Merge branch 'master' of /usr/src/ntfs-2.6/
[deliverable/linux.git] / arch / parisc / kernel / drivers.c
1 /*
2 * drivers.c
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Copyright (c) 1999 The Puffin Group
10 * Copyright (c) 2001 Matthew Wilcox for Hewlett Packard
11 * Copyright (c) 2001 Helge Deller <deller@gmx.de>
12 * Copyright (c) 2001,2002 Ryan Bradetich
13 * Copyright (c) 2004-2005 Thibaut VARENE <varenet@parisc-linux.org>
14 *
15 * The file handles registering devices and drivers, then matching them.
16 * It's the closest we get to a dating agency.
17 *
18 * If you're thinking about modifying this file, here are some gotchas to
19 * bear in mind:
20 * - 715/Mirage device paths have a dummy device between Lasi and its children
21 * - The EISA adapter may show up as a sibling or child of Wax
22 * - Dino has an optionally functional serial port. If firmware enables it,
23 * it shows up as a child of Dino. If firmware disables it, the buswalk
24 * finds it and it shows up as a child of Cujo
25 * - Dino has both parisc and pci devices as children
26 * - parisc devices are discovered in a random order, including children
27 * before parents in some cases.
28 */
29
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/pci.h>
34 #include <linux/spinlock.h>
35 #include <linux/string.h>
36 #include <asm/hardware.h>
37 #include <asm/io.h>
38 #include <asm/pdc.h>
39 #include <asm/parisc-device.h>
40
41 /* See comments in include/asm-parisc/pci.h */
42 struct hppa_dma_ops *hppa_dma_ops __read_mostly;
43 EXPORT_SYMBOL(hppa_dma_ops);
44
45 static struct device root = {
46 .bus_id = "parisc",
47 };
48
49 static inline int check_dev(struct device *dev)
50 {
51 if (dev->bus == &parisc_bus_type) {
52 struct parisc_device *pdev;
53 pdev = to_parisc_device(dev);
54 return pdev->id.hw_type != HPHW_FAULTY;
55 }
56 return 1;
57 }
58
59 static struct device *
60 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath);
61
62 struct recurse_struct {
63 void * obj;
64 int (*fn)(struct device *, void *);
65 };
66
67 static int descend_children(struct device * dev, void * data)
68 {
69 struct recurse_struct * recurse_data = (struct recurse_struct *)data;
70
71 if (recurse_data->fn(dev, recurse_data->obj))
72 return 1;
73 else
74 return device_for_each_child(dev, recurse_data, descend_children);
75 }
76
77 /**
78 * for_each_padev - Iterate over all devices in the tree
79 * @fn: Function to call for each device.
80 * @data: Data to pass to the called function.
81 *
82 * This performs a depth-first traversal of the tree, calling the
83 * function passed for each node. It calls the function for parents
84 * before children.
85 */
86
87 static int for_each_padev(int (*fn)(struct device *, void *), void * data)
88 {
89 struct recurse_struct recurse_data = {
90 .obj = data,
91 .fn = fn,
92 };
93 return device_for_each_child(&root, &recurse_data, descend_children);
94 }
95
96 /**
97 * match_device - Report whether this driver can handle this device
98 * @driver: the PA-RISC driver to try
99 * @dev: the PA-RISC device to try
100 */
101 static int match_device(struct parisc_driver *driver, struct parisc_device *dev)
102 {
103 const struct parisc_device_id *ids;
104
105 for (ids = driver->id_table; ids->sversion; ids++) {
106 if ((ids->sversion != SVERSION_ANY_ID) &&
107 (ids->sversion != dev->id.sversion))
108 continue;
109
110 if ((ids->hw_type != HWTYPE_ANY_ID) &&
111 (ids->hw_type != dev->id.hw_type))
112 continue;
113
114 if ((ids->hversion != HVERSION_ANY_ID) &&
115 (ids->hversion != dev->id.hversion))
116 continue;
117
118 return 1;
119 }
120 return 0;
121 }
122
123 static int parisc_driver_probe(struct device *dev)
124 {
125 int rc;
126 struct parisc_device *pa_dev = to_parisc_device(dev);
127 struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
128
129 rc = pa_drv->probe(pa_dev);
130
131 if (!rc)
132 pa_dev->driver = pa_drv;
133
134 return rc;
135 }
136
137 static int parisc_driver_remove(struct device *dev)
138 {
139 struct parisc_device *pa_dev = to_parisc_device(dev);
