Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 *
13 * ... and the days got worse and worse and now you see
14 * I've gone completly out of my mind.
15 *
16 * They're coming to take me a away haha
17 * they're coming to take me a away hoho hihi haha
18 * to the funny farm where code is beautiful all the time ...
19 *
20 * (Condolences to Napoleon XIV)
21 */
22
23 #include <linux/bug.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28
29 #include <asm/mmu_context.h>
30 #include <asm/war.h>
31
32 #include "uasm.h"
33
34 static inline int r45k_bvahwbug(void)
35 {
36 /* XXX: We should probe for the presence of this bug, but we don't. */
37 return 0;
38 }
39
40 static inline int r4k_250MHZhwbug(void)
41 {
42 /* XXX: We should probe for the presence of this bug, but we don't. */
43 return 0;
44 }
45
46 static inline int __maybe_unused bcm1250_m3_war(void)
47 {
48 return BCM1250_M3_WAR;
49 }
50
51 static inline int __maybe_unused r10000_llsc_war(void)
52 {
53 return R10000_LLSC_WAR;
54 }
55
56 /*
57 * Found by experiment: At least some revisions of the 4kc throw under
58 * some circumstances a machine check exception, triggered by invalid
59 * values in the index register. Delaying the tlbp instruction until
60 * after the next branch, plus adding an additional nop in front of
61 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
62 * why; it's not an issue caused by the core RTL.
63 *
64 */
65 static int __cpuinit m4kc_tlbp_war(void)
66 {
67 return (current_cpu_data.processor_id & 0xffff00) ==
68 (PRID_COMP_MIPS | PRID_IMP_4KC);
69 }
70
71 /* Handle labels (which must be positive integers). */
72 enum label_id {
73 label_second_part = 1,
74 label_leave,
75 #ifdef MODULE_START
76 label_module_alloc,
77 #endif
78 label_vmalloc,
79 label_vmalloc_done,
80 label_tlbw_hazard,
81 label_split,
82 label_nopage_tlbl,
83 label_nopage_tlbs,
84 label_nopage_tlbm,
85 label_smp_pgtable_change,
86 label_r3000_write_probe_fail,
87 #ifdef CONFIG_HUGETLB_PAGE
88 label_tlb_huge_update,
89 #endif
90 };
91
92 UASM_L_LA(_second_part)
93 UASM_L_LA(_leave)
94 #ifdef MODULE_START
95 UASM_L_LA(_module_alloc)
96 #endif
97 UASM_L_LA(_vmalloc)
98 UASM_L_LA(_vmalloc_done)
99 UASM_L_LA(_tlbw_hazard)
100 UASM_L_LA(_split)
101 UASM_L_LA(_nopage_tlbl)
102 UASM_L_LA(_nopage_tlbs)
103 UASM_L_LA(_nopage_tlbm)
104 UASM_L_LA(_smp_pgtable_change)
105 UASM_L_LA(_r3000_write_probe_fail)
106 #ifdef CONFIG_HUGETLB_PAGE
107 UASM_L_LA(_tlb_huge_update)
108 #endif
109
110 /*
111 * For debug purposes.
112 */
113 static inline void dump_handler(const u32 *handler, int count)
114 {
115 int i;
116
117 pr_debug("\t.set push\n");
118 pr_debug("\t.set noreorder\n");
119
120 for (i = 0; i < count; i++)
121 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
122
123 pr_debug("\t.set pop\n");
124 }
125
126 /* The only general purpose registers allowed in TLB handlers. */
127 #define K0 26
128 #define K1 27
129
130 /* Some CP0 registers */
131 #define C0_INDEX 0, 0
132 #define C0_ENTRYLO0 2, 0
133 #define C0_TCBIND 2, 2
134 #define C0_ENTRYLO1 3, 0
135 #define C0_CONTEXT 4, 0
136 #define C0_PAGEMASK 5, 0
137 #define C0_BADVADDR 8, 0
138 #define C0_ENTRYHI 10, 0
139 #define C0_EPC 14, 0
140 #define C0_XCONTEXT 20, 0
141
142 #ifdef CONFIG_64BIT
143 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
144 #else
145 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
146 #endif
147
148 /* The worst case length of the handler is around 18 instructions for
149 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
150 * Maximum space available is 32 instructions for R3000 and 64
151 * instructions for R4000.
152 *
153 * We deliberately chose a buffer size of 128, so we won't scribble
154 * over anything important on overflow before we panic.
155 */
156 static u32 tlb_handler[128] __cpuinitdata;
157
158 /* simply assume worst case size for labels and relocs */
159 static struct uasm_label labels[128] __cpuinitdata;
160 static struct uasm_reloc relocs[128] __cpuinitdata;
161
162 /*
163 * The R3000 TLB handler is simple.
164 */
165 static void __cpuinit build_r3000_tlb_refill_handler(void)
166 {
167 long pgdc = (long)pgd_current;
168 u32 *p;
169
170 memset(tlb_handler, 0, sizeof(tlb_handler));
171 p = tlb_handler;
172
173 uasm_i_mfc0(&p, K0, C0_BADVADDR);
174 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
175 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
176 uasm_i_srl(&p, K0, K0, 22); /* load delay */
177 uasm_i_sll(&p, K0, K0, 2);
178 uasm_i_addu(&p, K1, K1, K0);
179 uasm_i_mfc0(&p, K0, C0_CONTEXT);
180 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
181 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
182 uasm_i_addu(&p, K1, K1, K0);
183 uasm_i_lw(&p, K0, 0, K1);
184 uasm_i_nop(&p); /* load delay */
185 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
186 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
187 uasm_i_tlbwr(&p); /* cp0 delay */
188 uasm_i_jr(&p, K1);
189 uasm_i_rfe(&p); /* branch delay */
190
191 if (p > tlb_handler + 32)
192 panic("TLB refill handler space exceeded");
193
194 pr_debug("Wrote TLB refill handler (%u instructions).\n",
195 (unsigned int)(p - tlb_handler));
196
197 memcpy((void *)ebase, tlb_handler, 0x80);
198
199 dump_handler((u32 *)ebase, 32);
200 }
201
202 /*
203 * The R4000 TLB handler is much more complicated. We have two
204 * consecutive handler areas with 32 instructions space each.
