Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[deliverable/linux.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 *
13 * ... and the days got worse and worse and now you see
14 * I've gone completly out of my mind.
15 *
16 * They're coming to take me a away haha
17 * they're coming to take me a away hoho hihi haha
18 * to the funny farm where code is beautiful all the time ...
19 *
20 * (Condolences to Napoleon XIV)
21 */
22
23 #include <linux/bug.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/smp.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29
30 #include <asm/mmu_context.h>
31 #include <asm/war.h>
32
33 #include "uasm.h"
34
35 static inline int r45k_bvahwbug(void)
36 {
37 /* XXX: We should probe for the presence of this bug, but we don't. */
38 return 0;
39 }
40
41 static inline int r4k_250MHZhwbug(void)
42 {
43 /* XXX: We should probe for the presence of this bug, but we don't. */
44 return 0;
45 }
46
47 static inline int __maybe_unused bcm1250_m3_war(void)
48 {
49 return BCM1250_M3_WAR;
50 }
51
52 static inline int __maybe_unused r10000_llsc_war(void)
53 {
54 return R10000_LLSC_WAR;
55 }
56
57 /*
58 * Found by experiment: At least some revisions of the 4kc throw under
59 * some circumstances a machine check exception, triggered by invalid
60 * values in the index register. Delaying the tlbp instruction until
61 * after the next branch, plus adding an additional nop in front of
62 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
63 * why; it's not an issue caused by the core RTL.
64 *
65 */
66 static int __cpuinit m4kc_tlbp_war(void)
67 {
68 return (current_cpu_data.processor_id & 0xffff00) ==
69 (PRID_COMP_MIPS | PRID_IMP_4KC);
70 }
71
72 /* Handle labels (which must be positive integers). */
73 enum label_id {
74 label_second_part = 1,
75 label_leave,
76 #ifdef MODULE_START
77 label_module_alloc,
78 #endif
79 label_vmalloc,
80 label_vmalloc_done,
81 label_tlbw_hazard,
82 label_split,
83 label_nopage_tlbl,
84 label_nopage_tlbs,
85 label_nopage_tlbm,
86 label_smp_pgtable_change,
87 label_r3000_write_probe_fail,
88 #ifdef CONFIG_HUGETLB_PAGE
89 label_tlb_huge_update,
90 #endif
91 };
92
93 UASM_L_LA(_second_part)
94 UASM_L_LA(_leave)
95 #ifdef MODULE_START
96 UASM_L_LA(_module_alloc)
97 #endif
98 UASM_L_LA(_vmalloc)
99 UASM_L_LA(_vmalloc_done)
100 UASM_L_LA(_tlbw_hazard)
101 UASM_L_LA(_split)
102 UASM_L_LA(_nopage_tlbl)
103 UASM_L_LA(_nopage_tlbs)
104 UASM_L_LA(_nopage_tlbm)
105 UASM_L_LA(_smp_pgtable_change)
106 UASM_L_LA(_r3000_write_probe_fail)
107 #ifdef CONFIG_HUGETLB_PAGE
108 UASM_L_LA(_tlb_huge_update)
109 #endif
110
111 /*
112 * For debug purposes.
113 */
114 static inline void dump_handler(const u32 *handler, int count)
115 {
116 int i;
117
118 pr_debug("\t.set push\n");
119 pr_debug("\t.set noreorder\n");
120
121 for (i = 0; i < count; i++)
122 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
123
124 pr_debug("\t.set pop\n");
125 }
126
127 /* The only general purpose registers allowed in TLB handlers. */
128 #define K0 26
129 #define K1 27
130
131 /* Some CP0 registers */
132 #define C0_INDEX 0, 0
133 #define C0_ENTRYLO0 2, 0
134 #define C0_TCBIND 2, 2
135 #define C0_ENTRYLO1 3, 0
136 #define C0_CONTEXT 4, 0
137 #define C0_PAGEMASK 5, 0
138 #define C0_BADVADDR 8, 0
139 #define C0_ENTRYHI 10, 0
140 #define C0_EPC 14, 0
141 #define C0_XCONTEXT 20, 0
142
143 #ifdef CONFIG_64BIT
144 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
145 #else
146 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
147 #endif
148
149 /* The worst case length of the handler is around 18 instructions for
150 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
151 * Maximum space available is 32 instructions for R3000 and 64
152 * instructions for R4000.
153 *
154 * We deliberately chose a buffer size of 128, so we won't scribble
155 * over anything important on overflow before we panic.
156 */
157 static u32 tlb_handler[128] __cpuinitdata;
158
159 /* simply assume worst case size for labels and relocs */
160 static struct uasm_label labels[128] __cpuinitdata;
161 static struct uasm_reloc relocs[128] __cpuinitdata;
162
163 /*
164 * The R3000 TLB handler is simple.
