1, 0x1000(%0)\n\t"
773 "cache\t%1, 0x2000(%0)\n\t"
774 "cache\t%1, 0x3000(%0)\n\t"
775 "cache\t%2, 0(%0)\n\t"
776 "cache\t%2, 0x1000(%0)\n\t"
777 "cache\t%2, 0x2000(%0)\n\t"
778 "cache\t%2, 0x3000(%0)\n\t"
779 "cache\t%1, 0(%0)\n\t"
780 "cache\t%1, 0x1000(%0)\n\t"
781 "cache\t%1, 0x2000(%0)\n\t"
782 "cache\t%1, 0x3000(%0)\n\t"
783 ".set pop\n"
784 :
785 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
786 }
787 }
788
789 static inline void alias_74k_erratum(struct cpuinfo_mips *c)
790 {
791 unsigned int imp = c->processor_id & PRID_IMP_MASK;
792 unsigned int rev = c->processor_id & PRID_REV_MASK;
793
794 /*
795 * Early versions of the 74K do not update the cache tags on a
796 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
797 * aliases. In this case it is better to treat the cache as always
798 * having aliases.
799 */
800 switch (imp) {
801 case PRID_IMP_74K:
802 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
803 c->dcache.flags |= MIPS_CACHE_VTAG;
804 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
805 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
806 break;
807 case PRID_IMP_1074K:
808 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
809 c->dcache.flags |= MIPS_CACHE_VTAG;
810 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
811 }
812 break;
813 default:
814 BUG();
815 }
816 }
817
818 static char *way_string[] = { NULL, "direct mapped", "2-way",
819 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
820 };
821
822 static void probe_pcache(void)
823 {
824 struct cpuinfo_mips *c = &current_cpu_data;
825 unsigned int config = read_c0_config();
826 unsigned int prid = read_c0_prid();
827 unsigned long config1;
828 unsigned int lsize;
829
830 switch (current_cpu_type()) {
831 case CPU_R4600: /* QED style two way caches? */
832 case CPU_R4700:
833 case CPU_R5000:
834 case CPU_NEVADA:
835 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
836 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
837 c->icache.ways = 2;
838 c->icache.waybit = __ffs(icache_size/2);
839
840 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
841 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
842 c->dcache.ways = 2;
843 c->dcache.waybit= __ffs(dcache_size/2);
844
845 c->options |= MIPS_CPU_CACHE_CDEX_P;
846 break;
847
848 case CPU_R5432:
849 case CPU_R5500:
850 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
851 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
852 c->icache.ways = 2;
853 c->icache.waybit= 0;
854
855 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
856 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
857 c->dcache.ways = 2;
858 c->dcache.waybit = 0;
859
860 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
861 break;
862
863 case CPU_TX49XX:
864 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
865 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
866 c->icache.ways = 4;
867 c->icache.waybit= 0;
868
869 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
870 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
871 c->dcache.ways = 4;
872 c->dcache.waybit = 0;
873
874 c->options |= MIPS_CPU_CACHE_CDEX_P;
875 c->options |= MIPS_CPU_PREFETCH;
876 break;
877
878 case CPU_R4000PC:
879 case CPU_R4000SC:
880 case CPU_R4000MC:
881 case CPU_R4400PC:
882 case CPU_R4400SC:
883 case CPU_R4400MC:
884 case CPU_R4300:
885 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
886 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
887 c->icache.ways = 1;
888 c->icache.waybit = 0; /* doesn't matter */
889
890 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
891 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
892 c->dcache.ways = 1;
893 c->dcache.waybit = 0; /* does not matter */
894
895 c->options |= MIPS_CPU_CACHE_CDEX_P;
896 break;
897
898 case CPU_R10000:
899 case CPU_R12000:
900 case CPU_R14000:
901 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
902 c->icache.linesz = 64;
903 c->icache.ways = 2;
904 c->icache.waybit = 0;
905
906 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
907 c->dcache.linesz = 32;
908 c->dcache.ways = 2;
909 c->dcache.waybit = 0;
910
911 c->options |= MIPS_CPU_PREFETCH;
912 break;
913
914 case CPU_VR4133:
915 write_c0_config(config & ~VR41_CONF_P4K);
916 case CPU_VR4131:
917 /* Workaround for cache instruction bug of VR4131 */
918 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
919 c->processor_id == 0x0c82U) {
920 config |= 0x00400000U;
921 if (c->processor_id == 0x0c80U)
922 config |= VR41_CONF_BP;
923 write_c0_config(config);
924 } else