205 * Since they aren't used at the same time, we can overflow in the
206 * other one.To keep things simple, we first assume linear space,
207 * then we relocate it to the final handler layout as needed.
208 */
209 static u32 final_handler[64] __cpuinitdata;
210
211 /*
212 * Hazards
213 *
214 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
215 * 2. A timing hazard exists for the TLBP instruction.
216 *
217 * stalling_instruction
218 * TLBP
219 *
220 * The JTLB is being read for the TLBP throughout the stall generated by the
221 * previous instruction. This is not really correct as the stalling instruction
222 * can modify the address used to access the JTLB. The failure symptom is that
223 * the TLBP instruction will use an address created for the stalling instruction
224 * and not the address held in C0_ENHI and thus report the wrong results.
225 *
226 * The software work-around is to not allow the instruction preceding the TLBP
227 * to stall - make it an NOP or some other instruction guaranteed not to stall.
228 *
229 * Errata 2 will not be fixed. This errata is also on the R5000.
230 *
231 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
232 */
233 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
234 {
235 switch (current_cpu_type()) {
236 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
237 case CPU_R4600:
238 case CPU_R4700:
239 case CPU_R5000:
240 case CPU_R5000A:
241 case CPU_NEVADA:
242 uasm_i_nop(p);
243 uasm_i_tlbp(p);
244 break;
245
246 default:
247 uasm_i_tlbp(p);
248 break;
249 }
250 }
251
252 /*
253 * Write random or indexed TLB entry, and care about the hazards from
254 * the preceeding mtc0 and for the following eret.
255 */
256 enum tlb_write_entry { tlb_random, tlb_indexed };
257
258 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
259 struct uasm_reloc **r,
260 enum tlb_write_entry wmode)
261 {
262 void(*tlbw)(u32 **) = NULL;
263
264 switch (wmode) {
265 case tlb_random: tlbw = uasm_i_tlbwr; break;
266 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
267 }
268
269 if (cpu_has_mips_r2) {
270 if (cpu_has_mips_r2_exec_hazard)
271 uasm_i_ehb(p);
272 tlbw(p);
273 return;
274 }
275
276 switch (current_cpu_type()) {
277 case CPU_R4000PC:
278 case CPU_R4000SC:
279 case CPU_R4000MC:
280 case CPU_R4400PC:
281 case CPU_R4400SC:
282 case CPU_R4400MC:
283 /*
284 * This branch uses up a mtc0 hazard nop slot and saves
285 * two nops after the tlbw instruction.
286 */
287 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
288 tlbw(p);
289 uasm_l_tlbw_hazard(l, *p);
290 uasm_i_nop(p);
291 break;
292
293 case CPU_R4600:
294 case CPU_R4700:
295 case CPU_R5000:
296 case CPU_R5000A:
297 uasm_i_nop(p);
298 tlbw(p);
299 uasm_i_nop(p);
300 break;
301
302 case CPU_R4300:
303 case CPU_5KC:
304 case CPU_TX49XX:
305 case CPU_PR4450:
306 uasm_i_nop(p);
307 tlbw(p);
308 break;
309
310 case CPU_R10000:
311 case CPU_R12000:
312 case CPU_R14000:
313 case CPU_4KC:
314 case CPU_4KEC:
315 case CPU_SB1:
316 case CPU_SB1A:
317 case CPU_4KSC:
318 case CPU_20KC:
319 case CPU_25KF:
320 case CPU_BCM3302:
321 case CPU_BCM4710:
322 case CPU_LOONGSON2:
323 case CPU_R5500:
324 if (m4kc_tlbp_war())
325 uasm_i_nop(p);
326 case CPU_ALCHEMY:
327 tlbw(p);
328 break;
329
330 case CPU_NEVADA:
331 uasm_i_nop(p); /* QED specifies 2 nops hazard */
332 /*
333 * This branch uses up a mtc0 hazard nop slot and saves
334 * a nop after the tlbw instruction.
335 */
336 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
337 tlbw(p);
338 uasm_l_tlbw_hazard(l, *p);
339 break;
340
341 case CPU_RM7000:
342 uasm_i_nop(p);
343 uasm_i_nop(p);
344 uasm_i_nop(p);
345 uasm_i_nop(p);
346 tlbw(p);
347 break;
348
349 case CPU_RM9000:
350 /*
351 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
352 * use of the JTLB for instructions should not occur for 4
353 * cpu cycles and use for data translations should not occur
354 * for 3 cpu cycles.
