MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / arch / mn10300 / include / asm / pgtable.h
1 /* MN10300 Page table manipulators and constants
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
10 *
11 *
12 * The Linux memory management assumes a three-level page table setup. On
13 * the i386, we use that, but "fold" the mid level into the top-level page
14 * table, so that we physically have the same two-level page table as the
15 * i386 mmu expects.
16 *
17 * This file contains the functions and defines necessary to modify and use
18 * the i386 page table tree for the purposes of the MN10300 TLB handler
19 * functions.
20 */
21 #ifndef _ASM_PGTABLE_H
22 #define _ASM_PGTABLE_H
23
24 #include <asm/cpu-regs.h>
25
26 #ifndef __ASSEMBLY__
27 #include <asm/processor.h>
28 #include <asm/cache.h>
29 #include <linux/threads.h>
30
31 #include <asm/bitops.h>
32
33 #include <linux/slab.h>
34 #include <linux/list.h>
35 #include <linux/spinlock.h>
36
37 /*
38 * ZERO_PAGE is a global shared page that is always zero: used
39 * for zero-mapped memory areas etc..
40 */
41 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
42 extern unsigned long empty_zero_page[1024];
43 extern spinlock_t pgd_lock;
44 extern struct page *pgd_list;
45
46 extern void pmd_ctor(void *, struct kmem_cache *, unsigned long);
47 extern void pgtable_cache_init(void);
48 extern void paging_init(void);
49
50 #endif /* !__ASSEMBLY__ */
51
52 /*
53 * The Linux mn10300 paging architecture only implements both the traditional
54 * 2-level page tables
55 */
56 #define PGDIR_SHIFT 22
57 #define PTRS_PER_PGD 1024
58 #define PTRS_PER_PUD 1 /* we don't really have any PUD physically */
59 #define PTRS_PER_PMD 1 /* we don't really have any PMD physically */
60 #define PTRS_PER_PTE 1024
61
62 #define PGD_SIZE PAGE_SIZE
63 #define PMD_SIZE (1UL << PMD_SHIFT)
64 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
65 #define PGDIR_MASK (~(PGDIR_SIZE - 1))
66
67 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
68 #define FIRST_USER_ADDRESS 0UL
69
70 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
71 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
72
73 #define TWOLEVEL_PGDIR_SHIFT 22
74 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
75 #define BOOT_KERNEL_PGD_PTRS (1024 - BOOT_USER_PGD_PTRS)
76
77 #ifndef __ASSEMBLY__
78 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
79 #endif
80
81 /*
82 * Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM
83 * area has to be in the lower half of the virtual address range (the upper
84 * half is not translated through the TLB).
85 *
86 * So in this case, the vmalloc area goes at the bottom of the address map
87 * (leaving a hole at the very bottom to catch addressing errors), and
88 * userspace starts immediately above.
89 *
90 * The vmalloc() routines also leaves a hole of 4kB between each vmalloced
91 * area to catch addressing errors.
92 */
93 #ifndef __ASSEMBLY__
94 #define VMALLOC_OFFSET (8UL * 1024 * 1024)
95 #define VMALLOC_START (0x70000000UL)
96 #define VMALLOC_END (0x7C000000UL)
97 #else
98 #define VMALLOC_OFFSET (8 * 1024 * 1024)
99 #define VMALLOC_START (0x70000000)
100 #define VMALLOC_END (0x7C000000)
101 #endif
102
103 #ifndef __ASSEMBLY__
104 extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE];
105 #endif
106
107 /* IPTEL2/DPTEL2 bit assignments */
108 #define _PAGE_BIT_VALID xPTEL2_V_BIT
109 #define _PAGE_BIT_CACHE xPTEL2_C_BIT
110 #define _PAGE_BIT_PRESENT xPTEL2_PV_BIT
111 #define _PAGE_BIT_DIRTY xPTEL2_D_BIT
112 #define _PAGE_BIT_GLOBAL xPTEL2_G_BIT
113 #define _PAGE_BIT_ACCESSED xPTEL2_UNUSED1_BIT /* mustn't be loaded into IPTEL2/DPTEL2 */
114
115 #define _PAGE_VALID xPTEL2_V
116 #define _PAGE_CACHE xPTEL2_C
117 #define _PAGE_PRESENT xPTEL2_PV
118 #define _PAGE_DIRTY xPTEL2_D
119 #define _PAGE_PROT xPTEL2_PR
120 #define _PAGE_PROT_RKNU xPTEL2_PR_ROK