925 c->options |= MIPS_CPU_CACHE_CDEX_P;
926
927 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
928 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
929 c->icache.ways = 2;
930 c->icache.waybit = __ffs(icache_size/2);
931
932 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
933 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
934 c->dcache.ways = 2;
935 c->dcache.waybit = __ffs(dcache_size/2);
936 break;
937
938 case CPU_VR41XX:
939 case CPU_VR4111:
940 case CPU_VR4121:
941 case CPU_VR4122:
942 case CPU_VR4181:
943 case CPU_VR4181A:
944 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
945 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
946 c->icache.ways = 1;
947 c->icache.waybit = 0; /* doesn't matter */
948
949 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
950 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
951 c->dcache.ways = 1;
952 c->dcache.waybit = 0; /* does not matter */
953
954 c->options |= MIPS_CPU_CACHE_CDEX_P;
955 break;
956
957 case CPU_RM7000:
958 rm7k_erratum31();
959
960 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
961 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
962 c->icache.ways = 4;
963 c->icache.waybit = __ffs(icache_size / c->icache.ways);
964
965 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
966 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
967 c->dcache.ways = 4;
968 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
969
970 c->options |= MIPS_CPU_CACHE_CDEX_P;
971 c->options |= MIPS_CPU_PREFETCH;
972 break;
973
974 case CPU_LOONGSON2:
975 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
976 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
977 if (prid & 0x3)
978 c->icache.ways = 4;
979 else
980 c->icache.ways = 2;
981 c->icache.waybit = 0;
982
983 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
984 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
985 if (prid & 0x3)
986 c->dcache.ways = 4;
987 else
988 c->dcache.ways = 2;
989 c->dcache.waybit = 0;
990 break;
991
992 default:
993 if (!(config & MIPS_CONF_M))
994 panic("Don't know how to probe P-caches on this cpu.");
995
996 /*
997 * So we seem to be a MIPS32 or MIPS64 CPU
998 * So let's probe the I-cache ...
999 */
1000 config1 = read_c0_config1();
1001
1002 if ((lsize = ((config1 >> 19) & 7)))
1003 c->icache.linesz = 2 << lsize;
1004 else
1005 c->icache.linesz = lsize;
1006 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1007 c->icache.ways = 1 + ((config1 >> 16) & 7);
1008
1009 icache_size = c->icache.sets *
1010 c->icache.ways *
1011 c->icache.linesz;
1012 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1013
1014 if (config & 0x8) /* VI bit */
1015 c->icache.flags |= MIPS_CACHE_VTAG;
1016
1017 /*
1018 * Now probe the MIPS32 / MIPS64 data cache.
1019 */
1020 c->dcache.flags = 0;
1021
1022 if ((lsize = ((config1 >> 10) & 7)))
1023 c->dcache.linesz = 2 << lsize;
1024 else
1025 c->dcache.linesz= lsize;
1026 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1027 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1028
1029 dcache_size = c->dcache.sets *
1030 c->dcache.ways *
1031 c->dcache.linesz;
1032 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1033
1034 c->options |= MIPS_CPU_PREFETCH;
1035 break;
1036 }
1037
1038 /*
1039 * Processor configuration sanity check for the R4000SC erratum
1040 * #5. With page sizes larger than 32kB there is no possibility
1041 * to get a VCE exception anymore so we don't care about this
1042 * misconfiguration. The case is rather theoretical anyway;
1043 * presumably no vendor is shipping his hardware in the "bad"
1044 * configuration.
1045 */
1046 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1047 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1048 !(config & CONF_SC) && c->icache.linesz != 16 &&
1049 PAGE_SIZE <= 0x8000)
1050 panic("Improper R4000SC processor configuration detected");
1051
1052 /* compute a couple of other cache variables */
1053 c->icache.waysize = icache_size / c->icache.ways;
1054 c->dcache.waysize = dcache_size / c->dcache.ways;
1055
1056 c->icache.sets = c->icache.linesz ?
1057 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1058 c->dcache.sets = c->dcache.linesz ?
1059 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1060
1061 /*
1062 * R10000 and R12000 P-caches are odd in a positive way. They're 32kB
1063 * 2-way virtually indexed so normally would suffer from aliases. So
1064 * normally they'd suffer from aliases but magic in the hardware deals
1065 * with that for us so we don't need to take care ourselves.