355 */
356 uasm_i_ssnop(p);
357 uasm_i_ssnop(p);
358 uasm_i_ssnop(p);
359 uasm_i_ssnop(p);
360 tlbw(p);
361 uasm_i_ssnop(p);
362 uasm_i_ssnop(p);
363 uasm_i_ssnop(p);
364 uasm_i_ssnop(p);
365 break;
366
367 case CPU_VR4111:
368 case CPU_VR4121:
369 case CPU_VR4122:
370 case CPU_VR4181:
371 case CPU_VR4181A:
372 uasm_i_nop(p);
373 uasm_i_nop(p);
374 tlbw(p);
375 uasm_i_nop(p);
376 uasm_i_nop(p);
377 break;
378
379 case CPU_VR4131:
380 case CPU_VR4133:
381 case CPU_R5432:
382 uasm_i_nop(p);
383 uasm_i_nop(p);
384 tlbw(p);
385 break;
386
387 default:
388 panic("No TLB refill handler yet (CPU type: %d)",
389 current_cpu_data.cputype);
390 break;
391 }
392 }
393
394 #ifdef CONFIG_HUGETLB_PAGE
395 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
396 struct uasm_label **l,
397 struct uasm_reloc **r,
398 unsigned int tmp,
399 enum tlb_write_entry wmode)
400 {
401 /* Set huge page tlb entry size */
402 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
403 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
404 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
405
406 build_tlb_write_entry(p, l, r, wmode);
407
408 /* Reset default page size */
409 if (PM_DEFAULT_MASK >> 16) {
410 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
411 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
412 uasm_il_b(p, r, label_leave);
413 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
414 } else if (PM_DEFAULT_MASK) {
415 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
416 uasm_il_b(p, r, label_leave);
417 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
418 } else {
419 uasm_il_b(p, r, label_leave);
420 uasm_i_mtc0(p, 0, C0_PAGEMASK);
421 }
422 }
423
424 /*
425 * Check if Huge PTE is present, if so then jump to LABEL.
426 */
427 static void __cpuinit
428 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
429 unsigned int pmd, int lid)
430 {
431 UASM_i_LW(p, tmp, 0, pmd);
432 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
433 uasm_il_bnez(p, r, tmp, lid);
434 }
435
436 static __cpuinit void build_huge_update_entries(u32 **p,
437 unsigned int pte,
438 unsigned int tmp)
439 {
440 int small_sequence;
441
442 /*
443 * A huge PTE describes an area the size of the
444 * configured huge page size. This is twice the
445 * of the large TLB entry size we intend to use.
446 * A TLB entry half the size of the configured
447 * huge page size is configured into entrylo0
448 * and entrylo1 to cover the contiguous huge PTE
449 * address space.
450 */
451 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
452
453 /* We can clobber tmp. It isn't used after this.*/
454 if (!small_sequence)
455 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
456
457 UASM_i_SRL(p, pte, pte, 6); /* convert to entrylo */
458 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* load it */
459 /* convert to entrylo1 */
460 if (small_sequence)
461 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
462 else
463 UASM_i_ADDU(p, pte, pte, tmp);
464
465 uasm_i_mtc0(p, pte, C0_ENTRYLO1); /* load it */
466 }
467
468 static __cpuinit void build_huge_handler_tail(u32 **p,
469 struct uasm_reloc **r,
470 struct uasm_label **l,
471 unsigned int pte,
472 unsigned int ptr)
473 {
474 #ifdef CONFIG_SMP
475 UASM_i_SC(p, pte, 0, ptr);
476 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
477 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
478 #else
479 UASM_i_SW(p, pte, 0, ptr);
480 #endif
481 build_huge_update_entries(p, pte, ptr);
482 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed);
483 }
484 #endif /* CONFIG_HUGETLB_PAGE */
485
486 #ifdef CONFIG_64BIT
487 /*
488 * TMP and PTR are scratch.
489 * TMP will be clobbered, PTR will hold the pmd entry.
490 */
491 static void __cpuinit
492 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
493 unsigned int tmp, unsigned int ptr)
494 {
495 long pgdc = (long)pgd_current;
496
497 /*
498 * The vmalloc handling is not in the hotpath.
499 */
500 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
501 #ifdef MODULE_START
502 uasm_il_bltz(p, r, tmp, label_module_alloc);
503 #else
504 uasm_il_bltz(p, r, tmp, label_vmalloc);
505 #endif
506 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
507
508 #ifdef CONFIG_SMP
509 # ifdef CONFIG_MIPS_MT_SMTC
510 /*
511 * SMTC uses TCBind value as "CPU" index
512 */
513 uasm_i_mfc0(p, ptr, C0_TCBIND);
514 uasm_i_dsrl(p, ptr, ptr, 19);
515 # else
516 /*
517 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
518 * stored in CONTEXT.
519 */
520 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
521 uasm_i_dsrl(p, ptr, ptr, 23);
522 #endif
523 UASM_i_LA_mostly(p, tmp, pgdc);
524 uasm_i_daddu(p, ptr, ptr, tmp);
525 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
526 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
527 #else
528 UASM_i_LA_mostly(p, ptr, pgdc);
529 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
530 #endif
531
532 uasm_l_vmalloc_done(l, *p);
533
534 if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
535 uasm_i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
536 else
537 uasm_i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
538
539 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
540 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
541 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
542 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
543 uasm_i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
544 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
545 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
546 }
547
548 /*
549 * BVADDR is the faulting address, PTR is scratch.
550 * PTR will hold the pgd for vmalloc.