121 #define _PAGE_PROT_WKNU xPTEL2_PR_RWK
122 #define _PAGE_PROT_RKRU xPTEL2_PR_ROK_ROU
123 #define _PAGE_PROT_WKRU xPTEL2_PR_RWK_ROU
124 #define _PAGE_PROT_WKWU xPTEL2_PR_RWK_RWU
125 #define _PAGE_GLOBAL xPTEL2_G
126 #define _PAGE_PS_MASK xPTEL2_PS
127 #define _PAGE_PS_4Kb xPTEL2_PS_4Kb
128 #define _PAGE_PS_128Kb xPTEL2_PS_128Kb
129 #define _PAGE_PS_1Kb xPTEL2_PS_1Kb
130 #define _PAGE_PS_4Mb xPTEL2_PS_4Mb
131 #define _PAGE_PSE xPTEL2_PS_4Mb /* 4MB page */
132 #define _PAGE_CACHE_WT xPTEL2_CWT
133 #define _PAGE_ACCESSED xPTEL2_UNUSED1
134 #define _PAGE_NX 0 /* no-execute bit */
135
136 /* If _PAGE_VALID is clear, we use these: */
137 #define _PAGE_PROTNONE 0x000 /* If not present */
138
139 #define __PAGE_PROT_UWAUX 0x010
140 #define __PAGE_PROT_USER 0x020
141 #define __PAGE_PROT_WRITE 0x040
142
143 #define _PAGE_PRESENTV (_PAGE_PRESENT|_PAGE_VALID)
144
145 #ifndef __ASSEMBLY__
146
147 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
148
149 #define _PAGE_TABLE (_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY)
150 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
151
152 #define __PAGE_NONE (_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE)
153 #define __PAGE_SHARED (_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE)
154 #define __PAGE_COPY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
155 #define __PAGE_READONLY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
156
157 #define PAGE_NONE __pgprot(__PAGE_NONE | _PAGE_NX)
158 #define PAGE_SHARED_NOEXEC __pgprot(__PAGE_SHARED | _PAGE_NX)
159 #define PAGE_COPY_NOEXEC __pgprot(__PAGE_COPY | _PAGE_NX)
160 #define PAGE_READONLY_NOEXEC __pgprot(__PAGE_READONLY | _PAGE_NX)
161 #define PAGE_SHARED_EXEC __pgprot(__PAGE_SHARED)
162 #define PAGE_COPY_EXEC __pgprot(__PAGE_COPY)
163 #define PAGE_READONLY_EXEC __pgprot(__PAGE_READONLY)
164 #define PAGE_COPY PAGE_COPY_NOEXEC
165 #define PAGE_READONLY PAGE_READONLY_NOEXEC
166 #define PAGE_SHARED PAGE_SHARED_EXEC
167
168 #define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
169
170 #define __PAGE_KERNEL (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX)
171 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX)
172 #define __PAGE_KERNEL_EXEC (__PAGE_KERNEL & ~_PAGE_NX)
173 #define __PAGE_KERNEL_RO (__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX)
174 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
175 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
176
177 #define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
178 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
179 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
180 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
181 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
182 #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
183
184 #define __PAGE_USERIO (__PAGE_KERNEL_BASE | _PAGE_PROT_WKWU | _PAGE_NX)
185 #define PAGE_USERIO __pgprot(__PAGE_USERIO)
186
187 /*
188 * Whilst the MN10300 can do page protection for execute (given separate data
189 * and insn TLBs), we are not supporting it at the moment. Write permission,
190 * however, always implies read permission (but not execute permission).
191 */
192 #define __P000 PAGE_NONE
193 #define __P001 PAGE_READONLY_NOEXEC
194 #define __P010 PAGE_COPY_NOEXEC
195 #define __P011 PAGE_COPY_NOEXEC
196 #define __P100 PAGE_READONLY_EXEC
197 #define __P101 PAGE_READONLY_EXEC
198 #define __P110 PAGE_COPY_EXEC
199 #define __P111 PAGE_COPY_EXEC
200
201 #define __S000 PAGE_NONE
202 #define __S001 PAGE_READONLY_NOEXEC
203 #define __S010 PAGE_SHARED_NOEXEC
204 #define __S011 PAGE_SHARED_NOEXEC
205 #define __S100 PAGE_READONLY_EXEC
206 #define __S101 PAGE_READONLY_EXEC
207 #define __S110 PAGE_SHARED_EXEC
208 #define __S111 PAGE_SHARED_EXEC
209
210 /*
211 * Define this to warn about kernel memory accesses that are
212 * done without a 'verify_area(VERIFY_WRITE,..)'