165 */
166 static void __cpuinit build_r3000_tlb_refill_handler(void)
167 {
168 long pgdc = (long)pgd_current;
169 u32 *p;
170
171 memset(tlb_handler, 0, sizeof(tlb_handler));
172 p = tlb_handler;
173
174 uasm_i_mfc0(&p, K0, C0_BADVADDR);
175 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
176 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
177 uasm_i_srl(&p, K0, K0, 22); /* load delay */
178 uasm_i_sll(&p, K0, K0, 2);
179 uasm_i_addu(&p, K1, K1, K0);
180 uasm_i_mfc0(&p, K0, C0_CONTEXT);
181 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
182 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
183 uasm_i_addu(&p, K1, K1, K0);
184 uasm_i_lw(&p, K0, 0, K1);
185 uasm_i_nop(&p); /* load delay */
186 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
187 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
188 uasm_i_tlbwr(&p); /* cp0 delay */
189 uasm_i_jr(&p, K1);
190 uasm_i_rfe(&p); /* branch delay */
191
192 if (p > tlb_handler + 32)
193 panic("TLB refill handler space exceeded");
194
195 pr_debug("Wrote TLB refill handler (%u instructions).\n",
196 (unsigned int)(p - tlb_handler));
197
198 memcpy((void *)ebase, tlb_handler, 0x80);
199
200 dump_handler((u32 *)ebase, 32);
201 }
202
203 /*
204 * The R4000 TLB handler is much more complicated. We have two
205 * consecutive handler areas with 32 instructions space each.
206 * Since they aren't used at the same time, we can overflow in the
207 * other one.To keep things simple, we first assume linear space,
208 * then we relocate it to the final handler layout as needed.
209 */
210 static u32 final_handler[64] __cpuinitdata;
211
212 /*
213 * Hazards
214 *
215 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
216 * 2. A timing hazard exists for the TLBP instruction.
217 *
218 * stalling_instruction
219 * TLBP
220 *
221 * The JTLB is being read for the TLBP throughout the stall generated by the
222 * previous instruction. This is not really correct as the stalling instruction
223 * can modify the address used to access the JTLB. The failure symptom is that
224 * the TLBP instruction will use an address created for the stalling instruction
225 * and not the address held in C0_ENHI and thus report the wrong results.
226 *
227 * The software work-around is to not allow the instruction preceding the TLBP
228 * to stall - make it an NOP or some other instruction guaranteed not to stall.
229 *
230 * Errata 2 will not be fixed. This errata is also on the R5000.
231 *
232 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
233 */
234 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
235 {
236 switch (current_cpu_type()) {
237 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
238 case CPU_R4600:
239 case CPU_R4700:
240 case CPU_R5000:
241 case CPU_R5000A:
242 case CPU_NEVADA:
243 uasm_i_nop(p);
244 uasm_i_tlbp(p);
245 break;
246
247 default:
248 uasm_i_tlbp(p);
249 break;
250 }
251 }
252
253 /*
254 * Write random or indexed TLB entry, and care about the hazards from
255 * the preceeding mtc0 and for the following eret.
256 */
257 enum tlb_write_entry { tlb_random, tlb_indexed };
258
259 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
260 struct uasm_reloc **r,
261 enum tlb_write_entry wmode)
262 {
263 void(*tlbw)(u32 **) = NULL;
264
265 switch (wmode) {
266 case tlb_random: tlbw = uasm_i_tlbwr; break;
267 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
268 }
269
270 if (cpu_has_mips_r2) {
271 if (cpu_has_mips_r2_exec_hazard)
272 uasm_i_ehb(p);
273 tlbw(p);
274 return;
275 }
276
277 switch (current_cpu_type()) {
278 case CPU_R4000PC:
279 case CPU_R4000SC:
280 case CPU_R4000MC:
281 case CPU_R4400PC:
282 case CPU_R4400SC:
283 case CPU_R4400MC:
284 /*
285 * This branch uses up a mtc0 hazard nop slot and saves
286 * two nops after the tlbw instruction.
287 */
288 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
289 tlbw(p);
290 uasm_l_tlbw_hazard(l, *p);
291 uasm_i_nop(p);
292 break;
293
294 case CPU_R4600:
295 case CPU_R4700:
296 case CPU_R5000:
297 case CPU_R5000A:
298 uasm_i_nop(p);
299 tlbw(p);
300 uasm_i_nop(p);
301 break;
302
303 case CPU_R4300:
304 case CPU_5KC:
305 case CPU_TX49XX:
306 case CPU_PR4450:
307 uasm_i_nop(p);
308 tlbw(p);
309 break;
310
311 case CPU_R10000:
312 case CPU_R12000:
313 case CPU_R14000:
314 case CPU_4KC:
315 case CPU_4KEC:
316 case CPU_SB1:
317 case CPU_SB1A:
318 case CPU_4KSC:
319 case CPU_20KC:
320 case CPU_25KF:
321 case CPU_BCM3302:
322 case CPU_BCM4710:
323 case CPU_LOONGSON2:
324 case CPU_BCM6338:
325 case CPU_BCM6345:
326 case CPU_BCM6348:
327 case CPU_BCM6358:
328 case CPU_R5500:
329 if (m4kc_tlbp_war())
330 uasm_i_nop(p);
331 case CPU_ALCHEMY:
332 tlbw(p);
333 break;
334
335 case CPU_NEVADA:
336 uasm_i_nop(p); /* QED specifies 2 nops hazard */
337 /*
338 * This branch uses up a mtc0 hazard nop slot and saves
339 * a nop after the tlbw instruction.
340 */
341 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
342 tlbw(p);
343 uasm_l_tlbw_hazard(l, *p);
344 break;
345
346 case CPU_RM7000:
347 uasm_i_nop(p);
348 uasm_i_nop(p);
349 uasm_i_nop(p);
350 uasm_i_nop(p);
351 tlbw(p);
352 break;
353
354 case CPU_RM9000:
355 /*
356 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
357 * use of the JTLB for instructions should not occur for 4
358 * cpu cycles and use for data translations should not occur
359 * for 3 cpu cycles.