551 */
552 static void __cpuinit
553 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
554 unsigned int bvaddr, unsigned int ptr)
555 {
556 long swpd = (long)swapper_pg_dir;
557
558 #ifdef MODULE_START
559 long modd = (long)module_pg_dir;
560
561 uasm_l_module_alloc(l, *p);
562 /*
563 * Assumption:
564 * VMALLOC_START >= 0xc000000000000000UL
565 * MODULE_START >= 0xe000000000000000UL
566 */
567 UASM_i_SLL(p, ptr, bvaddr, 2);
568 uasm_il_bgez(p, r, ptr, label_vmalloc);
569
570 if (uasm_in_compat_space_p(MODULE_START) &&
571 !uasm_rel_lo(MODULE_START)) {
572 uasm_i_lui(p, ptr, uasm_rel_hi(MODULE_START)); /* delay slot */
573 } else {
574 /* unlikely configuration */
575 uasm_i_nop(p); /* delay slot */
576 UASM_i_LA(p, ptr, MODULE_START);
577 }
578 uasm_i_dsubu(p, bvaddr, bvaddr, ptr);
579
580 if (uasm_in_compat_space_p(modd) && !uasm_rel_lo(modd)) {
581 uasm_il_b(p, r, label_vmalloc_done);
582 uasm_i_lui(p, ptr, uasm_rel_hi(modd));
583 } else {
584 UASM_i_LA_mostly(p, ptr, modd);
585 uasm_il_b(p, r, label_vmalloc_done);
586 if (uasm_in_compat_space_p(modd))
587 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(modd));
588 else
589 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(modd));
590 }
591
592 uasm_l_vmalloc(l, *p);
593 if (uasm_in_compat_space_p(MODULE_START) &&
594 !uasm_rel_lo(MODULE_START) &&
595 MODULE_START << 32 == VMALLOC_START)
596 uasm_i_dsll32(p, ptr, ptr, 0); /* typical case */
597 else
598 UASM_i_LA(p, ptr, VMALLOC_START);
599 #else
600 uasm_l_vmalloc(l, *p);
601 UASM_i_LA(p, ptr, VMALLOC_START);
602 #endif
603 uasm_i_dsubu(p, bvaddr, bvaddr, ptr);
604
605 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
606 uasm_il_b(p, r, label_vmalloc_done);
607 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
608 } else {
609 UASM_i_LA_mostly(p, ptr, swpd);
610 uasm_il_b(p, r, label_vmalloc_done);
611 if (uasm_in_compat_space_p(swpd))
612 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
613 else
614 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
615 }
616 }
617
618 #else /* !CONFIG_64BIT */
619
620 /*
621 * TMP and PTR are scratch.
622 * TMP will be clobbered, PTR will hold the pgd entry.
623 */
624 static void __cpuinit __maybe_unused
625 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
626 {
627 long pgdc = (long)pgd_current;
628
629 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
630 #ifdef CONFIG_SMP
631 #ifdef CONFIG_MIPS_MT_SMTC
632 /*
633 * SMTC uses TCBind value as "CPU" index
634 */
635 uasm_i_mfc0(p, ptr, C0_TCBIND);
636 UASM_i_LA_mostly(p, tmp, pgdc);
637 uasm_i_srl(p, ptr, ptr, 19);
638 #else
639 /*
640 * smp_processor_id() << 3 is stored in CONTEXT.
641 */
642 uasm_i_mfc0(p, ptr, C0_CONTEXT);
643 UASM_i_LA_mostly(p, tmp, pgdc);
644 uasm_i_srl(p, ptr, ptr, 23);
645 #endif
646 uasm_i_addu(p, ptr, tmp, ptr);
647 #else
648 UASM_i_LA_mostly(p, ptr, pgdc);
649 #endif
650 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
651 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
652 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
653 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
654 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
655 }
656
657 #endif /* !CONFIG_64BIT */
658
659 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
660 {
661 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
662 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
663
664 switch (current_cpu_type()) {
665 case CPU_VR41XX:
666 case CPU_VR4111:
667 case CPU_VR4121:
668 case CPU_VR4122:
669 case CPU_VR4131:
670 case CPU_VR4181:
671 case CPU_VR4181A:
672 case CPU_VR4133:
673 shift += 2;
674 break;
675
676 default:
677 break;
678 }
679
680 if (shift)
681 UASM_i_SRL(p, ctx, ctx, shift);
682 uasm_i_andi(p, ctx, ctx, mask);
683 }
684
685 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
686 {
687 /*
688 * Bug workaround for the Nevada. It seems as if under certain
689 * circumstances the move from cp0_context might produce a
690 * bogus result when the mfc0 instruction and its consumer are
691 * in a different cacheline or a load instruction, probably any
692 * memory reference, is between them.
693 */
694 switch (current_cpu_type()) {
695 case CPU_NEVADA:
696 UASM_i_LW(p, ptr, 0, ptr);
697 GET_CONTEXT(p, tmp); /* get context reg */
698 break;
699
700 default:
701 GET_CONTEXT(p, tmp); /* get context reg */
702 UASM_i_LW(p, ptr, 0, ptr);
703 break;
704 }
705
706 build_adjust_context(p, tmp);
707 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
708 }
709
710 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
711 unsigned int ptep)
712 {
713 /*
714 * 64bit address support (36bit on a 32bit CPU) in a 32bit
715 * Kernel is a special case. Only a few CPUs use it.
716 */
717 #ifdef CONFIG_64BIT_PHYS_ADDR
718 if (cpu_has_64bits) {
719 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
720 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
721 uasm_i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
722 uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
723 uasm_i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
724 uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
725 } else {
726 int pte_off_even = sizeof(pte_t) / 2;
727 int pte_off_odd = pte_off_even + sizeof(pte_t);
728
729 /* The pte entries are pre-shifted */
730 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
731 uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
732 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
733 uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
734 }
735 #else
736 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
737 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
738 if (r45k_bvahwbug())
739 build_tlb_probe_entry(p);
740 UASM_i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
741 if (r4k_250MHZhwbug())
742 uasm_i_mtc0(p, 0, C0_ENTRYLO0);
743 uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
744 UASM_i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
745 if (r45k_bvahwbug())
746 uasm_i_mfc0(p, tmp, C0_INDEX);
747 if (r4k_250MHZhwbug())
748 uasm_i_mtc0(p, 0, C0_ENTRYLO1);
749 uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
750 #endif
751 }
752
753 /*
754 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
755 * because EXL == 0. If we wrap, we can also use the 32 instruction
756 * slots before the XTLB refill exception handler which belong to the
757 * unused TLB refill exception.