1066 */
1067 switch (current_cpu_type()) {
1068 case CPU_20KC:
1069 case CPU_25KF:
1070 case CPU_SB1:
1071 case CPU_SB1A:
1072 case CPU_XLR:
1073 c->dcache.flags |= MIPS_CACHE_PINDEX;
1074 break;
1075
1076 case CPU_R10000:
1077 case CPU_R12000:
1078 case CPU_R14000:
1079 break;
1080
1081 case CPU_M14KC:
1082 case CPU_M14KEC:
1083 case CPU_24K:
1084 case CPU_34K:
1085 case CPU_74K:
1086 case CPU_1004K:
1087 if (current_cpu_type() == CPU_74K)
1088 alias_74k_erratum(c);
1089 if ((read_c0_config7() & (1 << 16))) {
1090 /* effectively physically indexed dcache,
1091 thus no virtual aliases. */
1092 c->dcache.flags |= MIPS_CACHE_PINDEX;
1093 break;
1094 }
1095 default:
1096 if (c->dcache.waysize > PAGE_SIZE)
1097 c->dcache.flags |= MIPS_CACHE_ALIASES;
1098 }
1099
1100 switch (current_cpu_type()) {
1101 case CPU_20KC:
1102 /*
1103 * Some older 20Kc chips doesn't have the 'VI' bit in
1104 * the config register.
1105 */
1106 c->icache.flags |= MIPS_CACHE_VTAG;
1107 break;
1108
1109 case CPU_ALCHEMY:
1110 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1111 break;
1112 }
1113
1114 #ifdef CONFIG_CPU_LOONGSON2
1115 /*
1116 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1117 * one op will act on all 4 ways
1118 */
1119 c->icache.ways = 1;
1120 #endif
1121
1122 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1123 icache_size >> 10,
1124 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1125 way_string[c->icache.ways], c->icache.linesz);
1126
1127 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1128 dcache_size >> 10, way_string[c->dcache.ways],
1129 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1130 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1131 "cache aliases" : "no aliases",
1132 c->dcache.linesz);
1133 }
1134
1135 /*
1136 * If you even _breathe_ on this function, look at the gcc output and make sure
1137 * it does not pop things on and off the stack for the cache sizing loop that
1138 * executes in KSEG1 space or else you will crash and burn badly. You have
1139 * been warned.
1140 */
1141 static int probe_scache(void)
1142 {
1143 unsigned long flags, addr, begin, end, pow2;
1144 unsigned int config = read_c0_config();
1145 struct cpuinfo_mips *c = &current_cpu_data;
1146
1147 if (config & CONF_SC)
1148 return 0;
1149
1150 begin = (unsigned long) &_stext;
1151 begin &= ~((4 * 1024 * 1024) - 1);
1152 end = begin + (4 * 1024 * 1024);
1153
1154 /*
1155 * This is such a bitch, you'd think they would make it easy to do
1156 * this. Away you daemons of stupidity!
1157 */
1158 local_irq_save(flags);
1159
1160 /* Fill each size-multiple cache line with a valid tag. */
1161 pow2 = (64 * 1024);
1162 for (addr = begin; addr < end; addr = (begin + pow2)) {
1163 unsigned long *p = (unsigned long *) addr;
1164 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1165 pow2 <<= 1;
1166 }
1167
1168 /* Load first line with zero (therefore invalid) tag. */
1169 write_c0_taglo(0);
1170 write_c0_taghi(0);
1171 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1172 cache_op(Index_Store_Tag_I, begin);
1173 cache_op(Index_Store_Tag_D, begin);
1174 cache_op(Index_Store_Tag_SD, begin);
1175
1176 /* Now search for the wrap around point. */
1177 pow2 = (128 * 1024);
1178 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1179 cache_op(Index_Load_Tag_SD, addr);
1180 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1181 if (!read_c0_taglo())
1182 break;
1183 pow2 <<= 1;
1184 }
1185 local_irq_restore(flags);
1186 addr -= begin;
1187
1188 scache_size = addr;
1189 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1190 c->scache.ways = 1;
1191 c->dcache.waybit = 0; /* does not matter */
1192
1193 return 1;
1194 }
1195
1196 #if defined(CONFIG_CPU_LOONGSON2)
1197 static void __init loongson2_sc_init(void)
1198 {
1199 struct cpuinfo_mips *c = &current_cpu_data;
1200
1201 scache_size = 512*1024;
1202 c->scache.linesz = 32;
1203 c->scache.ways = 4;
1204 c->scache.waybit = 0;
1205 c->scache.waysize = scache_size / (c->scache.ways);
1206 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1207 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1208 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1209
1210 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1211 }
1212 #endif
1213
1214 extern int r5k_sc_init(void);
1215 extern int rm7k_sc_init(void);
1216 extern int mips_sc_init(void);
1217
1218 static void setup_scache(void)
1219 {
1220 struct cpuinfo_mips *c = &current_cpu_data;
1221 unsigned int config = read_c0_config();
1222 int sc_present = 0;
1223
1224 /*
1225 * Do the probing thing on R4000SC and R4400SC processors. Other
1226 * processors don't have a S-cache that would be relevant to the
1227 * Linux memory management.