360 */
361 uasm_i_ssnop(p);
362 uasm_i_ssnop(p);
363 uasm_i_ssnop(p);
364 uasm_i_ssnop(p);
365 tlbw(p);
366 uasm_i_ssnop(p);
367 uasm_i_ssnop(p);
368 uasm_i_ssnop(p);
369 uasm_i_ssnop(p);
370 break;
371
372 case CPU_VR4111:
373 case CPU_VR4121:
374 case CPU_VR4122:
375 case CPU_VR4181:
376 case CPU_VR4181A:
377 uasm_i_nop(p);
378 uasm_i_nop(p);
379 tlbw(p);
380 uasm_i_nop(p);
381 uasm_i_nop(p);
382 break;
383
384 case CPU_VR4131:
385 case CPU_VR4133:
386 case CPU_R5432:
387 uasm_i_nop(p);
388 uasm_i_nop(p);
389 tlbw(p);
390 break;
391
392 default:
393 panic("No TLB refill handler yet (CPU type: %d)",
394 current_cpu_data.cputype);
395 break;
396 }
397 }
398
399 #ifdef CONFIG_HUGETLB_PAGE
400 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
401 struct uasm_label **l,
402 struct uasm_reloc **r,
403 unsigned int tmp,
404 enum tlb_write_entry wmode)
405 {
406 /* Set huge page tlb entry size */
407 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
408 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
409 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
410
411 build_tlb_write_entry(p, l, r, wmode);
412
413 /* Reset default page size */
414 if (PM_DEFAULT_MASK >> 16) {
415 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
416 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
417 uasm_il_b(p, r, label_leave);
418 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
419 } else if (PM_DEFAULT_MASK) {
420 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
421 uasm_il_b(p, r, label_leave);
422 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
423 } else {
424 uasm_il_b(p, r, label_leave);
425 uasm_i_mtc0(p, 0, C0_PAGEMASK);
426 }
427 }
428
429 /*
430 * Check if Huge PTE is present, if so then jump to LABEL.
431 */
432 static void __cpuinit
433 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
434 unsigned int pmd, int lid)
435 {
436 UASM_i_LW(p, tmp, 0, pmd);
437 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
438 uasm_il_bnez(p, r, tmp, lid);
439 }
440
441 static __cpuinit void build_huge_update_entries(u32 **p,
442 unsigned int pte,
443 unsigned int tmp)
444 {
445 int small_sequence;
446
447 /*
448 * A huge PTE describes an area the size of the
449 * configured huge page size. This is twice the
450 * of the large TLB entry size we intend to use.
451 * A TLB entry half the size of the configured
452 * huge page size is configured into entrylo0
453 * and entrylo1 to cover the contiguous huge PTE
454 * address space.
455 */
456 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
457
458 /* We can clobber tmp. It isn't used after this.*/
459 if (!small_sequence)
460 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
461
462 UASM_i_SRL(p, pte, pte, 6); /* convert to entrylo */
463 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* load it */
464 /* convert to entrylo1 */
465 if (small_sequence)
466 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
467 else
468 UASM_i_ADDU(p, pte, pte, tmp);
469
470 uasm_i_mtc0(p, pte, C0_ENTRYLO1); /* load it */
471 }
472
473 static __cpuinit void build_huge_handler_tail(u32 **p,
474 struct uasm_reloc **r,
475 struct uasm_label **l,
476 unsigned int pte,
477 unsigned int ptr)
478 {
479 #ifdef CONFIG_SMP
480 UASM_i_SC(p, pte, 0, ptr);
481 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
482 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
483 #else
484 UASM_i_SW(p, pte, 0, ptr);
485 #endif
486 build_huge_update_entries(p, pte, ptr);
487 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed);
488 }
489 #endif /* CONFIG_HUGETLB_PAGE */
490
491 #ifdef CONFIG_64BIT
492 /*
493 * TMP and PTR are scratch.
494 * TMP will be clobbered, PTR will hold the pmd entry.
495 */
496 static void __cpuinit
497 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
498 unsigned int tmp, unsigned int ptr)
499 {
500 long pgdc = (long)pgd_current;
501
502 /*
503 * The vmalloc handling is not in the hotpath.
504 */
505 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
506 uasm_il_bltz(p, r, tmp, label_vmalloc);
507 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
508
509 #ifdef CONFIG_SMP
510 # ifdef CONFIG_MIPS_MT_SMTC
511 /*
512 * SMTC uses TCBind value as "CPU" index
513 */
514 uasm_i_mfc0(p, ptr, C0_TCBIND);
515 uasm_i_dsrl(p, ptr, ptr, 19);
516 # else
517 /*
518 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
519 * stored in CONTEXT.
520 */
521 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
522 uasm_i_dsrl(p, ptr, ptr, 23);
523 #endif
524 UASM_i_LA_mostly(p, tmp, pgdc);
525 uasm_i_daddu(p, ptr, ptr, tmp);
526 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
527 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
528 #else
529 UASM_i_LA_mostly(p, ptr, pgdc);
530 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
531 #endif
532
533 uasm_l_vmalloc_done(l, *p);
534
535 if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
536 uasm_i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
537 else
538 uasm_i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
539
540 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
541 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
542 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
543 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
544 uasm_i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
545 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
546 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
547 }
548
549 /*
550 * BVADDR is the faulting address, PTR is scratch.
551 * PTR will hold the pgd for vmalloc.