758 */
759 #define MIPS64_REFILL_INSNS 32
760
761 static void __cpuinit build_r4000_tlb_refill_handler(void)
762 {
763 u32 *p = tlb_handler;
764 struct uasm_label *l = labels;
765 struct uasm_reloc *r = relocs;
766 u32 *f;
767 unsigned int final_len;
768
769 memset(tlb_handler, 0, sizeof(tlb_handler));
770 memset(labels, 0, sizeof(labels));
771 memset(relocs, 0, sizeof(relocs));
772 memset(final_handler, 0, sizeof(final_handler));
773
774 /*
775 * create the plain linear handler
776 */
777 if (bcm1250_m3_war()) {
778 UASM_i_MFC0(&p, K0, C0_BADVADDR);
779 UASM_i_MFC0(&p, K1, C0_ENTRYHI);
780 uasm_i_xor(&p, K0, K0, K1);
781 UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
782 uasm_il_bnez(&p, &r, K0, label_leave);
783 /* No need for uasm_i_nop */
784 }
785
786 #ifdef CONFIG_64BIT
787 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
788 #else
789 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
790 #endif
791
792 #ifdef CONFIG_HUGETLB_PAGE
793 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
794 #endif
795
796 build_get_ptep(&p, K0, K1);
797 build_update_entries(&p, K0, K1);
798 build_tlb_write_entry(&p, &l, &r, tlb_random);
799 uasm_l_leave(&l, p);
800 uasm_i_eret(&p); /* return from trap */
801
802 #ifdef CONFIG_HUGETLB_PAGE
803 uasm_l_tlb_huge_update(&l, p);
804 UASM_i_LW(&p, K0, 0, K1);
805 build_huge_update_entries(&p, K0, K1);
806 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random);
807 #endif
808
809 #ifdef CONFIG_64BIT
810 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
811 #endif
812
813 /*
814 * Overflow check: For the 64bit handler, we need at least one
815 * free instruction slot for the wrap-around branch. In worst
816 * case, if the intended insertion point is a delay slot, we
817 * need three, with the second nop'ed and the third being
818 * unused.
819 */
820 /* Loongson2 ebase is different than r4k, we have more space */
821 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
822 if ((p - tlb_handler) > 64)
823 panic("TLB refill handler space exceeded");
824 #else
825 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
826 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
827 && uasm_insn_has_bdelay(relocs,
828 tlb_handler + MIPS64_REFILL_INSNS - 3)))
829 panic("TLB refill handler space exceeded");
830 #endif
831
832 /*
833 * Now fold the handler in the TLB refill handler space.
834 */
835 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
836 f = final_handler;
837 /* Simplest case, just copy the handler. */
838 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
839 final_len = p - tlb_handler;
840 #else /* CONFIG_64BIT */
841 f = final_handler + MIPS64_REFILL_INSNS;
842 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
843 /* Just copy the handler. */
844 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
845 final_len = p - tlb_handler;
846 } else {
847 #if defined(CONFIG_HUGETLB_PAGE)
848 const enum label_id ls = label_tlb_huge_update;
849 #elif defined(MODULE_START)
850 const enum label_id ls = label_module_alloc;
851 #else
852 const enum label_id ls = label_vmalloc;
853 #endif
854 u32 *split;
855 int ov = 0;
856 int i;
857
858 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
859 ;
860 BUG_ON(i == ARRAY_SIZE(labels));
861 split = labels[i].addr;
862
863 /*
864 * See if we have overflown one way or the other.
865 */
866 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
867 split < p - MIPS64_REFILL_INSNS)
868 ov = 1;
869
870 if (ov) {
871 /*
872 * Split two instructions before the end. One
873 * for the branch and one for the instruction
874 * in the delay slot.
875 */
876 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
877
878 /*
879 * If the branch would fall in a delay slot,
880 * we must back up an additional instruction
881 * so that it is no longer in a delay slot.
882 */
883 if (uasm_insn_has_bdelay(relocs, split - 1))
884 split--;
885 }
886 /* Copy first part of the handler. */
887 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
888 f += split - tlb_handler;
889
890 if (ov) {
891 /* Insert branch. */
892 uasm_l_split(&l, final_handler);
893 uasm_il_b(&f, &r, label_split);
894 if (uasm_insn_has_bdelay(relocs, split))
895 uasm_i_nop(&f);
896 else {
897 uasm_copy_handler(relocs, labels,
898 split, split + 1, f);
899 uasm_move_labels(labels, f, f + 1, -1);
900 f++;
901 split++;
902 }
903 }
904
905 /* Copy the rest of the handler. */
906 uasm_copy_handler(relocs, labels, split, p, final_handler);
907 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
908 (p - split);
909 }
910 #endif /* CONFIG_64BIT */
911
912 uasm_resolve_relocs(relocs, labels);
913 pr_debug("Wrote TLB refill handler (%u instructions).\n",
914 final_len);
915
916 memcpy((void *)ebase, final_handler, 0x100);
917
918 dump_handler((u32 *)ebase, 64);
919 }
920
921 /*
922 * TLB load/store/modify handlers.
923 *
924 * Only the fastpath gets synthesized at runtime, the slowpath for
925 * do_page_fault remains normal asm.
926 */
927 extern void tlb_do_page_fault_0(void);
928 extern void tlb_do_page_fault_1(void);
929
930 /*
931 * 128 instructions for the fastpath handler is generous and should
932 * never be exceeded.
