Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / arch / mips / net / bpf_jit.c
1 /*
2 * Just-In-Time compiler for BPF filters on MIPS
3 *
4 * Copyright (c) 2014 Imagination Technologies Ltd.
5 * Author: Markos Chandras <markos.chandras@imgtec.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/compiler.h>
14 #include <linux/errno.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
17 #include <linux/kconfig.h>
18 #include <linux/moduleloader.h>
19 #include <linux/netdevice.h>
20 #include <linux/string.h>
21 #include <linux/slab.h>
22 #include <linux/types.h>
23 #include <asm/asm.h>
24 #include <asm/bitops.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu-features.h>
27 #include <asm/uasm.h>
28
29 #include "bpf_jit.h"
30
31 /* ABI
32 * r_skb_hl SKB header length
33 * r_data SKB data pointer
34 * r_off Offset
35 * r_A BPF register A
36 * r_X BPF register X
37 * r_skb *skb
38 * r_M *scratch memory
39 * r_skb_len SKB length
40 *
41 * On entry (*bpf_func)(*skb, *filter)
42 * a0 = MIPS_R_A0 = skb;
43 * a1 = MIPS_R_A1 = filter;
44 *
45 * Stack
46 * ...
47 * M[15]
48 * M[14]
49 * M[13]
50 * ...
51 * M[0] <-- r_M
52 * saved reg k-1
53 * saved reg k-2
54 * ...
55 * saved reg 0 <-- r_sp
56 * <no argument area>
57 *
58 * Packet layout
59 *
60 * <--------------------- len ------------------------>
61 * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
62 * ----------------------------------------------------
63 * | skb->data |
64 * ----------------------------------------------------
65 */
66
67 #define ptr typeof(unsigned long)
68
69 #define SCRATCH_OFF(k) (4 * (k))
70
71 /* JIT flags */
72 #define SEEN_CALL (1 << BPF_MEMWORDS)
73 #define SEEN_SREG_SFT (BPF_MEMWORDS + 1)
74 #define SEEN_SREG_BASE (1 << SEEN_SREG_SFT)
75 #define SEEN_SREG(x) (SEEN_SREG_BASE << (x))
76 #define SEEN_OFF SEEN_SREG(2)
77 #define SEEN_A SEEN_SREG(3)
78 #define SEEN_X SEEN_SREG(4)
79 #define SEEN_SKB SEEN_SREG(5)
80 #define SEEN_MEM SEEN_SREG(6)
81 /* SEEN_SK_DATA also implies skb_hl an skb_len */
82 #define SEEN_SKB_DATA (SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0))
83
84 /* Arguments used by JIT */
85 #define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */
86
87 #define SBIT(x) (1 << (x)) /* Signed version of BIT() */
88
89 /**
90 * struct jit_ctx - JIT context
91 * @skf: The sk_filter
92 * @prologue_bytes: Number of bytes for prologue
93 * @idx: Instruction index
94 * @flags: JIT flags
95 * @offsets: Instruction offsets
96 * @target: Memory location for the compiled filter
97 */
98 struct jit_ctx {
99 const struct bpf_prog *skf;
100 unsigned int prologue_bytes;
101 u32 idx;
102 u32 flags;
103 u32 *offsets;
104 u32 *target;
105 };
106
107
108 static inline int optimize_div(u32 *k)
109 {
110 /* power of 2 divides can be implemented with right shift */
111 if (!(*k & (*k-1))) {
112 *k = ilog2(*k);
113 return 1;
114 }
115
116 return 0;
117 }
118
119 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx);
120
121 /* Simply emit the instruction if the JIT memory space has been allocated */
122 #define emit_instr(ctx, func, ...) \
123 do { \
124 if ((ctx)->target != NULL) { \
125 u32 *p = &(ctx)->target[ctx->idx]; \
126 uasm_i_##func(&p, ##__VA_ARGS__); \
127 } \
128 (ctx)->idx++; \
129 } while (0)
130
131 /*
132 * Similar to emit_instr but it must be used when we need to emit
133 * 32-bit or 64-bit instructions
134 */
135 #define emit_long_instr(ctx, func, ...) \
136 do { \
137 if ((ctx)->target != NULL) { \
138 u32 *p = &(ctx)->target[ctx->idx]; \
139 UASM_i_##func(&p, ##__VA_ARGS__); \
140 } \
141 (ctx)->idx++; \
142 } while (0)
143
144 /* Determine if immediate is within the 16-bit signed range */
145 static inline bool is_range16(s32 imm)
146 {
147 return !(imm >= SBIT(15) || imm < -SBIT(15));
148 }
149
150 static inline void emit_addu(unsigned int dst, unsigned int src1,
151 unsigned int src2, struct jit_ctx *ctx)
152 {
153 emit_instr(ctx, addu, dst, src1, src2);
154 }
155
156 static inline void emit_nop(struct jit_ctx *ctx)
157 {
158 emit_instr(ctx, nop);
159 }
160
161 /* Load a u32 immediate to a register */
162 static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
163 {
164 if (ctx->target != NULL) {
165 /* addiu can only handle s16 */
166 if (!is_range16(imm)) {