552 */
553 static void __cpuinit
554 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
555 unsigned int bvaddr, unsigned int ptr)
556 {
557 long swpd = (long)swapper_pg_dir;
558
559 uasm_l_vmalloc(l, *p);
560
561 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
562 uasm_il_b(p, r, label_vmalloc_done);
563 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
564 } else {
565 UASM_i_LA_mostly(p, ptr, swpd);
566 uasm_il_b(p, r, label_vmalloc_done);
567 if (uasm_in_compat_space_p(swpd))
568 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
569 else
570 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
571 }
572 }
573
574 #else /* !CONFIG_64BIT */
575
576 /*
577 * TMP and PTR are scratch.
578 * TMP will be clobbered, PTR will hold the pgd entry.
579 */
580 static void __cpuinit __maybe_unused
581 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
582 {
583 long pgdc = (long)pgd_current;
584
585 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
586 #ifdef CONFIG_SMP
587 #ifdef CONFIG_MIPS_MT_SMTC
588 /*
589 * SMTC uses TCBind value as "CPU" index
590 */
591 uasm_i_mfc0(p, ptr, C0_TCBIND);
592 UASM_i_LA_mostly(p, tmp, pgdc);
593 uasm_i_srl(p, ptr, ptr, 19);
594 #else
595 /*
596 * smp_processor_id() << 3 is stored in CONTEXT.
597 */
598 uasm_i_mfc0(p, ptr, C0_CONTEXT);
599 UASM_i_LA_mostly(p, tmp, pgdc);
600 uasm_i_srl(p, ptr, ptr, 23);
601 #endif
602 uasm_i_addu(p, ptr, tmp, ptr);
603 #else
604 UASM_i_LA_mostly(p, ptr, pgdc);
605 #endif
606 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
607 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
608 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
609 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
610 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
611 }
612
613 #endif /* !CONFIG_64BIT */
614
615 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
616 {
617 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
618 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
619
620 switch (current_cpu_type()) {
621 case CPU_VR41XX:
622 case CPU_VR4111:
623 case CPU_VR4121:
624 case CPU_VR4122:
625 case CPU_VR4131:
626 case CPU_VR4181:
627 case CPU_VR4181A:
628 case CPU_VR4133:
629 shift += 2;
630 break;
631
632 default:
633 break;
634 }
635
636 if (shift)
637 UASM_i_SRL(p, ctx, ctx, shift);
638 uasm_i_andi(p, ctx, ctx, mask);
639 }
640
641 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
642 {
643 /*
644 * Bug workaround for the Nevada. It seems as if under certain
645 * circumstances the move from cp0_context might produce a
646 * bogus result when the mfc0 instruction and its consumer are
647 * in a different cacheline or a load instruction, probably any
648 * memory reference, is between them.
649 */
650 switch (current_cpu_type()) {
651 case CPU_NEVADA:
652 UASM_i_LW(p, ptr, 0, ptr);
653 GET_CONTEXT(p, tmp); /* get context reg */
654 break;
655
656 default:
657 GET_CONTEXT(p, tmp); /* get context reg */
658 UASM_i_LW(p, ptr, 0, ptr);
659 break;
660 }
661
662 build_adjust_context(p, tmp);
663 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
664 }
665
666 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
667 unsigned int ptep)
668 {
669 /*
670 * 64bit address support (36bit on a 32bit CPU) in a 32bit
671 * Kernel is a special case. Only a few CPUs use it.
672 */
673 #ifdef CONFIG_64BIT_PHYS_ADDR
674 if (cpu_has_64bits) {
675 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
676 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
677 uasm_i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
678 uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
679 uasm_i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
680 uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
681 } else {
682 int pte_off_even = sizeof(pte_t) / 2;
683 int pte_off_odd = pte_off_even + sizeof(pte_t);
684
685 /* The pte entries are pre-shifted */
686 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
687 uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
688 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
689 uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
690 }
691 #else
692 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
693 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
694 if (r45k_bvahwbug())
695 build_tlb_probe_entry(p);
696 UASM_i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
697 if (r4k_250MHZhwbug())
698 uasm_i_mtc0(p, 0, C0_ENTRYLO0);
699 uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
700 UASM_i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
701 if (r45k_bvahwbug())
702 uasm_i_mfc0(p, tmp, C0_INDEX);
703 if (r4k_250MHZhwbug())
704 uasm_i_mtc0(p, 0, C0_ENTRYLO1);
705 uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
706 #endif
707 }
708
709 /*
710 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
711 * because EXL == 0. If we wrap, we can also use the 32 instruction
712 * slots before the XTLB refill exception handler which belong to the
713 * unused TLB refill exception.
714 */
715 #define MIPS64_REFILL_INSNS 32
716
717 static void __cpuinit build_r4000_tlb_refill_handler(void)
718 {
719 u32 *p = tlb_handler;
720 struct uasm_label *l = labels;
721 struct uasm_reloc *r = relocs;
722 u32 *f;
723 unsigned int final_len;
724
725 memset(tlb_handler, 0, sizeof(tlb_handler));
726 memset(labels, 0, sizeof(labels));
727 memset(relocs, 0, sizeof(relocs));
728 memset(final_handler, 0, sizeof(final_handler));
729
730 /*
731 * create the plain linear handler
732 */
733 if (bcm1250_m3_war()) {
734 UASM_i_MFC0(&p, K0, C0_BADVADDR);
735 UASM_i_MFC0(&p, K1, C0_ENTRYHI);
736 uasm_i_xor(&p, K0, K0, K1);
737 UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
738 uasm_il_bnez(&p, &r, K0, label_leave);
739 /* No need for uasm_i_nop */
740 }
741
742 #ifdef CONFIG_64BIT
743 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
744 #else
745 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
746 #endif
747
748 #ifdef CONFIG_HUGETLB_PAGE
749 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
750 #endif
751
752 build_get_ptep(&p, K0, K1);
753 build_update_entries(&p, K0, K1);
754 build_tlb_write_entry(&p, &l, &r, tlb_random);
755 uasm_l_leave(&l, p);
756 uasm_i_eret(&p); /* return from trap */
757
758 #ifdef CONFIG_HUGETLB_PAGE
759 uasm_l_tlb_huge_update(&l, p);
760 UASM_i_LW(&p, K0, 0, K1);
761 build_huge_update_entries(&p, K0, K1);
762 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random);
763 #endif
764
765 #ifdef CONFIG_64BIT
766 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
767 #endif
768
769 /*
770 * Overflow check: For the 64bit handler, we need at least one
771 * free instruction slot for the wrap-around branch. In worst
772 * case, if the intended insertion point is a delay slot, we
773 * need three, with the second nop'ed and the third being
774 * unused.