933 */
934 #define FASTPATH_SIZE 128
935
936 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
937 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
938 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
939
940 static void __cpuinit
941 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
942 {
943 #ifdef CONFIG_SMP
944 # ifdef CONFIG_64BIT_PHYS_ADDR
945 if (cpu_has_64bits)
946 uasm_i_lld(p, pte, 0, ptr);
947 else
948 # endif
949 UASM_i_LL(p, pte, 0, ptr);
950 #else
951 # ifdef CONFIG_64BIT_PHYS_ADDR
952 if (cpu_has_64bits)
953 uasm_i_ld(p, pte, 0, ptr);
954 else
955 # endif
956 UASM_i_LW(p, pte, 0, ptr);
957 #endif
958 }
959
960 static void __cpuinit
961 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
962 unsigned int mode)
963 {
964 #ifdef CONFIG_64BIT_PHYS_ADDR
965 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
966 #endif
967
968 uasm_i_ori(p, pte, pte, mode);
969 #ifdef CONFIG_SMP
970 # ifdef CONFIG_64BIT_PHYS_ADDR
971 if (cpu_has_64bits)
972 uasm_i_scd(p, pte, 0, ptr);
973 else
974 # endif
975 UASM_i_SC(p, pte, 0, ptr);
976
977 if (r10000_llsc_war())
978 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
979 else
980 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
981
982 # ifdef CONFIG_64BIT_PHYS_ADDR
983 if (!cpu_has_64bits) {
984 /* no uasm_i_nop needed */
985 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
986 uasm_i_ori(p, pte, pte, hwmode);
987 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
988 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
989 /* no uasm_i_nop needed */
990 uasm_i_lw(p, pte, 0, ptr);
991 } else
992 uasm_i_nop(p);
993 # else
994 uasm_i_nop(p);
995 # endif
996 #else
997 # ifdef CONFIG_64BIT_PHYS_ADDR
998 if (cpu_has_64bits)
999 uasm_i_sd(p, pte, 0, ptr);
1000 else
1001 # endif
1002 UASM_i_SW(p, pte, 0, ptr);
1003
1004 # ifdef CONFIG_64BIT_PHYS_ADDR
1005 if (!cpu_has_64bits) {
1006 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1007 uasm_i_ori(p, pte, pte, hwmode);
1008 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1009 uasm_i_lw(p, pte, 0, ptr);
1010 }
1011 # endif
1012 #endif
1013 }
1014
1015 /*
1016 * Check if PTE is present, if not then jump to LABEL. PTR points to
1017 * the page table where this PTE is located, PTE will be re-loaded
1018 * with it's original value.
1019 */
1020 static void __cpuinit
1021 build_pte_present(u32 **p, struct uasm_reloc **r,
1022 unsigned int pte, unsigned int ptr, enum label_id lid)
1023 {
1024 uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1025 uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1026 uasm_il_bnez(p, r, pte, lid);
1027 iPTE_LW(p, pte, ptr);
1028 }
1029
1030 /* Make PTE valid, store result in PTR. */
1031 static void __cpuinit
1032 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1033 unsigned int ptr)
1034 {
1035 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1036
1037 iPTE_SW(p, r, pte, ptr, mode);
1038 }
1039
1040 /*
1041 * Check if PTE can be written to, if not branch to LABEL. Regardless
1042 * restore PTE with value from PTR when done.
1043 */
1044 static void __cpuinit
1045 build_pte_writable(u32 **p, struct uasm_reloc **r,
1046 unsigned int pte, unsigned int ptr, enum label_id lid)
1047 {
1048 uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1049 uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1050 uasm_il_bnez(p, r, pte, lid);
1051 iPTE_LW(p, pte, ptr);
1052 }
1053
1054 /* Make PTE writable, update software status bits as well, then store
1055 * at PTR.
1056 */
1057 static void __cpuinit
1058 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1059 unsigned int ptr)
1060 {
1061 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1062 | _PAGE_DIRTY);
1063
1064 iPTE_SW(p, r, pte, ptr, mode);
1065 }
1066
1067 /*
1068 * Check if PTE can be modified, if not branch to LABEL. Regardless
1069 * restore PTE with value from PTR when done.
1070 */
1071 static void __cpuinit
1072 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1073 unsigned int pte, unsigned int ptr, enum label_id lid)
1074 {
1075 uasm_i_andi(p, pte, pte, _PAGE_WRITE);
1076 uasm_il_beqz(p, r, pte, lid);
1077 iPTE_LW(p, pte, ptr);
1078 }
1079
1080 /*
1081 * R3000 style TLB load/store/modify handlers.
1082 */
1083
1084 /*
1085 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1086 * Then it returns.
1087 */
1088 static void __cpuinit
1089 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1090 {
1091 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1092 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1093 uasm_i_tlbwi(p);
1094 uasm_i_jr(p, tmp);
1095 uasm_i_rfe(p); /* branch delay */
1096 }
1097
1098 /*
1099 * This places the pte into ENTRYLO0 and writes it with tlbwi
1100 * or tlbwr as appropriate. This is because the index register
1101 * may have the probe fail bit set as a result of a trap on a
1102 * kseg2 access, i.e. without refill. Then it returns.