167 u32 *p = &ctx->target[ctx->idx];
168 uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
169 p = &ctx->target[ctx->idx + 1];
170 uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
171 } else {
172 u32 *p = &ctx->target[ctx->idx];
173 uasm_i_addiu(&p, dst, r_zero, imm);
174 }
175 }
176 ctx->idx++;
177
178 if (!is_range16(imm))
179 ctx->idx++;
180 }
181
182 static inline void emit_or(unsigned int dst, unsigned int src1,
183 unsigned int src2, struct jit_ctx *ctx)
184 {
185 emit_instr(ctx, or, dst, src1, src2);
186 }
187
188 static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
189 struct jit_ctx *ctx)
190 {
191 if (imm >= BIT(16)) {
192 emit_load_imm(r_tmp, imm, ctx);
193 emit_or(dst, src, r_tmp, ctx);
194 } else {
195 emit_instr(ctx, ori, dst, src, imm);
196 }
197 }
198
199 static inline void emit_daddiu(unsigned int dst, unsigned int src,
200 int imm, struct jit_ctx *ctx)
201 {
202 /*
203 * Only used for stack, so the imm is relatively small
204 * and it fits in 15-bits
205 */
206 emit_instr(ctx, daddiu, dst, src, imm);
207 }
208
209 static inline void emit_addiu(unsigned int dst, unsigned int src,
210 u32 imm, struct jit_ctx *ctx)
211 {
212 if (!is_range16(imm)) {
213 emit_load_imm(r_tmp, imm, ctx);
214 emit_addu(dst, r_tmp, src, ctx);
215 } else {
216 emit_instr(ctx, addiu, dst, src, imm);
217 }
218 }
219
220 static inline void emit_and(unsigned int dst, unsigned int src1,
221 unsigned int src2, struct jit_ctx *ctx)
222 {
223 emit_instr(ctx, and, dst, src1, src2);
224 }
225
226 static inline void emit_andi(unsigned int dst, unsigned int src,
227 u32 imm, struct jit_ctx *ctx)
228 {
229 /* If imm does not fit in u16 then load it to register */
230 if (imm >= BIT(16)) {
231 emit_load_imm(r_tmp, imm, ctx);
232 emit_and(dst, src, r_tmp, ctx);
233 } else {
234 emit_instr(ctx, andi, dst, src, imm);
235 }
236 }
237
238 static inline void emit_xor(unsigned int dst, unsigned int src1,
239 unsigned int src2, struct jit_ctx *ctx)
240 {
241 emit_instr(ctx, xor, dst, src1, src2);
242 }
243
244 static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
245 {
246 /* If imm does not fit in u16 then load it to register */
247 if (imm >= BIT(16)) {
248 emit_load_imm(r_tmp, imm, ctx);
249 emit_xor(dst, src, r_tmp, ctx);
250 } else {
251 emit_instr(ctx, xori, dst, src, imm);
252 }
253 }
254
255 static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
256 {
257 emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset);
258 }
259
260 static inline void emit_subu(unsigned int dst, unsigned int src1,
261 unsigned int src2, struct jit_ctx *ctx)
262 {
263 emit_instr(ctx, subu, dst, src1, src2);
264 }
265
266 static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
267 {
268 emit_subu(reg, r_zero, reg, ctx);
269 }
270
271 static inline void emit_sllv(unsigned int dst, unsigned int src,
272 unsigned int sa, struct jit_ctx *ctx)
273 {
274 emit_instr(ctx, sllv, dst, src, sa);
275 }
276
277 static inline void emit_sll(unsigned int dst, unsigned int src,
278 unsigned int sa, struct jit_ctx *ctx)
279 {
280 /* sa is 5-bits long */
281 if (sa >= BIT(5))
282 /* Shifting >= 32 results in zero */
283 emit_jit_reg_move(dst, r_zero, ctx);
284 else
285 emit_instr(ctx, sll, dst, src, sa);
286 }
287
288 static inline void emit_srlv(unsigned int dst, unsigned int src,
289 unsigned int sa, struct jit_ctx *ctx)
290 {
291 emit_instr(ctx, srlv, dst, src, sa);
292 }
293
294 static inline void emit_srl(unsigned int dst, unsigned int src,
295 unsigned int sa, struct jit_ctx *ctx)
296 {
297 /* sa is 5-bits long */
298 if (sa >= BIT(5))
299 /* Shifting >= 32 results in zero */
300 emit_jit_reg_move(dst, r_zero, ctx);
301 else
302 emit_instr(ctx, srl, dst, src, sa);
303 }
304
305 static inline void emit_slt(unsigned int dst, unsigned int src1,
306 unsigned int src2, struct jit_ctx *ctx)
307 {
308 emit_instr(ctx, slt, dst, src1, src2);
309 }
310
311 static inline void emit_sltu(unsigned int dst, unsigned int src1,
312 unsigned int src2, struct jit_ctx *ctx)
313 {
314 emit_instr(ctx, sltu, dst, src1, src2);
315 }
316
317 static inline void emit_sltiu(unsigned dst, unsigned int src,
318 unsigned int imm, struct jit_ctx *ctx)
319 {
320 /* 16 bit immediate */
321 if (!is_range16((s32)imm)) {
322 emit_load_imm(r_tmp, imm, ctx);