775 */
776 /* Loongson2 ebase is different than r4k, we have more space */
777 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
778 if ((p - tlb_handler) > 64)
779 panic("TLB refill handler space exceeded");
780 #else
781 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
782 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
783 && uasm_insn_has_bdelay(relocs,
784 tlb_handler + MIPS64_REFILL_INSNS - 3)))
785 panic("TLB refill handler space exceeded");
786 #endif
787
788 /*
789 * Now fold the handler in the TLB refill handler space.
790 */
791 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
792 f = final_handler;
793 /* Simplest case, just copy the handler. */
794 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
795 final_len = p - tlb_handler;
796 #else /* CONFIG_64BIT */
797 f = final_handler + MIPS64_REFILL_INSNS;
798 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
799 /* Just copy the handler. */
800 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
801 final_len = p - tlb_handler;
802 } else {
803 #if defined(CONFIG_HUGETLB_PAGE)
804 const enum label_id ls = label_tlb_huge_update;
805 #elif defined(MODULE_START)
806 const enum label_id ls = label_module_alloc;
807 #else
808 const enum label_id ls = label_vmalloc;
809 #endif
810 u32 *split;
811 int ov = 0;
812 int i;
813
814 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
815 ;
816 BUG_ON(i == ARRAY_SIZE(labels));
817 split = labels[i].addr;
818
819 /*
820 * See if we have overflown one way or the other.
821 */
822 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
823 split < p - MIPS64_REFILL_INSNS)
824 ov = 1;
825
826 if (ov) {
827 /*
828 * Split two instructions before the end. One
829 * for the branch and one for the instruction
830 * in the delay slot.
831 */
832 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
833
834 /*
835 * If the branch would fall in a delay slot,
836 * we must back up an additional instruction
837 * so that it is no longer in a delay slot.
838 */
839 if (uasm_insn_has_bdelay(relocs, split - 1))
840 split--;
841 }
842 /* Copy first part of the handler. */
843 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
844 f += split - tlb_handler;
845
846 if (ov) {
847 /* Insert branch. */
848 uasm_l_split(&l, final_handler);
849 uasm_il_b(&f, &r, label_split);
850 if (uasm_insn_has_bdelay(relocs, split))
851 uasm_i_nop(&f);
852 else {
853 uasm_copy_handler(relocs, labels,
854 split, split + 1, f);
855 uasm_move_labels(labels, f, f + 1, -1);
856 f++;
857 split++;
858 }
859 }
860
861 /* Copy the rest of the handler. */
862 uasm_copy_handler(relocs, labels, split, p, final_handler);
863 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
864 (p - split);
865 }
866 #endif /* CONFIG_64BIT */
867
868 uasm_resolve_relocs(relocs, labels);
869 pr_debug("Wrote TLB refill handler (%u instructions).\n",
870 final_len);
871
872 memcpy((void *)ebase, final_handler, 0x100);
873
874 dump_handler((u32 *)ebase, 64);
875 }
876
877 /*
878 * TLB load/store/modify handlers.
879 *
880 * Only the fastpath gets synthesized at runtime, the slowpath for
881 * do_page_fault remains normal asm.
882 */
883 extern void tlb_do_page_fault_0(void);
884 extern void tlb_do_page_fault_1(void);
885
886 /*
887 * 128 instructions for the fastpath handler is generous and should
888 * never be exceeded.
889 */
890 #define FASTPATH_SIZE 128
891
892 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
893 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
894 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
895
896 static void __cpuinit
897 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
898 {
899 #ifdef CONFIG_SMP
900 # ifdef CONFIG_64BIT_PHYS_ADDR
901 if (cpu_has_64bits)
902 uasm_i_lld(p, pte, 0, ptr);
903 else
904 # endif
905 UASM_i_LL(p, pte, 0, ptr);
906 #else
907 # ifdef CONFIG_64BIT_PHYS_ADDR
908 if (cpu_has_64bits)
909 uasm_i_ld(p, pte, 0, ptr);
910 else
911 # endif
912 UASM_i_LW(p, pte, 0, ptr);
913 #endif
914 }
915
916 static void __cpuinit
917 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
918 unsigned int mode)
919 {
920 #ifdef CONFIG_64BIT_PHYS_ADDR
921 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
922 #endif
923
924 uasm_i_ori(p, pte, pte, mode);
925 #ifdef CONFIG_SMP
926 # ifdef CONFIG_64BIT_PHYS_ADDR
927 if (cpu_has_64bits)
928 uasm_i_scd(p, pte, 0, ptr);
929 else
930 # endif
931 UASM_i_SC(p, pte, 0, ptr);
932
933 if (r10000_llsc_war())
934 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
935 else
936 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
937
938 # ifdef CONFIG_64BIT_PHYS_ADDR
939 if (!cpu_has_64bits) {
940 /* no uasm_i_nop needed */
941 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
942 uasm_i_ori(p, pte, pte, hwmode);
943 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
944 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
945 /* no uasm_i_nop needed */
946 uasm_i_lw(p, pte, 0, ptr);
947 } else
948 uasm_i_nop(p);
949 # else
950 uasm_i_nop(p);
951 # endif
952 #else
953 # ifdef CONFIG_64BIT_PHYS_ADDR
954 if (cpu_has_64bits)
955 uasm_i_sd(p, pte, 0, ptr);
956 else
957 # endif
958 UASM_i_SW(p, pte, 0, ptr);
959
960 # ifdef CONFIG_64BIT_PHYS_ADDR
961 if (!cpu_has_64bits) {
962 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
963 uasm_i_ori(p, pte, pte, hwmode);
964 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
965 uasm_i_lw(p, pte, 0, ptr);
966 }
967 # endif
968 #endif
969 }
970
971 /*
972 * Check if PTE is present, if not then jump to LABEL. PTR points to
973 * the page table where this PTE is located, PTE will be re-loaded
974 * with it's original value.
