xenbus: don't BUG() on user mode induced condition
[deliverable/linux.git] / arch / mips / mm / dma-default.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
20
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
24
25 #include <dma-coherence.h>
26
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio = 0; /* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio);
30 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
31
32 static int __init setcoherentio(char *str)
33 {
34 coherentio = 1;
35 pr_info("Hardware DMA cache coherency (command line)\n");
36 return 0;
37 }
38 early_param("coherentio", setcoherentio);
39
40 static int __init setnocoherentio(char *str)
41 {
42 coherentio = 0;
43 pr_info("Software DMA cache coherency (command line)\n");
44 return 0;
45 }
46 early_param("nocoherentio", setnocoherentio);
47 #endif
48
49 static inline struct page *dma_addr_to_page(struct device *dev,
50 dma_addr_t dma_addr)
51 {
52 return pfn_to_page(
53 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
54 }
55
56 /*
57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58 * speculatively fill random cachelines with stale data at any time,
59 * requiring an extra flush post-DMA.
60 *
61 * Warning on the terminology - Linux calls an uncached area coherent;
62 * MIPS terminology calls memory areas with hardware maintained coherency
63 * coherent.
64 *
65 * Note that the R14000 and R16000 should also be checked for in this
66 * condition. However this function is only called on non-I/O-coherent
67 * systems and only the R10000 and R12000 are used in such systems, the
68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
69 */
70 static inline int cpu_needs_post_dma_flush(struct device *dev)
71 {
72 return !plat_device_is_coherent(dev) &&
73 (boot_cpu_type() == CPU_R10000 ||
74 boot_cpu_type() == CPU_R12000 ||
75 boot_cpu_type() == CPU_BMIPS5000);
76 }
77
78 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
79 {
80 gfp_t dma_flag;
81
82 /* ignore region specifiers */
83 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
84
85 #ifdef CONFIG_ISA
86 if (dev == NULL)
87 dma_flag = __GFP_DMA;
88 else
89 #endif
90 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
92 dma_flag = __GFP_DMA;
93 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94 dma_flag = __GFP_DMA32;
95 else
96 #endif
97 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
99 dma_flag = __GFP_DMA32;
100 else
101 #endif
102 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103 if (dev == NULL ||
104 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
105 dma_flag = __GFP_DMA;
106 else
107 #endif
108 dma_flag = 0;
109
110 /* Don't invoke OOM killer */
111 gfp |= __GFP_NORETRY;
112
113 return gfp | dma_flag;
114 }
115
116 static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
117 dma_addr_t * dma_handle, gfp_t gfp)
118 {
119 void *ret;
120
121 gfp = massage_gfp_flags(dev, gfp);
122
123 ret = (void *) __get_free_pages(gfp, get_order(size));
124
125 if (ret != NULL) {
126 memset(ret, 0, size);
127 *dma_handle = plat_map_dma_mem(dev, ret, size);
128 }
129
130 return ret;
131 }
132
133 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
134 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
135 {
136 void *ret;
137 struct page *page = NULL;
138 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
139
140 /*
141 * XXX: seems like the coherent and non-coherent implementations could
142 * be consolidated.