323 emit_sltu(dst, src, r_tmp, ctx);
324 } else {
325 emit_instr(ctx, sltiu, dst, src, imm);
326 }
327
328 }
329
330 /* Store register on the stack */
331 static inline void emit_store_stack_reg(ptr reg, ptr base,
332 unsigned int offset,
333 struct jit_ctx *ctx)
334 {
335 emit_long_instr(ctx, SW, reg, offset, base);
336 }
337
338 static inline void emit_store(ptr reg, ptr base, unsigned int offset,
339 struct jit_ctx *ctx)
340 {
341 emit_instr(ctx, sw, reg, offset, base);
342 }
343
344 static inline void emit_load_stack_reg(ptr reg, ptr base,
345 unsigned int offset,
346 struct jit_ctx *ctx)
347 {
348 emit_long_instr(ctx, LW, reg, offset, base);
349 }
350
351 static inline void emit_load(unsigned int reg, unsigned int base,
352 unsigned int offset, struct jit_ctx *ctx)
353 {
354 emit_instr(ctx, lw, reg, offset, base);
355 }
356
357 static inline void emit_load_byte(unsigned int reg, unsigned int base,
358 unsigned int offset, struct jit_ctx *ctx)
359 {
360 emit_instr(ctx, lb, reg, offset, base);
361 }
362
363 static inline void emit_half_load(unsigned int reg, unsigned int base,
364 unsigned int offset, struct jit_ctx *ctx)
365 {
366 emit_instr(ctx, lh, reg, offset, base);
367 }
368
369 static inline void emit_mul(unsigned int dst, unsigned int src1,
370 unsigned int src2, struct jit_ctx *ctx)
371 {
372 emit_instr(ctx, mul, dst, src1, src2);
373 }
374
375 static inline void emit_div(unsigned int dst, unsigned int src,
376 struct jit_ctx *ctx)
377 {
378 if (ctx->target != NULL) {
379 u32 *p = &ctx->target[ctx->idx];
380 uasm_i_divu(&p, dst, src);
381 p = &ctx->target[ctx->idx + 1];
382 uasm_i_mflo(&p, dst);
383 }
384 ctx->idx += 2; /* 2 insts */
385 }
386
387 static inline void emit_mod(unsigned int dst, unsigned int src,
388 struct jit_ctx *ctx)
389 {
390 if (ctx->target != NULL) {
391 u32 *p = &ctx->target[ctx->idx];
392 uasm_i_divu(&p, dst, src);
393 p = &ctx->target[ctx->idx + 1];
394 uasm_i_mfhi(&p, dst);
395 }
396 ctx->idx += 2; /* 2 insts */
397 }
398
399 static inline void emit_dsll(unsigned int dst, unsigned int src,
400 unsigned int sa, struct jit_ctx *ctx)
401 {
402 emit_instr(ctx, dsll, dst, src, sa);
403 }
404
405 static inline void emit_dsrl32(unsigned int dst, unsigned int src,
406 unsigned int sa, struct jit_ctx *ctx)
407 {
408 emit_instr(ctx, dsrl32, dst, src, sa);
409 }
410
411 static inline void emit_wsbh(unsigned int dst, unsigned int src,
412 struct jit_ctx *ctx)
413 {
414 emit_instr(ctx, wsbh, dst, src);
415 }
416
417 /* load pointer to register */
418 static inline void emit_load_ptr(unsigned int dst, unsigned int src,
419 int imm, struct jit_ctx *ctx)
420 {
421 /* src contains the base addr of the 32/64-pointer */
422 emit_long_instr(ctx, LW, dst, imm, src);
423 }
424
425 /* load a function pointer to register */
426 static inline void emit_load_func(unsigned int reg, ptr imm,
427 struct jit_ctx *ctx)
428 {
429 if (IS_ENABLED(CONFIG_64BIT)) {
430 /* At this point imm is always 64-bit */
431 emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
432 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
433 emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
434 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
435 emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
436 } else {
437 emit_load_imm(reg, imm, ctx);
438 }
439 }
440
441 /* Move to real MIPS register */
442 static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
443 {
444 emit_long_instr(ctx, ADDU, dst, src, r_zero);
445 }
446
447 /* Move to JIT (32-bit) register */
448 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
449 {
450 emit_addu(dst, src, r_zero, ctx);
451 }
452
453 /* Compute the immediate value for PC-relative branches. */
454 static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
455 {
456 if (ctx->target == NULL)
457 return 0;
458
459 /*
460 * We want a pc-relative branch. We only do forward branches
461 * so tgt is always after pc. tgt is the instruction offset
462 * we want to jump to.
463
464 * Branch on MIPS:
465 * I: target_offset <- sign_extend(offset)
466 * I+1: PC += target_offset (delay slot)
467 *
468 * ctx->idx currently points to the branch instruction
469 * but the offset is added to the delay slot so we need
470 * to subtract 4.