975 */
976 static void __cpuinit
977 build_pte_present(u32 **p, struct uasm_reloc **r,
978 unsigned int pte, unsigned int ptr, enum label_id lid)
979 {
980 uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
981 uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
982 uasm_il_bnez(p, r, pte, lid);
983 iPTE_LW(p, pte, ptr);
984 }
985
986 /* Make PTE valid, store result in PTR. */
987 static void __cpuinit
988 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
989 unsigned int ptr)
990 {
991 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
992
993 iPTE_SW(p, r, pte, ptr, mode);
994 }
995
996 /*
997 * Check if PTE can be written to, if not branch to LABEL. Regardless
998 * restore PTE with value from PTR when done.
999 */
1000 static void __cpuinit
1001 build_pte_writable(u32 **p, struct uasm_reloc **r,
1002 unsigned int pte, unsigned int ptr, enum label_id lid)
1003 {
1004 uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1005 uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1006 uasm_il_bnez(p, r, pte, lid);
1007 iPTE_LW(p, pte, ptr);
1008 }
1009
1010 /* Make PTE writable, update software status bits as well, then store
1011 * at PTR.
1012 */
1013 static void __cpuinit
1014 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1015 unsigned int ptr)
1016 {
1017 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1018 | _PAGE_DIRTY);
1019
1020 iPTE_SW(p, r, pte, ptr, mode);
1021 }
1022
1023 /*
1024 * Check if PTE can be modified, if not branch to LABEL. Regardless
1025 * restore PTE with value from PTR when done.
1026 */
1027 static void __cpuinit
1028 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1029 unsigned int pte, unsigned int ptr, enum label_id lid)
1030 {
1031 uasm_i_andi(p, pte, pte, _PAGE_WRITE);
1032 uasm_il_beqz(p, r, pte, lid);
1033 iPTE_LW(p, pte, ptr);
1034 }
1035
1036 /*
1037 * R3000 style TLB load/store/modify handlers.
1038 */
1039
1040 /*
1041 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1042 * Then it returns.
1043 */
1044 static void __cpuinit
1045 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1046 {
1047 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1048 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1049 uasm_i_tlbwi(p);
1050 uasm_i_jr(p, tmp);
1051 uasm_i_rfe(p); /* branch delay */
1052 }
1053
1054 /*
1055 * This places the pte into ENTRYLO0 and writes it with tlbwi
1056 * or tlbwr as appropriate. This is because the index register
1057 * may have the probe fail bit set as a result of a trap on a
1058 * kseg2 access, i.e. without refill. Then it returns.
1059 */
1060 static void __cpuinit
1061 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1062 struct uasm_reloc **r, unsigned int pte,
1063 unsigned int tmp)
1064 {
1065 uasm_i_mfc0(p, tmp, C0_INDEX);
1066 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1067 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1068 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1069 uasm_i_tlbwi(p); /* cp0 delay */
1070 uasm_i_jr(p, tmp);
1071 uasm_i_rfe(p); /* branch delay */
1072 uasm_l_r3000_write_probe_fail(l, *p);
1073 uasm_i_tlbwr(p); /* cp0 delay */
1074 uasm_i_jr(p, tmp);
1075 uasm_i_rfe(p); /* branch delay */
1076 }
1077
1078 static void __cpuinit
1079 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1080 unsigned int ptr)
1081 {
1082 long pgdc = (long)pgd_current;
1083
1084 uasm_i_mfc0(p, pte, C0_BADVADDR);
1085 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1086 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1087 uasm_i_srl(p, pte, pte, 22); /* load delay */
1088 uasm_i_sll(p, pte, pte, 2);
1089 uasm_i_addu(p, ptr, ptr, pte);
1090 uasm_i_mfc0(p, pte, C0_CONTEXT);
1091 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1092 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1093 uasm_i_addu(p, ptr, ptr, pte);
1094 uasm_i_lw(p, pte, 0, ptr);
1095 uasm_i_tlbp(p); /* load delay */
1096 }
1097
1098 static void __cpuinit build_r3000_tlb_load_handler(void)
1099 {
1100 u32 *p = handle_tlbl;
1101 struct uasm_label *l = labels;
1102 struct uasm_reloc *r = relocs;
1103
1104 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1105 memset(labels, 0, sizeof(labels));
1106 memset(relocs, 0, sizeof(relocs));
1107
1108 build_r3000_tlbchange_handler_head(&p, K0, K1);
1109 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1110 uasm_i_nop(&p); /* load delay */
1111 build_make_valid(&p, &r, K0, K1);
1112 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1113
1114 uasm_l_nopage_tlbl(&l, p);
1115 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1116 uasm_i_nop(&p);
1117
1118 if ((p - handle_tlbl) > FASTPATH_SIZE)
1119 panic("TLB load handler fastpath space exceeded");
1120
1121 uasm_resolve_relocs(relocs, labels);
1122 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1123 (unsigned int)(p - handle_tlbl));