1103 */
1104 static void __cpuinit
1105 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1106 struct uasm_reloc **r, unsigned int pte,
1107 unsigned int tmp)
1108 {
1109 uasm_i_mfc0(p, tmp, C0_INDEX);
1110 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1111 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1112 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1113 uasm_i_tlbwi(p); /* cp0 delay */
1114 uasm_i_jr(p, tmp);
1115 uasm_i_rfe(p); /* branch delay */
1116 uasm_l_r3000_write_probe_fail(l, *p);
1117 uasm_i_tlbwr(p); /* cp0 delay */
1118 uasm_i_jr(p, tmp);
1119 uasm_i_rfe(p); /* branch delay */
1120 }
1121
1122 static void __cpuinit
1123 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1124 unsigned int ptr)
1125 {
1126 long pgdc = (long)pgd_current;
1127
1128 uasm_i_mfc0(p, pte, C0_BADVADDR);
1129 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1130 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1131 uasm_i_srl(p, pte, pte, 22); /* load delay */
1132 uasm_i_sll(p, pte, pte, 2);
1133 uasm_i_addu(p, ptr, ptr, pte);
1134 uasm_i_mfc0(p, pte, C0_CONTEXT);
1135 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1136 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1137 uasm_i_addu(p, ptr, ptr, pte);
1138 uasm_i_lw(p, pte, 0, ptr);
1139 uasm_i_tlbp(p); /* load delay */
1140 }
1141
1142 static void __cpuinit build_r3000_tlb_load_handler(void)
1143 {
1144 u32 *p = handle_tlbl;
1145 struct uasm_label *l = labels;
1146 struct uasm_reloc *r = relocs;
1147
1148 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1149 memset(labels, 0, sizeof(labels));
1150 memset(relocs, 0, sizeof(relocs));
1151
1152 build_r3000_tlbchange_handler_head(&p, K0, K1);
1153 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1154 uasm_i_nop(&p); /* load delay */
1155 build_make_valid(&p, &r, K0, K1);
1156 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1157
1158 uasm_l_nopage_tlbl(&l, p);
1159 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1160 uasm_i_nop(&p);
1161
1162 if ((p - handle_tlbl) > FASTPATH_SIZE)
1163 panic("TLB load handler fastpath space exceeded");
1164
1165 uasm_resolve_relocs(relocs, labels);
1166 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1167 (unsigned int)(p - handle_tlbl));
1168
1169 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1170 }
1171
1172 static void __cpuinit build_r3000_tlb_store_handler(void)
1173 {
1174 u32 *p = handle_tlbs;
1175 struct uasm_label *l = labels;
1176 struct uasm_reloc *r = relocs;
1177
1178 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1179 memset(labels, 0, sizeof(labels));
1180 memset(relocs, 0, sizeof(relocs));
1181
1182 build_r3000_tlbchange_handler_head(&p, K0, K1);
1183 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1184 uasm_i_nop(&p); /* load delay */
1185 build_make_write(&p, &r, K0, K1);
1186 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1187
1188 uasm_l_nopage_tlbs(&l, p);
1189 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1190 uasm_i_nop(&p);
1191
1192 if ((p - handle_tlbs) > FASTPATH_SIZE)
1193 panic("TLB store handler fastpath space exceeded");
1194
1195 uasm_resolve_relocs(relocs, labels);
1196 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1197 (unsigned int)(p - handle_tlbs));
1198
1199 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1200 }
1201
1202 static void __cpuinit build_r3000_tlb_modify_handler(void)
1203 {
1204 u32 *p = handle_tlbm;
1205 struct uasm_label *l = labels;
1206 struct uasm_reloc *r = relocs;
1207
1208 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1209 memset(labels, 0, sizeof(labels));
1210 memset(relocs, 0, sizeof(relocs));
1211
1212 build_r3000_tlbchange_handler_head(&p, K0, K1);
1213 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1214 uasm_i_nop(&p); /* load delay */
1215 build_make_write(&p, &r, K0, K1);
1216 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1217
1218 uasm_l_nopage_tlbm(&l, p);
1219 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1220 uasm_i_nop(&p);
1221
1222 if ((p - handle_tlbm) > FASTPATH_SIZE)
1223 panic("TLB modify handler fastpath space exceeded");
1224
1225 uasm_resolve_relocs(relocs, labels);
1226 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1227 (unsigned int)(p - handle_tlbm));
1228
1229 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1230 }
1231
1232 /*
1233 * R4000 style TLB load/store/modify handlers.
1234 */
1235 static void __cpuinit
1236 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1237 struct uasm_reloc **r, unsigned int pte,
1238 unsigned int ptr)
1239 {
1240 #ifdef CONFIG_64BIT
1241 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1242 #else
1243 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1244 #endif
1245
1246 #ifdef CONFIG_HUGETLB_PAGE
1247 /*
1248 * For huge tlb entries, pmd doesn't contain an address but
1249 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1250 * see if we need to jump to huge tlb processing.
1251 */
1252 build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update);
1253 #endif
1254
1255 UASM_i_MFC0(p, pte, C0_BADVADDR);
1256 UASM_i_LW(p, ptr, 0, ptr);
1257 UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1258 uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1259 UASM_i_ADDU(p, ptr, ptr, pte);
1260
1261 #ifdef CONFIG_SMP
1262 uasm_l_smp_pgtable_change(l, *p);
1263 #endif
1264 iPTE_LW(p, pte, ptr); /* get even pte */
1265 if (!m4kc_tlbp_war())
1266 build_tlb_probe_entry(p);
1267 }
1268
1269 static void __cpuinit
1270 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1271 struct uasm_reloc **r, unsigned int tmp,
1272 unsigned int ptr)
1273 {
1274 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1275 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1276 build_update_entries(p, tmp, ptr);
1277 build_tlb_write_entry(p, l, r, tlb_indexed);
1278 uasm_l_leave(l, *p);
1279 uasm_i_eret(p); /* return from trap */
1280
1281 #ifdef CONFIG_64BIT
1282 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1283 #endif
1284 }
1285
1286 static void __cpuinit build_r4000_tlb_load_handler(void)
1287 {
1288 u32 *p = handle_tlbl;
1289 struct uasm_label *l = labels;
1290 struct uasm_reloc *r = relocs;
1291
1292 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1293 memset(labels, 0, sizeof(labels));
1294 memset(relocs, 0, sizeof(relocs));
1295
1296 if (bcm1250_m3_war()) {
1297 UASM_i_MFC0(&p, K0, C0_BADVADDR);
1298 UASM_i_MFC0(&p, K1, C0_ENTRYHI);
1299 uasm_i_xor(&p, K0, K0, K1);
1300 UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1301 uasm_il_bnez(&p, &r, K0, label_leave);
1302 /* No need for uasm_i_nop */
1303 }
1304
1305 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1306 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1307 if (m4kc_tlbp_war())
1308 build_tlb_probe_entry(&p);
1309 build_make_valid(&p, &r, K0, K1);
1310 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1311
1312 #ifdef CONFIG_HUGETLB_PAGE
1313 /*
1314 * This is the entry point when build_r4000_tlbchange_handler_head
1315 * spots a huge page.