471 */
472 return ctx->offsets[tgt] -
473 (ctx->idx * 4 - ctx->prologue_bytes) - 4;
474 }
475
476 static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
477 unsigned int imm, struct jit_ctx *ctx)
478 {
479 if (ctx->target != NULL) {
480 u32 *p = &ctx->target[ctx->idx];
481
482 switch (cond) {
483 case MIPS_COND_EQ:
484 uasm_i_beq(&p, reg1, reg2, imm);
485 break;
486 case MIPS_COND_NE:
487 uasm_i_bne(&p, reg1, reg2, imm);
488 break;
489 case MIPS_COND_ALL:
490 uasm_i_b(&p, imm);
491 break;
492 default:
493 pr_warn("%s: Unhandled branch conditional: %d\n",
494 __func__, cond);
495 }
496 }
497 ctx->idx++;
498 }
499
500 static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
501 {
502 emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
503 }
504
505 static inline void emit_jalr(unsigned int link, unsigned int reg,
506 struct jit_ctx *ctx)
507 {
508 emit_instr(ctx, jalr, link, reg);
509 }
510
511 static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
512 {
513 emit_instr(ctx, jr, reg);
514 }
515
516 static inline u16 align_sp(unsigned int num)
517 {
518 /* Double word alignment for 32-bit, quadword for 64-bit */
519 unsigned int align = IS_ENABLED(CONFIG_64BIT) ? 16 : 8;
520 num = (num + (align - 1)) & -align;
521 return num;
522 }
523
524 static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
525 {
526 int i = 0, real_off = 0;
527 u32 sflags, tmp_flags;
528
529 /* Adjust the stack pointer */
530 emit_stack_offset(-align_sp(offset), ctx);
531
532 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
533 /* sflags is essentially a bitmap */
534 while (tmp_flags) {
535 if ((sflags >> i) & 0x1) {
536 emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
537 ctx);
538 real_off += SZREG;
539 }
540 i++;
541 tmp_flags >>= 1;
542 }
543
544 /* save return address */
545 if (ctx->flags & SEEN_CALL) {
546 emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
547 real_off += SZREG;
548 }
549
550 /* Setup r_M leaving the alignment gap if necessary */
551 if (ctx->flags & SEEN_MEM) {
552 if (real_off % (SZREG * 2))
553 real_off += SZREG;
554 emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off);
555 }
556 }
557
558 static void restore_bpf_jit_regs(struct jit_ctx *ctx,
559 unsigned int offset)
560 {
561 int i, real_off = 0;
562 u32 sflags, tmp_flags;
563
564 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
565 /* sflags is a bitmap */
566 i = 0;
567 while (tmp_flags) {
568 if ((sflags >> i) & 0x1) {
569 emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
570 ctx);
571 real_off += SZREG;
572 }
573 i++;
574 tmp_flags >>= 1;
575 }
576
577 /* restore return address */
578 if (ctx->flags & SEEN_CALL)
579 emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
580
581 /* Restore the sp and discard the scrach memory */
582 emit_stack_offset(align_sp(offset), ctx);
583 }
584
585 static unsigned int get_stack_depth(struct jit_ctx *ctx)
586 {
587 int sp_off = 0;
588
589
590 /* How may s* regs do we need to preserved? */
591 sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG;
592
593 if (ctx->flags & SEEN_MEM)
594 sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
595
596 if (ctx->flags & SEEN_CALL)
597 sp_off += SZREG; /* Space for our ra register */
598
599 return sp_off;
600 }
601
602 static void build_prologue(struct jit_ctx *ctx)
603 {
604 int sp_off;
605
606 /* Calculate the total offset for the stack pointer */
607 sp_off = get_stack_depth(ctx);
608 save_bpf_jit_regs(ctx, sp_off);
609
610 if (ctx->flags & SEEN_SKB)
611 emit_reg_move(r_skb, MIPS_R_A0, ctx);
612
613 if (ctx->flags & SEEN_SKB_DATA) {
614 /* Load packet length */
615 emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len),
616 ctx);
617 emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len),
618 ctx);
619 /* Load the data pointer */
620 emit_load_ptr(r_skb_data, r_skb,
621 offsetof(struct sk_buff, data), ctx);
622 /* Load the header length */
623 emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx);
624 }
625
626 if (ctx->flags & SEEN_X)
627 emit_jit_reg_move(r_X, r_zero, ctx);
628
629 /* Do not leak kernel data to userspace */
630 if (bpf_needs_clear_a(&ctx->skf->insns[0]))
631 emit_jit_reg_move(r_A, r_zero, ctx);
632 }
633
634 static void build_epilogue(struct jit_ctx *ctx)
635 {
636 unsigned int sp_off;
637
638 /* Calculate the total offset for the stack pointer */
639
640 sp_off = get_stack_depth(ctx);
641 restore_bpf_jit_regs(ctx, sp_off);
642