213 */
214 #undef TEST_VERIFY_AREA
215
216 #define pte_present(x) (pte_val(x) & _PAGE_VALID)
217 #define pte_clear(mm, addr, xp) \
218 do { \
219 set_pte_at((mm), (addr), (xp), __pte(0)); \
220 } while (0)
221
222 #define pmd_none(x) (!pmd_val(x))
223 #define pmd_present(x) (!pmd_none(x))
224 #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
225 #define pmd_bad(x) 0
226
227
228 #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
229
230 #ifndef __ASSEMBLY__
231
232 /*
233 * The following only work if pte_present() is true.
234 * Undefined behaviour if not..
235 */
236 static inline int pte_user(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; }
237 static inline int pte_read(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; }
238 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
239 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
240 static inline int pte_write(pte_t pte) { return pte_val(pte) & __PAGE_PROT_WRITE; }
241 static inline int pte_special(pte_t pte){ return 0; }
242
243 static inline pte_t pte_rdprotect(pte_t pte)
244 {
245 pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte;
246 }
247 static inline pte_t pte_exprotect(pte_t pte)
248 {
249 pte_val(pte) |= _PAGE_NX; return pte;
250 }
251
252 static inline pte_t pte_wrprotect(pte_t pte)
253 {
254 pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte;
255 }
256
257 static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
258 static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
259 static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
260 static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
261 static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_NX; return pte; }
262
263 static inline pte_t pte_mkread(pte_t pte)
264 {
265 pte_val(pte) |= __PAGE_PROT_USER;
266 if (pte_write(pte))
267 pte_val(pte) |= __PAGE_PROT_UWAUX;
268 return pte;
269 }
270 static inline pte_t pte_mkwrite(pte_t pte)
271 {
272 pte_val(pte) |= __PAGE_PROT_WRITE;
273 if (pte_val(pte) & __PAGE_PROT_USER)
274 pte_val(pte) |= __PAGE_PROT_UWAUX;
275 return pte;
276 }
277
278 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
279
280 #define pte_ERROR(e) \
281 printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \
282 __FILE__, __LINE__, pte_val(e))
283 #define pgd_ERROR(e) \
284 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
285 __FILE__, __LINE__, pgd_val(e))
286
287 /*
288 * The "pgd_xxx()" functions here are trivial for a folded two-level
289 * setup: the pgd is never bad, and a pmd always exists (as it's folded
290 * into the pgd entry)
291 */
292 #define pgd_clear(xp) do { } while (0)
293
294 /*
295 * Certain architectures need to do special things when PTEs
296 * within a page table are directly modified. Thus, the following
297 * hook is made available.
298 */
299 #define set_pte(pteptr, pteval) (*(pteptr) = pteval)
300 #define set_pte_at(mm, addr, ptep, pteval) set_pte((ptep), (pteval))
301 #define set_pte_atomic(pteptr, pteval) set_pte((pteptr), (pteval))
302
303 /*
304 * (pmds are folded into pgds so this doesn't get actually called,
305 * but the define is needed for a generic inline function.)