1228 */
1229 switch (current_cpu_type()) {
1230 case CPU_R4000SC:
1231 case CPU_R4000MC:
1232 case CPU_R4400SC:
1233 case CPU_R4400MC:
1234 sc_present = run_uncached(probe_scache);
1235 if (sc_present)
1236 c->options |= MIPS_CPU_CACHE_CDEX_S;
1237 break;
1238
1239 case CPU_R10000:
1240 case CPU_R12000:
1241 case CPU_R14000:
1242 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1243 c->scache.linesz = 64 << ((config >> 13) & 1);
1244 c->scache.ways = 2;
1245 c->scache.waybit= 0;
1246 sc_present = 1;
1247 break;
1248
1249 case CPU_R5000:
1250 case CPU_NEVADA:
1251 #ifdef CONFIG_R5000_CPU_SCACHE
1252 r5k_sc_init();
1253 #endif
1254 return;
1255
1256 case CPU_RM7000:
1257 #ifdef CONFIG_RM7000_CPU_SCACHE
1258 rm7k_sc_init();
1259 #endif
1260 return;
1261
1262 #if defined(CONFIG_CPU_LOONGSON2)
1263 case CPU_LOONGSON2:
1264 loongson2_sc_init();
1265 return;
1266 #endif
1267 case CPU_XLP:
1268 /* don't need to worry about L2, fully coherent */
1269 return;
1270
1271 default:
1272 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1273 MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M64R2)) {
1274 #ifdef CONFIG_MIPS_CPU_SCACHE
1275 if (mips_sc_init ()) {
1276 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1277 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1278 scache_size >> 10,
1279 way_string[c->scache.ways], c->scache.linesz);
1280 }
1281 #else
1282 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1283 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1284 #endif
1285 return;
1286 }
1287 sc_present = 0;
1288 }
1289
1290 if (!sc_present)
1291 return;
1292
1293 /* compute a couple of other cache variables */
1294 c->scache.waysize = scache_size / c->scache.ways;
1295
1296 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1297
1298 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1299 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1300
1301 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1302 }
1303
1304 void au1x00_fixup_config_od(void)
1305 {
1306 /*
1307 * c0_config.od (bit 19) was write only (and read as 0)
1308 * on the early revisions of Alchemy SOCs. It disables the bus
1309 * transaction overlapping and needs to be set to fix various errata.
1310 */
1311 switch (read_c0_prid()) {
1312 case 0x00030100: /* Au1000 DA */
1313 case 0x00030201: /* Au1000 HA */
1314 case 0x00030202: /* Au1000 HB */
1315 case 0x01030200: /* Au1500 AB */
1316 /*
1317 * Au1100 errata actually keeps silence about this bit, so we set it
1318 * just in case for those revisions that require it to be set according
1319 * to the (now gone) cpu table.
1320 */
1321 case 0x02030200: /* Au1100 AB */
1322 case 0x02030201: /* Au1100 BA */
1323 case 0x02030202: /* Au1100 BC */
1324 set_c0_config(1 << 19);
1325 break;
1326 }
1327 }
1328
1329 /* CP0 hazard avoidance. */
1330 #define NXP_BARRIER() \
1331 __asm__ __volatile__( \
1332 ".set noreorder\n\t" \
1333 "nop; nop; nop; nop; nop; nop;\n\t" \
1334 ".set reorder\n\t")
1335
1336 static void nxp_pr4450_fixup_config(void)
1337 {
1338 unsigned long config0;
1339
1340 config0 = read_c0_config();
1341
1342 /* clear all three cache coherency fields */
1343 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1344 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1345 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1346 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1347 write_c0_config(config0);
1348 NXP_BARRIER();
1349 }
1350
1351 static int cca = -1;
1352
1353 static int __init cca_setup(char *str)
1354 {
1355 get_option(&str, &cca);
1356
1357 return 0;
1358 }
1359
1360 early_param("cca", cca_setup);
1361
1362 static void coherency_setup(void)
1363 {
1364 if (cca < 0 || cca > 7)
1365 cca = read_c0_config() & CONF_CM_CMASK;
1366 _page_cachable_default = cca << _CACHE_SHIFT;
1367
1368 pr_debug("Using cache attribute %d\n", cca);
1369 change_c0_config(CONF_CM_CMASK, cca);
1370
1371 /*
1372 * c0_status.cu=0 specifies that updates by the sc instruction use
1373 * the coherency mode specified by the TLB; 1 means cachable
1374 * coherent update on write will be used. Not all processors have
1375 * this bit and; some wire it to zero, others like Toshiba had the
1376 * silly idea of putting something else there ...