643 /* Return */
644 emit_jr(r_ra, ctx);
645 emit_nop(ctx);
646 }
647
648 #define CHOOSE_LOAD_FUNC(K, func) \
649 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \
650 func##_positive)
651
652 static int build_body(struct jit_ctx *ctx)
653 {
654 const struct bpf_prog *prog = ctx->skf;
655 const struct sock_filter *inst;
656 unsigned int i, off, condt;
657 u32 k, b_off __maybe_unused;
658 u8 (*sk_load_func)(unsigned long *skb, int offset);
659
660 for (i = 0; i < prog->len; i++) {
661 u16 code;
662
663 inst = &(prog->insns[i]);
664 pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
665 __func__, inst->code, inst->jt, inst->jf, inst->k);
666 k = inst->k;
667 code = bpf_anc_helper(inst);
668
669 if (ctx->target == NULL)
670 ctx->offsets[i] = ctx->idx * 4;
671
672 switch (code) {
673 case BPF_LD | BPF_IMM:
674 /* A <- k ==> li r_A, k */
675 ctx->flags |= SEEN_A;
676 emit_load_imm(r_A, k, ctx);
677 break;
678 case BPF_LD | BPF_W | BPF_LEN:
679 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
680 /* A <- len ==> lw r_A, offset(skb) */
681 ctx->flags |= SEEN_SKB | SEEN_A;
682 off = offsetof(struct sk_buff, len);
683 emit_load(r_A, r_skb, off, ctx);
684 break;
685 case BPF_LD | BPF_MEM:
686 /* A <- M[k] ==> lw r_A, offset(M) */
687 ctx->flags |= SEEN_MEM | SEEN_A;
688 emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
689 break;
690 case BPF_LD | BPF_W | BPF_ABS:
691 /* A <- P[k:4] */
692 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word);
693 goto load;
694 case BPF_LD | BPF_H | BPF_ABS:
695 /* A <- P[k:2] */
696 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half);
697 goto load;
698 case BPF_LD | BPF_B | BPF_ABS:
699 /* A <- P[k:1] */
700 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte);
701 load:
702 emit_load_imm(r_off, k, ctx);
703 load_common:
704 ctx->flags |= SEEN_CALL | SEEN_OFF |
705 SEEN_SKB | SEEN_A | SEEN_SKB_DATA;
706
707 emit_load_func(r_s0, (ptr)sk_load_func, ctx);
708 emit_reg_move(MIPS_R_A0, r_skb, ctx);
709 emit_jalr(MIPS_R_RA, r_s0, ctx);
710 /* Load second argument to delay slot */
711 emit_reg_move(MIPS_R_A1, r_off, ctx);
712 /* Check the error value */
713 emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx),
714 ctx);
715 /* Load return register on DS for failures */
716 emit_reg_move(r_ret, r_zero, ctx);
717 /* Return with error */
718 emit_b(b_imm(prog->len, ctx), ctx);
719 emit_nop(ctx);
720 break;
721 case BPF_LD | BPF_W | BPF_IND:
722 /* A <- P[X + k:4] */
723 sk_load_func = sk_load_word;
724 goto load_ind;
725 case BPF_LD | BPF_H | BPF_IND:
726 /* A <- P[X + k:2] */
727 sk_load_func = sk_load_half;
728 goto load_ind;
729 case BPF_LD | BPF_B | BPF_IND:
730 /* A <- P[X + k:1] */
731 sk_load_func = sk_load_byte;
732 load_ind:
733 ctx->flags |= SEEN_OFF | SEEN_X;
734 emit_addiu(r_off, r_X, k, ctx);
735 goto load_common;
736 case BPF_LDX | BPF_IMM:
737 /* X <- k */
738 ctx->flags |= SEEN_X;
739 emit_load_imm(r_X, k, ctx);
740 break;
741 case BPF_LDX | BPF_MEM:
742 /* X <- M[k] */
743 ctx->flags |= SEEN_X | SEEN_MEM;
744 emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
745 break;
746 case BPF_LDX | BPF_W | BPF_LEN:
747 /* X <- len */
748 ctx->flags |= SEEN_X | SEEN_SKB;
749 off = offsetof(struct sk_buff, len);
750 emit_load(r_X, r_skb, off, ctx);
751 break;
752 case BPF_LDX | BPF_B | BPF_MSH:
753 /* X <- 4 * (P[k:1] & 0xf) */
754 ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB;
755 /* Load offset to a1 */
756 emit_load_func(r_s0, (ptr)sk_load_byte, ctx);
757 /*
758 * This may emit two instructions so it may not fit
759 * in the delay slot. So use a0 in the delay slot.
760 */
761 emit_load_imm(MIPS_R_A1, k, ctx);
762 emit_jalr(MIPS_R_RA, r_s0, ctx);
763 emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
764 /* Check the error value */
765 emit_bcond(MIPS_COND_NE, r_ret, 0,
766 b_imm(prog->len, ctx), ctx);
767 emit_reg_move(r_ret, r_zero, ctx);
768 /* We are good */
769 /* X <- P[1:K] & 0xf */
770 emit_andi(r_X, r_A, 0xf, ctx);
771 /* X << 2 */
772 emit_b(b_imm(i + 1, ctx), ctx);
773 emit_sll(r_X, r_X, 2, ctx); /* delay slot */
774 break;
775 case BPF_ST:
776 /* M[k] <- A */
777 ctx->flags |= SEEN_MEM | SEEN_A;
778 emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
779 break;
780 case BPF_STX:
781 /* M[k] <- X */
782 ctx->flags |= SEEN_MEM | SEEN_X;
783 emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
784 break;
785 case BPF_ALU | BPF_ADD | BPF_K:
786 /* A += K */