143 */
144 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
145 return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
146
147 gfp = massage_gfp_flags(dev, gfp);
148
149 if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
150 page = dma_alloc_from_contiguous(dev,
151 count, get_order(size));
152 if (!page)
153 page = alloc_pages(gfp, get_order(size));
154
155 if (!page)
156 return NULL;
157
158 ret = page_address(page);
159 memset(ret, 0, size);
160 *dma_handle = plat_map_dma_mem(dev, ret, size);
161 if (!plat_device_is_coherent(dev)) {
162 dma_cache_wback_inv((unsigned long) ret, size);
163 if (!hw_coherentio)
164 ret = UNCAC_ADDR(ret);
165 }
166
167 return ret;
168 }
169
170
171 static void mips_dma_free_noncoherent(struct device *dev, size_t size,
172 void *vaddr, dma_addr_t dma_handle)
173 {
174 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
175 free_pages((unsigned long) vaddr, get_order(size));
176 }
177
178 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
179 dma_addr_t dma_handle, struct dma_attrs *attrs)
180 {
181 unsigned long addr = (unsigned long) vaddr;
182 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
183 struct page *page = NULL;
184
185 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
186 mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
187 return;
188 }
189
190 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
191
192 if (!plat_device_is_coherent(dev) && !hw_coherentio)
193 addr = CAC_ADDR(addr);
194
195 page = virt_to_page((void *) addr);
196
197 if (!dma_release_from_contiguous(dev, page, count))
198 __free_pages(page, get_order(size));
199 }
200
201 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 struct dma_attrs *attrs)
204 {
205 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
206 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
207 unsigned long addr = (unsigned long)cpu_addr;
208 unsigned long off = vma->vm_pgoff;
209 unsigned long pfn;
210 int ret = -ENXIO;
211
212 if (!plat_device_is_coherent(dev) && !hw_coherentio)
213 addr = CAC_ADDR(addr);
214
215 pfn = page_to_pfn(virt_to_page((void *)addr));
216
217 if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
218 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
219 else
220 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
221
222 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
223 return ret;
224
225 if (off < count && user_count <= (count - off)) {
226 ret = remap_pfn_range(vma, vma->vm_start,
227 pfn + off,
228 user_count << PAGE_SHIFT,
229 vma->vm_page_prot);
230 }
231
232 return ret;
233 }
234
235 static inline void __dma_sync_virtual(void *addr, size_t size,
236 enum dma_data_direction direction)
237 {
238 switch (direction) {
239 case DMA_TO_DEVICE:
240 dma_cache_wback((unsigned long)addr, size);
241 break;
242
243 case DMA_FROM_DEVICE:
244 dma_cache_inv((unsigned long)addr, size);
245 break;
246
247 case DMA_BIDIRECTIONAL:
248 dma_cache_wback_inv((unsigned long)addr, size);
249 break;
250
251 default:
252 BUG();
253 }
254 }
255
256 /*
257 * A single sg entry may refer to multiple physically contiguous
258 * pages. But we still need to process highmem pages individually.
259 * If highmem is not configured then the bulk of this loop gets
260 * optimized out.
261 */
262 static inline void __dma_sync(struct page *page,
263 unsigned long offset, size_t size, enum dma_data_direction direction)
264 {
265 size_t left = size;
266
267 do {
268 size_t len = left;
269
270 if (PageHighMem(page)) {
271 void *addr;
272
273 if (offset + len > PAGE_SIZE) {
274 if (offset >= PAGE_SIZE) {
275 page += offset >> PAGE_SHIFT;
276 offset &= ~PAGE_MASK;
277 }
278 len = PAGE_SIZE - offset;
279 }
280
281 addr = kmap_atomic(page);
282 __dma_sync_virtual(addr + offset, len, direction);
283 kunmap_atomic(addr);
284 } else
285 __dma_sync_virtual(page_address(page) + offset,
286 size, direction);
287 offset = 0;
288 page++;
289 left -= len;
290 } while (left);
291 }
292
293 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
294 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
295 {
296 if (cpu_needs_post_dma_flush(dev))
297 __dma_sync(dma_addr_to_page(dev, dma_addr),
298 dma_addr & ~PAGE_MASK, size, direction);