1377 */
1378 switch (current_cpu_type()) {
1379 case CPU_R4000PC:
1380 case CPU_R4000SC:
1381 case CPU_R4000MC:
1382 case CPU_R4400PC:
1383 case CPU_R4400SC:
1384 case CPU_R4400MC:
1385 clear_c0_config(CONF_CU);
1386 break;
1387 /*
1388 * We need to catch the early Alchemy SOCs with
1389 * the write-only co_config.od bit and set it back to one on:
1390 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1391 */
1392 case CPU_ALCHEMY:
1393 au1x00_fixup_config_od();
1394 break;
1395
1396 case PRID_IMP_PR4450:
1397 nxp_pr4450_fixup_config();
1398 break;
1399 }
1400 }
1401
1402 static void r4k_cache_error_setup(void)
1403 {
1404 extern char __weak except_vec2_generic;
1405 extern char __weak except_vec2_sb1;
1406
1407 switch (current_cpu_type()) {
1408 case CPU_SB1:
1409 case CPU_SB1A:
1410 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1411 break;
1412
1413 default:
1414 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1415 break;
1416 }
1417 }
1418
1419 void r4k_cache_init(void)
1420 {
1421 extern void build_clear_page(void);
1422 extern void build_copy_page(void);
1423 struct cpuinfo_mips *c = &current_cpu_data;
1424
1425 probe_pcache();
1426 setup_scache();
1427
1428 r4k_blast_dcache_page_setup();
1429 r4k_blast_dcache_page_indexed_setup();
1430 r4k_blast_dcache_setup();
1431 r4k_blast_icache_page_setup();
1432 r4k_blast_icache_page_indexed_setup();
1433 r4k_blast_icache_setup();
1434 r4k_blast_scache_page_setup();
1435 r4k_blast_scache_page_indexed_setup();
1436 r4k_blast_scache_setup();
1437
1438 /*
1439 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1440 * This code supports virtually indexed processors and will be
1441 * unnecessarily inefficient on physically indexed processors.
1442 */
1443 if (c->dcache.linesz)
1444 shm_align_mask = max_t( unsigned long,
1445 c->dcache.sets * c->dcache.linesz - 1,
1446 PAGE_SIZE - 1);
1447 else
1448 shm_align_mask = PAGE_SIZE-1;
1449
1450 __flush_cache_vmap = r4k__flush_cache_vmap;
1451 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1452
1453 flush_cache_all = cache_noop;
1454 __flush_cache_all = r4k___flush_cache_all;
1455 flush_cache_mm = r4k_flush_cache_mm;
1456 flush_cache_page = r4k_flush_cache_page;
1457 flush_cache_range = r4k_flush_cache_range;
1458
1459 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1460
1461 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1462 flush_icache_all = r4k_flush_icache_all;
1463 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1464 flush_data_cache_page = r4k_flush_data_cache_page;
1465 flush_icache_range = r4k_flush_icache_range;
1466 local_flush_icache_range = local_r4k_flush_icache_range;
1467
1468 #if defined(CONFIG_DMA_NONCOHERENT)
1469 if (coherentio) {
1470 _dma_cache_wback_inv = (void *)cache_noop;
1471 _dma_cache_wback = (void *)cache_noop;
1472 _dma_cache_inv = (void *)cache_noop;
1473 } else {
1474 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1475 _dma_cache_wback = r4k_dma_cache_wback_inv;
1476 _dma_cache_inv = r4k_dma_cache_inv;
1477 }
1478 #endif
1479
1480 build_clear_page();
1481 build_copy_page();
1482
1483 /*
1484 * We want to run CMP kernels on core with and without coherent
1485 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1486 * or not to flush caches.
1487 */
1488 local_r4k___flush_cache_all(NULL);
1489
1490 coherency_setup();
1491 board_cache_error_setup = r4k_cache_error_setup;
1492 }
This page took 0.062692 seconds and 5 git commands to generate.