787 ctx->flags |= SEEN_A;
788 emit_addiu(r_A, r_A, k, ctx);
789 break;
790 case BPF_ALU | BPF_ADD | BPF_X:
791 /* A += X */
792 ctx->flags |= SEEN_A | SEEN_X;
793 emit_addu(r_A, r_A, r_X, ctx);
794 break;
795 case BPF_ALU | BPF_SUB | BPF_K:
796 /* A -= K */
797 ctx->flags |= SEEN_A;
798 emit_addiu(r_A, r_A, -k, ctx);
799 break;
800 case BPF_ALU | BPF_SUB | BPF_X:
801 /* A -= X */
802 ctx->flags |= SEEN_A | SEEN_X;
803 emit_subu(r_A, r_A, r_X, ctx);
804 break;
805 case BPF_ALU | BPF_MUL | BPF_K:
806 /* A *= K */
807 /* Load K to scratch register before MUL */
808 ctx->flags |= SEEN_A;
809 emit_load_imm(r_s0, k, ctx);
810 emit_mul(r_A, r_A, r_s0, ctx);
811 break;
812 case BPF_ALU | BPF_MUL | BPF_X:
813 /* A *= X */
814 ctx->flags |= SEEN_A | SEEN_X;
815 emit_mul(r_A, r_A, r_X, ctx);
816 break;
817 case BPF_ALU | BPF_DIV | BPF_K:
818 /* A /= k */
819 if (k == 1)
820 break;
821 if (optimize_div(&k)) {
822 ctx->flags |= SEEN_A;
823 emit_srl(r_A, r_A, k, ctx);
824 break;
825 }
826 ctx->flags |= SEEN_A;
827 emit_load_imm(r_s0, k, ctx);
828 emit_div(r_A, r_s0, ctx);
829 break;
830 case BPF_ALU | BPF_MOD | BPF_K:
831 /* A %= k */
832 if (k == 1) {
833 ctx->flags |= SEEN_A;
834 emit_jit_reg_move(r_A, r_zero, ctx);
835 } else {
836 ctx->flags |= SEEN_A;
837 emit_load_imm(r_s0, k, ctx);
838 emit_mod(r_A, r_s0, ctx);
839 }
840 break;
841 case BPF_ALU | BPF_DIV | BPF_X:
842 /* A /= X */
843 ctx->flags |= SEEN_X | SEEN_A;
844 /* Check if r_X is zero */
845 emit_bcond(MIPS_COND_EQ, r_X, r_zero,
846 b_imm(prog->len, ctx), ctx);
847 emit_load_imm(r_ret, 0, ctx); /* delay slot */
848 emit_div(r_A, r_X, ctx);
849 break;
850 case BPF_ALU | BPF_MOD | BPF_X:
851 /* A %= X */
852 ctx->flags |= SEEN_X | SEEN_A;
853 /* Check if r_X is zero */
854 emit_bcond(MIPS_COND_EQ, r_X, r_zero,
855 b_imm(prog->len, ctx), ctx);
856 emit_load_imm(r_ret, 0, ctx); /* delay slot */
857 emit_mod(r_A, r_X, ctx);
858 break;
859 case BPF_ALU | BPF_OR | BPF_K:
860 /* A |= K */
861 ctx->flags |= SEEN_A;
862 emit_ori(r_A, r_A, k, ctx);
863 break;
864 case BPF_ALU | BPF_OR | BPF_X:
865 /* A |= X */
866 ctx->flags |= SEEN_A;
867 emit_ori(r_A, r_A, r_X, ctx);
868 break;
869 case BPF_ALU | BPF_XOR | BPF_K:
870 /* A ^= k */
871 ctx->flags |= SEEN_A;
872 emit_xori(r_A, r_A, k, ctx);
873 break;
874 case BPF_ANC | SKF_AD_ALU_XOR_X:
875 case BPF_ALU | BPF_XOR | BPF_X:
876 /* A ^= X */
877 ctx->flags |= SEEN_A;
878 emit_xor(r_A, r_A, r_X, ctx);
879 break;
880 case BPF_ALU | BPF_AND | BPF_K:
881 /* A &= K */
882 ctx->flags |= SEEN_A;
883 emit_andi(r_A, r_A, k, ctx);
884 break;
885 case BPF_ALU | BPF_AND | BPF_X:
886 /* A &= X */
887 ctx->flags |= SEEN_A | SEEN_X;
888 emit_and(r_A, r_A, r_X, ctx);
889 break;
890 case BPF_ALU | BPF_LSH | BPF_K:
891 /* A <<= K */
892 ctx->flags |= SEEN_A;
893 emit_sll(r_A, r_A, k, ctx);
894 break;
895 case BPF_ALU | BPF_LSH | BPF_X:
896 /* A <<= X */
897 ctx->flags |= SEEN_A | SEEN_X;
898 emit_sllv(r_A, r_A, r_X, ctx);
899 break;
900 case BPF_ALU | BPF_RSH | BPF_K:
901 /* A >>= K */
902 ctx->flags |= SEEN_A;
903 emit_srl(r_A, r_A, k, ctx);
904 break;
905 case BPF_ALU | BPF_RSH | BPF_X:
906 ctx->flags |= SEEN_A | SEEN_X;
907 emit_srlv(r_A, r_A, r_X, ctx);
908 break;
909 case BPF_ALU | BPF_NEG:
910 /* A = -A */
911 ctx->flags |= SEEN_A;
912 emit_neg(r_A, ctx);
913 break;
914 case BPF_JMP | BPF_JA:
915 /* pc += K */
916 emit_b(b_imm(i + k + 1, ctx), ctx);
917 emit_nop(ctx);
918 break;
919 case BPF_JMP | BPF_JEQ | BPF_K:
920 /* pc += ( A == K ) ? pc->jt : pc->jf */
921 condt = MIPS_COND_EQ | MIPS_COND_K;
922 goto jmp_cmp;
923 case BPF_JMP | BPF_JEQ | BPF_X:
924 ctx->flags |= SEEN_X;
925 /* pc += ( A == X ) ? pc->jt : pc->jf */
926 condt = MIPS_COND_EQ | MIPS_COND_X;
927 goto jmp_cmp;
928 case BPF_JMP | BPF_JGE | BPF_K:
929 /* pc += ( A >= K ) ? pc->jt : pc->jf */
930 condt = MIPS_COND_GE | MIPS_COND_K;
931 goto jmp_cmp;
932 case BPF_JMP | BPF_JGE | BPF_X:
933 ctx->flags |= SEEN_X;
934 /* pc += ( A >= X ) ? pc->jt : pc->jf */
935 condt = MIPS_COND_GE | MIPS_COND_X;
936 goto jmp_cmp;
937 case BPF_JMP | BPF_JGT | BPF_K:
938 /* pc += ( A > K ) ? pc->jt : pc->jf */
939 condt = MIPS_COND_GT | MIPS_COND_K;
940 goto jmp_cmp;
941 case BPF_JMP | BPF_JGT | BPF_X:
942 ctx->flags |= SEEN_X;
943 /* pc += ( A > X ) ? pc->jt : pc->jf */
944 condt = MIPS_COND_GT | MIPS_COND_X;
945 jmp_cmp:
946 /* Greater or Equal */
947 if ((condt & MIPS_COND_GE) ||
948 (condt & MIPS_COND_GT)) {