1124
1125 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1126 }
1127
1128 static void __cpuinit build_r3000_tlb_store_handler(void)
1129 {
1130 u32 *p = handle_tlbs;
1131 struct uasm_label *l = labels;
1132 struct uasm_reloc *r = relocs;
1133
1134 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1135 memset(labels, 0, sizeof(labels));
1136 memset(relocs, 0, sizeof(relocs));
1137
1138 build_r3000_tlbchange_handler_head(&p, K0, K1);
1139 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1140 uasm_i_nop(&p); /* load delay */
1141 build_make_write(&p, &r, K0, K1);
1142 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1143
1144 uasm_l_nopage_tlbs(&l, p);
1145 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1146 uasm_i_nop(&p);
1147
1148 if ((p - handle_tlbs) > FASTPATH_SIZE)
1149 panic("TLB store handler fastpath space exceeded");
1150
1151 uasm_resolve_relocs(relocs, labels);
1152 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1153 (unsigned int)(p - handle_tlbs));
1154
1155 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1156 }
1157
1158 static void __cpuinit build_r3000_tlb_modify_handler(void)
1159 {
1160 u32 *p = handle_tlbm;
1161 struct uasm_label *l = labels;
1162 struct uasm_reloc *r = relocs;
1163
1164 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1165 memset(labels, 0, sizeof(labels));
1166 memset(relocs, 0, sizeof(relocs));
1167
1168 build_r3000_tlbchange_handler_head(&p, K0, K1);
1169 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1170 uasm_i_nop(&p); /* load delay */
1171 build_make_write(&p, &r, K0, K1);
1172 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1173
1174 uasm_l_nopage_tlbm(&l, p);
1175 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1176 uasm_i_nop(&p);
1177
1178 if ((p - handle_tlbm) > FASTPATH_SIZE)
1179 panic("TLB modify handler fastpath space exceeded");
1180
1181 uasm_resolve_relocs(relocs, labels);
1182 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1183 (unsigned int)(p - handle_tlbm));
1184
1185 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1186 }
1187
1188 /*
1189 * R4000 style TLB load/store/modify handlers.
1190 */
1191 static void __cpuinit
1192 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1193 struct uasm_reloc **r, unsigned int pte,
1194 unsigned int ptr)
1195 {
1196 #ifdef CONFIG_64BIT
1197 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1198 #else
1199 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1200 #endif
1201
1202 #ifdef CONFIG_HUGETLB_PAGE
1203 /*
1204 * For huge tlb entries, pmd doesn't contain an address but
1205 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1206 * see if we need to jump to huge tlb processing.
1207 */
1208 build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update);
1209 #endif
1210
1211 UASM_i_MFC0(p, pte, C0_BADVADDR);
1212 UASM_i_LW(p, ptr, 0, ptr);
1213 UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1214 uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1215 UASM_i_ADDU(p, ptr, ptr, pte);
1216
1217 #ifdef CONFIG_SMP
1218 uasm_l_smp_pgtable_change(l, *p);
1219 #endif
1220 iPTE_LW(p, pte, ptr); /* get even pte */
1221 if (!m4kc_tlbp_war())
1222 build_tlb_probe_entry(p);
1223 }
1224
1225 static void __cpuinit
1226 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1227 struct uasm_reloc **r, unsigned int tmp,
1228 unsigned int ptr)
1229 {
1230 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1231 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1232 build_update_entries(p, tmp, ptr);
1233 build_tlb_write_entry(p, l, r, tlb_indexed);
1234 uasm_l_leave(l, *p);
1235 uasm_i_eret(p); /* return from trap */
1236
1237 #ifdef CONFIG_64BIT
1238 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1239 #endif
1240 }
1241
1242 static void __cpuinit build_r4000_tlb_load_handler(void)
1243 {
1244 u32 *p = handle_tlbl;
1245 struct uasm_label *l = labels;
1246 struct uasm_reloc *r = relocs;
1247
1248 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1249 memset(labels, 0, sizeof(labels));
1250 memset(relocs, 0, sizeof(relocs));
1251
1252 if (bcm1250_m3_war()) {
1253 UASM_i_MFC0(&p, K0, C0_BADVADDR);
1254 UASM_i_MFC0(&p, K1, C0_ENTRYHI);
1255 uasm_i_xor(&p, K0, K0, K1);
1256 UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1257 uasm_il_bnez(&p, &r, K0, label_leave);
1258 /* No need for uasm_i_nop */
1259 }
1260
1261 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1262 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1263 if (m4kc_tlbp_war())
1264 build_tlb_probe_entry(&p);
1265 build_make_valid(&p, &r, K0, K1);
1266 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1267
1268 #ifdef CONFIG_HUGETLB_PAGE
1269 /*
1270 * This is the entry point when build_r4000_tlbchange_handler_head
1271 * spots a huge page.