299 plat_post_dma_flush(dev);
300 plat_unmap_dma_mem(dev, dma_addr, size, direction);
301 }
302
303 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
304 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
305 {
306 int i;
307 struct scatterlist *sg;
308
309 for_each_sg(sglist, sg, nents, i) {
310 if (!plat_device_is_coherent(dev))
311 __dma_sync(sg_page(sg), sg->offset, sg->length,
312 direction);
313 #ifdef CONFIG_NEED_SG_DMA_LENGTH
314 sg->dma_length = sg->length;
315 #endif
316 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
317 sg->offset;
318 }
319
320 return nents;
321 }
322
323 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
324 unsigned long offset, size_t size, enum dma_data_direction direction,
325 struct dma_attrs *attrs)
326 {
327 if (!plat_device_is_coherent(dev))
328 __dma_sync(page, offset, size, direction);
329
330 return plat_map_dma_mem_page(dev, page) + offset;
331 }
332
333 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
334 int nhwentries, enum dma_data_direction direction,
335 struct dma_attrs *attrs)
336 {
337 int i;
338 struct scatterlist *sg;
339
340 for_each_sg(sglist, sg, nhwentries, i) {
341 if (!plat_device_is_coherent(dev) &&
342 direction != DMA_TO_DEVICE)
343 __dma_sync(sg_page(sg), sg->offset, sg->length,
344 direction);
345 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
346 }
347 }
348
349 static void mips_dma_sync_single_for_cpu(struct device *dev,
350 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
351 {
352 if (cpu_needs_post_dma_flush(dev))
353 __dma_sync(dma_addr_to_page(dev, dma_handle),
354 dma_handle & ~PAGE_MASK, size, direction);
355 plat_post_dma_flush(dev);
356 }
357
358 static void mips_dma_sync_single_for_device(struct device *dev,
359 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
360 {
361 if (!plat_device_is_coherent(dev))
362 __dma_sync(dma_addr_to_page(dev, dma_handle),
363 dma_handle & ~PAGE_MASK, size, direction);
364 }
365
366 static void mips_dma_sync_sg_for_cpu(struct device *dev,
367 struct scatterlist *sglist, int nelems,
368 enum dma_data_direction direction)
369 {
370 int i;
371 struct scatterlist *sg;
372
373 if (cpu_needs_post_dma_flush(dev)) {
374 for_each_sg(sglist, sg, nelems, i) {
375 __dma_sync(sg_page(sg), sg->offset, sg->length,
376 direction);
377 }
378 }
379 plat_post_dma_flush(dev);
380 }
381
382 static void mips_dma_sync_sg_for_device(struct device *dev,
383 struct scatterlist *sglist, int nelems,
384 enum dma_data_direction direction)
385 {
386 int i;
387 struct scatterlist *sg;
388
389 if (!plat_device_is_coherent(dev)) {
390 for_each_sg(sglist, sg, nelems, i) {
391 __dma_sync(sg_page(sg), sg->offset, sg->length,
392 direction);
393 }
394 }
395 }
396
397 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
398 {
399 return 0;
400 }
401
402 int mips_dma_supported(struct device *dev, u64 mask)
403 {
404 return plat_dma_supported(dev, mask);
405 }
406
407 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
408 enum dma_data_direction direction)
409 {
410 BUG_ON(direction == DMA_NONE);
411
412 if (!plat_device_is_coherent(dev))
413 __dma_sync_virtual(vaddr, size, direction);
414 }
415
416 EXPORT_SYMBOL(dma_cache_sync);
417
418 static struct dma_map_ops mips_default_dma_map_ops = {
419 .alloc = mips_dma_alloc_coherent,
420 .free = mips_dma_free_coherent,
421 .mmap = mips_dma_mmap,
422 .map_page = mips_dma_map_page,
423 .unmap_page = mips_dma_unmap_page,
424 .map_sg = mips_dma_map_sg,
425 .unmap_sg = mips_dma_unmap_sg,
426 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
427 .sync_single_for_device = mips_dma_sync_single_for_device,
428 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
429 .sync_sg_for_device = mips_dma_sync_sg_for_device,
430 .mapping_error = mips_dma_mapping_error,
431 .dma_supported = mips_dma_supported
432 };
433
434 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
435 EXPORT_SYMBOL(mips_dma_map_ops);
436
437 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
438
439 static int __init mips_dma_init(void)
440 {
441 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
442
443 return 0;
444 }
445 fs_initcall(mips_dma_init);
This page took 0.048619 seconds and 5 git commands to generate.