949 if (condt & MIPS_COND_K) { /* K */
950 ctx->flags |= SEEN_A;
951 emit_sltiu(r_s0, r_A, k, ctx);
952 } else { /* X */
953 ctx->flags |= SEEN_A |
954 SEEN_X;
955 emit_sltu(r_s0, r_A, r_X, ctx);
956 }
957 /* A < (K|X) ? r_scrach = 1 */
958 b_off = b_imm(i + inst->jf + 1, ctx);
959 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off,
960 ctx);
961 emit_nop(ctx);
962 /* A > (K|X) ? scratch = 0 */
963 if (condt & MIPS_COND_GT) {
964 /* Checking for equality */
965 ctx->flags |= SEEN_A | SEEN_X;
966 if (condt & MIPS_COND_K)
967 emit_load_imm(r_s0, k, ctx);
968 else
969 emit_jit_reg_move(r_s0, r_X,
970 ctx);
971 b_off = b_imm(i + inst->jf + 1, ctx);
972 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
973 b_off, ctx);
974 emit_nop(ctx);
975 /* Finally, A > K|X */
976 b_off = b_imm(i + inst->jt + 1, ctx);
977 emit_b(b_off, ctx);
978 emit_nop(ctx);
979 } else {
980 /* A >= (K|X) so jump */
981 b_off = b_imm(i + inst->jt + 1, ctx);
982 emit_b(b_off, ctx);
983 emit_nop(ctx);
984 }
985 } else {
986 /* A == K|X */
987 if (condt & MIPS_COND_K) { /* K */
988 ctx->flags |= SEEN_A;
989 emit_load_imm(r_s0, k, ctx);
990 /* jump true */
991 b_off = b_imm(i + inst->jt + 1, ctx);
992 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
993 b_off, ctx);
994 emit_nop(ctx);
995 /* jump false */
996 b_off = b_imm(i + inst->jf + 1,
997 ctx);
998 emit_bcond(MIPS_COND_NE, r_A, r_s0,
999 b_off, ctx);
1000 emit_nop(ctx);
1001 } else { /* X */
1002 /* jump true */
1003 ctx->flags |= SEEN_A | SEEN_X;
1004 b_off = b_imm(i + inst->jt + 1,
1005 ctx);
1006 emit_bcond(MIPS_COND_EQ, r_A, r_X,
1007 b_off, ctx);
1008 emit_nop(ctx);
1009 /* jump false */
1010 b_off = b_imm(i + inst->jf + 1, ctx);
1011 emit_bcond(MIPS_COND_NE, r_A, r_X,
1012 b_off, ctx);
1013 emit_nop(ctx);
1014 }
1015 }
1016 break;
1017 case BPF_JMP | BPF_JSET | BPF_K:
1018 ctx->flags |= SEEN_A;
1019 /* pc += (A & K) ? pc -> jt : pc -> jf */
1020 emit_load_imm(r_s1, k, ctx);
1021 emit_and(r_s0, r_A, r_s1, ctx);
1022 /* jump true */
1023 b_off = b_imm(i + inst->jt + 1, ctx);
1024 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1025 emit_nop(ctx);
1026 /* jump false */
1027 b_off = b_imm(i + inst->jf + 1, ctx);
1028 emit_b(b_off, ctx);
1029 emit_nop(ctx);
1030 break;
1031 case BPF_JMP | BPF_JSET | BPF_X:
1032 ctx->flags |= SEEN_X | SEEN_A;
1033 /* pc += (A & X) ? pc -> jt : pc -> jf */
1034 emit_and(r_s0, r_A, r_X, ctx);
1035 /* jump true */
1036 b_off = b_imm(i + inst->jt + 1, ctx);
1037 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1038 emit_nop(ctx);
1039 /* jump false */
1040 b_off = b_imm(i + inst->jf + 1, ctx);
1041 emit_b(b_off, ctx);
1042 emit_nop(ctx);
1043 break;
1044 case BPF_RET | BPF_A:
1045 ctx->flags |= SEEN_A;
1046 if (i != prog->len - 1)
1047 /*
1048 * If this is not the last instruction
1049 * then jump to the epilogue
1050 */
1051 emit_b(b_imm(prog->len, ctx), ctx);
1052 emit_reg_move(r_ret, r_A, ctx); /* delay slot */
1053 break;
1054 case BPF_RET | BPF_K:
1055 /*
1056 * It can emit two instructions so it does not fit on
1057 * the delay slot.
1058 */
1059 emit_load_imm(r_ret, k, ctx);
1060 if (i != prog->len - 1) {
1061 /*
1062 * If this is not the last instruction
1063 * then jump to the epilogue
1064 */
1065 emit_b(b_imm(prog->len, ctx), ctx);
1066 emit_nop(ctx);
1067 }
1068 break;
1069 case BPF_MISC | BPF_TAX:
1070 /* X = A */
1071 ctx->flags |= SEEN_X | SEEN_A;
1072 emit_jit_reg_move(r_X, r_A, ctx);
1073 break;
1074 case BPF_MISC | BPF_TXA:
1075 /* A = X */
1076 ctx->flags |= SEEN_A | SEEN_X;
1077 emit_jit_reg_move(r_A, r_X, ctx);
1078 break;
1079 /* AUX */
1080 case BPF_ANC | SKF_AD_PROTOCOL:
1081 /* A = ntohs(skb->protocol */
1082 ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
1083 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1084 protocol) != 2);
1085 off = offsetof(struct sk_buff, protocol);
1086 emit_half_load(r_A, r_skb, off, ctx);
1087 #ifdef CONFIG_CPU_LITTLE_ENDIAN
1088 /* This needs little endian fixup */
1089 if (cpu_has_wsbh) {
1090 /* R2 and later have the wsbh instruction */
1091 emit_wsbh(r_A, r_A, ctx);
1092 } else {
1093 /* Get first byte */
1094 emit_andi(r_tmp_imm, r_A, 0xff, ctx);
1095 /* Shift it */
1096 emit_sll(r_tmp, r_tmp_imm, 8, ctx);
1097 /* Get second byte */
1098 emit_srl(r_tmp_imm, r_A, 8, ctx);
1099 emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
1100 /* Put everyting together in r_A */
1101 emit_or(r_A, r_tmp, r_tmp_imm, ctx);
1102 }
1103 #endif