1316 */
1317 uasm_l_tlb_huge_update(&l, p);
1318 iPTE_LW(&p, K0, K1);
1319 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1320 build_tlb_probe_entry(&p);
1321 uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID));
1322 build_huge_handler_tail(&p, &r, &l, K0, K1);
1323 #endif
1324
1325 uasm_l_nopage_tlbl(&l, p);
1326 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1327 uasm_i_nop(&p);
1328
1329 if ((p - handle_tlbl) > FASTPATH_SIZE)
1330 panic("TLB load handler fastpath space exceeded");
1331
1332 uasm_resolve_relocs(relocs, labels);
1333 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1334 (unsigned int)(p - handle_tlbl));
1335
1336 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1337 }
1338
1339 static void __cpuinit build_r4000_tlb_store_handler(void)
1340 {
1341 u32 *p = handle_tlbs;
1342 struct uasm_label *l = labels;
1343 struct uasm_reloc *r = relocs;
1344
1345 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1346 memset(labels, 0, sizeof(labels));
1347 memset(relocs, 0, sizeof(relocs));
1348
1349 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1350 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1351 if (m4kc_tlbp_war())
1352 build_tlb_probe_entry(&p);
1353 build_make_write(&p, &r, K0, K1);
1354 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1355
1356 #ifdef CONFIG_HUGETLB_PAGE
1357 /*
1358 * This is the entry point when
1359 * build_r4000_tlbchange_handler_head spots a huge page.
1360 */
1361 uasm_l_tlb_huge_update(&l, p);
1362 iPTE_LW(&p, K0, K1);
1363 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1364 build_tlb_probe_entry(&p);
1365 uasm_i_ori(&p, K0, K0,
1366 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1367 build_huge_handler_tail(&p, &r, &l, K0, K1);
1368 #endif
1369
1370 uasm_l_nopage_tlbs(&l, p);
1371 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1372 uasm_i_nop(&p);
1373
1374 if ((p - handle_tlbs) > FASTPATH_SIZE)
1375 panic("TLB store handler fastpath space exceeded");
1376
1377 uasm_resolve_relocs(relocs, labels);
1378 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1379 (unsigned int)(p - handle_tlbs));
1380
1381 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1382 }
1383
1384 static void __cpuinit build_r4000_tlb_modify_handler(void)
1385 {
1386 u32 *p = handle_tlbm;
1387 struct uasm_label *l = labels;
1388 struct uasm_reloc *r = relocs;
1389
1390 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1391 memset(labels, 0, sizeof(labels));
1392 memset(relocs, 0, sizeof(relocs));
1393
1394 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1395 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1396 if (m4kc_tlbp_war())
1397 build_tlb_probe_entry(&p);
1398 /* Present and writable bits set, set accessed and dirty bits. */
1399 build_make_write(&p, &r, K0, K1);
1400 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1401
1402 #ifdef CONFIG_HUGETLB_PAGE
1403 /*
1404 * This is the entry point when
1405 * build_r4000_tlbchange_handler_head spots a huge page.
1406 */
1407 uasm_l_tlb_huge_update(&l, p);
1408 iPTE_LW(&p, K0, K1);
1409 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1410 build_tlb_probe_entry(&p);
1411 uasm_i_ori(&p, K0, K0,
1412 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1413 build_huge_handler_tail(&p, &r, &l, K0, K1);
1414 #endif
1415
1416 uasm_l_nopage_tlbm(&l, p);
1417 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1418 uasm_i_nop(&p);
1419
1420 if ((p - handle_tlbm) > FASTPATH_SIZE)
1421 panic("TLB modify handler fastpath space exceeded");
1422
1423 uasm_resolve_relocs(relocs, labels);
1424 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1425 (unsigned int)(p - handle_tlbm));
1426
1427 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1428 }
1429
1430 void __cpuinit build_tlb_refill_handler(void)
1431 {
1432 /*
1433 * The refill handler is generated per-CPU, multi-node systems
1434 * may have local storage for it. The other handlers are only
1435 * needed once.
1436 */
1437 static int run_once = 0;
1438
1439 switch (current_cpu_type()) {
1440 case CPU_R2000:
1441 case CPU_R3000:
1442 case CPU_R3000A:
1443 case CPU_R3081E:
1444 case CPU_TX3912:
1445 case CPU_TX3922:
1446 case CPU_TX3927:
1447 build_r3000_tlb_refill_handler();
1448 if (!run_once) {
1449 build_r3000_tlb_load_handler();
1450 build_r3000_tlb_store_handler();
1451 build_r3000_tlb_modify_handler();
1452 run_once++;
1453 }
1454 break;
1455
1456 case CPU_R6000:
1457 case CPU_R6000A:
1458 panic("No R6000 TLB refill handler yet");
1459 break;
1460
1461 case CPU_R8000:
1462 panic("No R8000 TLB refill handler yet");
1463 break;
1464
1465 default:
1466 build_r4000_tlb_refill_handler();
1467 if (!run_once) {
1468 build_r4000_tlb_load_handler();
1469 build_r4000_tlb_store_handler();
1470 build_r4000_tlb_modify_handler();
1471 run_once++;
1472 }
1473 }
1474 }
1475
1476 void __cpuinit flush_tlb_handlers(void)
1477 {
1478 local_flush_icache_range((unsigned long)handle_tlbl,
1479 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1480 local_flush_icache_range((unsigned long)handle_tlbs,
1481 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1482 local_flush_icache_range((unsigned long)handle_tlbm,
1483 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1484 }
This page took 0.0636 seconds and 5 git commands to generate.