1272 */
1273 uasm_l_tlb_huge_update(&l, p);
1274 iPTE_LW(&p, K0, K1);
1275 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1276 build_tlb_probe_entry(&p);
1277 uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID));
1278 build_huge_handler_tail(&p, &r, &l, K0, K1);
1279 #endif
1280
1281 uasm_l_nopage_tlbl(&l, p);
1282 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1283 uasm_i_nop(&p);
1284
1285 if ((p - handle_tlbl) > FASTPATH_SIZE)
1286 panic("TLB load handler fastpath space exceeded");
1287
1288 uasm_resolve_relocs(relocs, labels);
1289 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1290 (unsigned int)(p - handle_tlbl));
1291
1292 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1293 }
1294
1295 static void __cpuinit build_r4000_tlb_store_handler(void)
1296 {
1297 u32 *p = handle_tlbs;
1298 struct uasm_label *l = labels;
1299 struct uasm_reloc *r = relocs;
1300
1301 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1302 memset(labels, 0, sizeof(labels));
1303 memset(relocs, 0, sizeof(relocs));
1304
1305 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1306 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1307 if (m4kc_tlbp_war())
1308 build_tlb_probe_entry(&p);
1309 build_make_write(&p, &r, K0, K1);
1310 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1311
1312 #ifdef CONFIG_HUGETLB_PAGE
1313 /*
1314 * This is the entry point when
1315 * build_r4000_tlbchange_handler_head spots a huge page.
1316 */
1317 uasm_l_tlb_huge_update(&l, p);
1318 iPTE_LW(&p, K0, K1);
1319 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1320 build_tlb_probe_entry(&p);
1321 uasm_i_ori(&p, K0, K0,
1322 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1323 build_huge_handler_tail(&p, &r, &l, K0, K1);
1324 #endif
1325
1326 uasm_l_nopage_tlbs(&l, p);
1327 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1328 uasm_i_nop(&p);
1329
1330 if ((p - handle_tlbs) > FASTPATH_SIZE)
1331 panic("TLB store handler fastpath space exceeded");
1332
1333 uasm_resolve_relocs(relocs, labels);
1334 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1335 (unsigned int)(p - handle_tlbs));
1336
1337 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1338 }
1339
1340 static void __cpuinit build_r4000_tlb_modify_handler(void)
1341 {
1342 u32 *p = handle_tlbm;
1343 struct uasm_label *l = labels;
1344 struct uasm_reloc *r = relocs;
1345
1346 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1347 memset(labels, 0, sizeof(labels));
1348 memset(relocs, 0, sizeof(relocs));
1349
1350 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1351 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1352 if (m4kc_tlbp_war())
1353 build_tlb_probe_entry(&p);
1354 /* Present and writable bits set, set accessed and dirty bits. */
1355 build_make_write(&p, &r, K0, K1);
1356 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1357
1358 #ifdef CONFIG_HUGETLB_PAGE
1359 /*
1360 * This is the entry point when
1361 * build_r4000_tlbchange_handler_head spots a huge page.
1362 */
1363 uasm_l_tlb_huge_update(&l, p);
1364 iPTE_LW(&p, K0, K1);
1365 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1366 build_tlb_probe_entry(&p);
1367 uasm_i_ori(&p, K0, K0,
1368 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1369 build_huge_handler_tail(&p, &r, &l, K0, K1);
1370 #endif
1371
1372 uasm_l_nopage_tlbm(&l, p);
1373 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1374 uasm_i_nop(&p);
1375
1376 if ((p - handle_tlbm) > FASTPATH_SIZE)
1377 panic("TLB modify handler fastpath space exceeded");
1378
1379 uasm_resolve_relocs(relocs, labels);
1380 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1381 (unsigned int)(p - handle_tlbm));
1382
1383 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1384 }
1385
1386 void __cpuinit build_tlb_refill_handler(void)
1387 {
1388 /*
1389 * The refill handler is generated per-CPU, multi-node systems
1390 * may have local storage for it. The other handlers are only
1391 * needed once.
1392 */
1393 static int run_once = 0;
1394
1395 switch (current_cpu_type()) {
1396 case CPU_R2000:
1397 case CPU_R3000:
1398 case CPU_R3000A:
1399 case CPU_R3081E:
1400 case CPU_TX3912:
1401 case CPU_TX3922:
1402 case CPU_TX3927:
1403 build_r3000_tlb_refill_handler();
1404 if (!run_once) {
1405 build_r3000_tlb_load_handler();
1406 build_r3000_tlb_store_handler();
1407 build_r3000_tlb_modify_handler();
1408 run_once++;
1409 }
1410 break;
1411
1412 case CPU_R6000:
1413 case CPU_R6000A:
1414 panic("No R6000 TLB refill handler yet");
1415 break;
1416
1417 case CPU_R8000:
1418 panic("No R8000 TLB refill handler yet");
1419 break;
1420
1421 default:
1422 build_r4000_tlb_refill_handler();
1423 if (!run_once) {
1424 build_r4000_tlb_load_handler();
1425 build_r4000_tlb_store_handler();
1426 build_r4000_tlb_modify_handler();
1427 run_once++;
1428 }
1429 }
1430 }
1431
1432 void __cpuinit flush_tlb_handlers(void)
1433 {
1434 local_flush_icache_range((unsigned long)handle_tlbl,
1435 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1436 local_flush_icache_range((unsigned long)handle_tlbs,
1437 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1438 local_flush_icache_range((unsigned long)handle_tlbm,
1439 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1440 }
This page took 0.062711 seconds and 5 git commands to generate.