1104 break;
1105 case BPF_ANC | SKF_AD_CPU:
1106 ctx->flags |= SEEN_A | SEEN_OFF;
1107 /* A = current_thread_info()->cpu */
1108 BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info,
1109 cpu) != 4);
1110 off = offsetof(struct thread_info, cpu);
1111 /* $28/gp points to the thread_info struct */
1112 emit_load(r_A, 28, off, ctx);
1113 break;
1114 case BPF_ANC | SKF_AD_IFINDEX:
1115 /* A = skb->dev->ifindex */
1116 ctx->flags |= SEEN_SKB | SEEN_A;
1117 off = offsetof(struct sk_buff, dev);
1118 /* Load *dev pointer */
1119 emit_load_ptr(r_s0, r_skb, off, ctx);
1120 /* error (0) in the delay slot */
1121 emit_bcond(MIPS_COND_EQ, r_s0, r_zero,
1122 b_imm(prog->len, ctx), ctx);
1123 emit_reg_move(r_ret, r_zero, ctx);
1124 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
1125 ifindex) != 4);
1126 off = offsetof(struct net_device, ifindex);
1127 emit_load(r_A, r_s0, off, ctx);
1128 break;
1129 case BPF_ANC | SKF_AD_MARK:
1130 ctx->flags |= SEEN_SKB | SEEN_A;
1131 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1132 off = offsetof(struct sk_buff, mark);
1133 emit_load(r_A, r_skb, off, ctx);
1134 break;
1135 case BPF_ANC | SKF_AD_RXHASH:
1136 ctx->flags |= SEEN_SKB | SEEN_A;
1137 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1138 off = offsetof(struct sk_buff, hash);
1139 emit_load(r_A, r_skb, off, ctx);
1140 break;
1141 case BPF_ANC | SKF_AD_VLAN_TAG:
1142 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
1143 ctx->flags |= SEEN_SKB | SEEN_A;
1144 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1145 vlan_tci) != 2);
1146 off = offsetof(struct sk_buff, vlan_tci);
1147 emit_half_load(r_s0, r_skb, off, ctx);
1148 if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
1149 emit_andi(r_A, r_s0, (u16)~VLAN_TAG_PRESENT, ctx);
1150 } else {
1151 emit_andi(r_A, r_s0, VLAN_TAG_PRESENT, ctx);
1152 /* return 1 if present */
1153 emit_sltu(r_A, r_zero, r_A, ctx);
1154 }
1155 break;
1156 case BPF_ANC | SKF_AD_PKTTYPE:
1157 ctx->flags |= SEEN_SKB;
1158
1159 emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx);
1160 /* Keep only the last 3 bits */
1161 emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
1162 #ifdef __BIG_ENDIAN_BITFIELD
1163 /* Get the actual packet type to the lower 3 bits */
1164 emit_srl(r_A, r_A, 5, ctx);
1165 #endif
1166 break;
1167 case BPF_ANC | SKF_AD_QUEUE:
1168 ctx->flags |= SEEN_SKB | SEEN_A;
1169 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1170 queue_mapping) != 2);
1171 BUILD_BUG_ON(offsetof(struct sk_buff,
1172 queue_mapping) > 0xff);
1173 off = offsetof(struct sk_buff, queue_mapping);
1174 emit_half_load(r_A, r_skb, off, ctx);
1175 break;
1176 default:
1177 pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__,
1178 inst->code);
1179 return -1;
1180 }
1181 }
1182
1183 /* compute offsets only during the first pass */
1184 if (ctx->target == NULL)
1185 ctx->offsets[i] = ctx->idx * 4;
1186
1187 return 0;
1188 }
1189
1190 int bpf_jit_enable __read_mostly;
1191
1192 void bpf_jit_compile(struct bpf_prog *fp)
1193 {
1194 struct jit_ctx ctx;
1195 unsigned int alloc_size, tmp_idx;
1196
1197 if (!bpf_jit_enable)
1198 return;
1199
1200 memset(&ctx, 0, sizeof(ctx));
1201
1202 ctx.offsets = kcalloc(fp->len + 1, sizeof(*ctx.offsets), GFP_KERNEL);
1203 if (ctx.offsets == NULL)
1204 return;
1205
1206 ctx.skf = fp;
1207
1208 if (build_body(&ctx))
1209 goto out;
1210
1211 tmp_idx = ctx.idx;
1212 build_prologue(&ctx);
1213 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1214 /* just to complete the ctx.idx count */
1215 build_epilogue(&ctx);
1216
1217 alloc_size = 4 * ctx.idx;
1218 ctx.target = module_alloc(alloc_size);
1219 if (ctx.target == NULL)
1220 goto out;
1221
1222 /* Clean it */
1223 memset(ctx.target, 0, alloc_size);
1224
1225 ctx.idx = 0;
1226
1227 /* Generate the actual JIT code */
1228 build_prologue(&ctx);
1229 build_body(&ctx);
1230 build_epilogue(&ctx);
1231
1232 /* Update the icache */
1233 flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
1234
1235 if (bpf_jit_enable > 1)
1236 /* Dump JIT code */
1237 bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1238
1239 fp->bpf_func = (void *)ctx.target;
1240 fp->jited = 1;
1241
1242 out:
1243 kfree(ctx.offsets);
1244 }
1245
1246 void bpf_jit_free(struct bpf_prog *fp)
1247 {
1248 if (fp->jited)
1249 module_memfree(fp->bpf_func);
1250
1251 bpf_prog_unlock_free(fp);
1252 }
This page took 0.059585 seconds and 5 git commands to generate.