306 */
307 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
308
309 #define ptep_get_and_clear(mm, addr, ptep) \
310 __pte(xchg(&(ptep)->pte, 0))
311 #define pte_same(a, b) (pte_val(a) == pte_val(b))
312 #define pte_page(x) pfn_to_page(pte_pfn(x))
313 #define pte_none(x) (!pte_val(x))
314 #define pte_pfn(x) ((unsigned long) (pte_val(x) >> PAGE_SHIFT))
315 #define __pfn_addr(pfn) ((pfn) << PAGE_SHIFT)
316 #define pfn_pte(pfn, prot) __pte(__pfn_addr(pfn) | pgprot_val(prot))
317 #define pfn_pmd(pfn, prot) __pmd(__pfn_addr(pfn) | pgprot_val(prot))
318
319 /*
320 * All present user pages are user-executable:
321 */
322 static inline int pte_exec(pte_t pte)
323 {
324 return pte_user(pte);
325 }
326
327 /*
328 * All present pages are kernel-executable:
329 */
330 static inline int pte_exec_kernel(pte_t pte)
331 {
332 return 1;
333 }
334
335 /* Encode and de-code a swap entry */
336 #define __swp_type(x) (((x).val >> 1) & 0x3f)
337 #define __swp_offset(x) ((x).val >> 7)
338 #define __swp_entry(type, offset) \
339 ((swp_entry_t) { ((type) << 1) | ((offset) << 7) })
340 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
341 #define __swp_entry_to_pte(x) __pte((x).val)
342
343 static inline
344 int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
345 pte_t *ptep)
346 {
347 if (!pte_dirty(*ptep))
348 return 0;
349 return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte);
350 }
351
352 static inline
353 int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
354 pte_t *ptep)
355 {
356 if (!pte_young(*ptep))
357 return 0;
358 return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte);
359 }
360
361 static inline
362 void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
363 {
364 pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX);
365 }
366
367 static inline void ptep_mkdirty(pte_t *ptep)
368 {
369 set_bit(_PAGE_BIT_DIRTY, &ptep->pte);
370 }
371
372 /*
373 * Macro to mark a page protection value as "uncacheable". On processors which
374 * do not support it, this is a no-op.
375 */
376 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHE)
377
378 /*
379 * Macro to mark a page protection value as "Write-Through".
380 * On processors which do not support it, this is a no-op.
381 */
382 #define pgprot_through(prot) __pgprot(pgprot_val(prot) | _PAGE_CACHE_WT)
383
384 /*
385 * Conversion functions: convert a page and protection to a page entry,
386 * and a page entry and page directory to the page they refer to.
387 */
388
389 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
390 #define mk_pte_huge(entry) \
391 ((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID)
392
393 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
394 {
395 pte_val(pte) &= _PAGE_CHG_MASK;
396 pte_val(pte) |= pgprot_val(newprot);
397 return pte;
398 }
399
400 #define page_pte(page) page_pte_prot((page), __pgprot(0))
401
402 #define pmd_page_kernel(pmd) \
403 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
404
405 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
406
407 #define pmd_large(pmd) \
408 ((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \
409 (_PAGE_PSE | _PAGE_PRESENT))
410
411 /*
412 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
413 *
414 * this macro returns the index of the entry in the pgd page which would
415 * control the given virtual address
416 */
417 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
418
419 /*
420 * pgd_offset() returns a (pgd_t *)
421 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
422 */
423 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
424
425 /*
426 * a shortcut which implies the use of the kernel's pgd, instead
427 * of a process's
428 */
429 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
430
431 /*
432 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
433 *
434 * this macro returns the index of the entry in the pmd page which would
435 * control the given virtual address
436 */
437 #define pmd_index(address) \
438 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
439
440 /*
441 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
442 *
443 * this macro returns the index of the entry in the pte page which would
444 * control the given virtual address
445 */
446 #define pte_index(address) \
447 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
448
449 #define pte_offset_kernel(dir, address) \
450 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
451
452 /*
453 * Make a given kernel text page executable/non-executable.
454 * Returns the previous executability setting of that page (which
455 * is used to restore the previous state). Used by the SMP bootup code.
456 * NOTE: this is an __init function for security reasons.
457 */
458 static inline int set_kernel_exec(unsigned long vaddr, int enable)
459 {
460 return 0;
461 }
462
463 #define pte_offset_map(dir, address) \
464 ((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address))
465 #define pte_unmap(pte) do {} while (0)
466
467 /*
468 * The MN10300 has external MMU info in the form of a TLB: this is adapted from
469 * the kernel page tables containing the necessary information by tlb-mn10300.S
470 */
471 extern void update_mmu_cache(struct vm_area_struct *vma,
472 unsigned long address, pte_t *ptep);
473
474 #endif /* !__ASSEMBLY__ */
475
476 #define kern_addr_valid(addr) (1)
477
478 #define MK_IOSPACE_PFN(space, pfn) (pfn)
479 #define GET_IOSPACE(pfn) 0
480 #define GET_PFN(pfn) (pfn)
481
482 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
483 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
484 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
485 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
486 #define __HAVE_ARCH_PTEP_MKDIRTY
487 #define __HAVE_ARCH_PTE_SAME
488 #include <asm-generic/pgtable.h>
489
490 #endif /* !__ASSEMBLY__ */
491
492 #endif /* _ASM_PGTABLE_H */
This page took 0.040434 seconds and 5 git commands to generate.