140 struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
141 if (pa_drv->remove)
142 pa_drv->remove(pa_dev);
143
144 return 0;
145 }
146
147
148 /**
149 * register_parisc_driver - Register this driver if it can handle a device
150 * @driver: the PA-RISC driver to try
151 */
152 int register_parisc_driver(struct parisc_driver *driver)
153 {
154 /* FIXME: we need this because apparently the sti
155 * driver can be registered twice */
156 if(driver->drv.name) {
157 printk(KERN_WARNING
158 "BUG: skipping previously registered driver %s\n",
159 driver->name);
160 return 1;
161 }
162
163 if (!driver->probe) {
164 printk(KERN_WARNING
165 "BUG: driver %s has no probe routine\n",
166 driver->name);
167 return 1;
168 }
169
170 driver->drv.bus = &parisc_bus_type;
171
172 /* We install our own probe and remove routines */
173 WARN_ON(driver->drv.probe != NULL);
174 WARN_ON(driver->drv.remove != NULL);
175
176 driver->drv.name = driver->name;
177
178 return driver_register(&driver->drv);
179 }
180 EXPORT_SYMBOL(register_parisc_driver);
181
182
183 struct match_count {
184 struct parisc_driver * driver;
185 int count;
186 };
187
188 static int match_and_count(struct device * dev, void * data)
189 {
190 struct match_count * m = data;
191 struct parisc_device * pdev = to_parisc_device(dev);
192
193 if (check_dev(dev)) {
194 if (match_device(m->driver, pdev))
195 m->count++;
196 }
197 return 0;
198 }
199
200 /**
201 * count_parisc_driver - count # of devices this driver would match
202 * @driver: the PA-RISC driver to try
203 *
204 * Use by IOMMU support to "guess" the right size IOPdir.
205 * Formula is something like memsize/(num_iommu * entry_size).
206 */
207 int count_parisc_driver(struct parisc_driver *driver)
208 {
209 struct match_count m = {
210 .driver = driver,
211 .count = 0,
212 };
213
214 for_each_padev(match_and_count, &m);
215
216 return m.count;
217 }
218
219
220
221 /**
222 * unregister_parisc_driver - Unregister this driver from the list of drivers
223 * @driver: the PA-RISC driver to unregister
224 */
225 int unregister_parisc_driver(struct parisc_driver *driver)
226 {
227 driver_unregister(&driver->drv);
228 return 0;
229 }
230 EXPORT_SYMBOL(unregister_parisc_driver);
231
232 struct find_data {
233 unsigned long hpa;
234 struct parisc_device * dev;
235 };
236
237 static int find_device(struct device * dev, void * data)
238 {
239 struct parisc_device * pdev = to_parisc_device(dev);
240 struct find_data * d = (struct find_data*)data;
241
242 if (check_dev(dev)) {
243 if (pdev->hpa.start == d->hpa) {
244 d->dev = pdev;
245 return 1;
246 }
247 }
248 return 0;
249 }
250
251 static struct parisc_device *find_device_by_addr(unsigned long hpa)
252 {
253 struct find_data d = {
254 .hpa = hpa,
255 };
256 int ret;
257
258 ret = for_each_padev(find_device, &d);
259 return ret ? d.dev : NULL;
260 }
261
262 /**
263 * find_pa_parent_type - Find a parent of a specific type
264 * @dev: The device to start searching from
265 * @type: The device type to search for.
266 *
267 * Walks up the device tree looking for a device of the specified type.
268 * If it finds it, it returns it. If not, it returns NULL.
269 */
270 const struct parisc_device *
271 find_pa_parent_type(const struct parisc_device *padev, int type)
272 {
273 const struct device *dev = &padev->dev;
274 while (dev != &root) {
275 struct parisc_device *candidate = to_parisc_device(dev);
276 if (candidate->id.hw_type == type)
277 return candidate;
278 dev = dev->parent;
279 }
280
281 return NULL;
282 }
283
284 #ifdef CONFIG_PCI
285 static inline int is_pci_dev(struct device *dev)
286 {
287 return dev->bus == &pci_bus_type;
288 }
289 #else
290 static inline int is_pci_dev(struct device *dev)
291 {
292 return 0;
293 }
294 #endif
295
296 /*
297 * get_node_path fills in @path with the firmware path to the device.
298 * Note that if @node is a parisc device, we don't fill in the 'mod' field.
299 * This is because both callers pass the parent and fill in the mod
300 * themselves. If @node is a PCI device, we do fill it in, even though this
301 * is inconsistent.
302 */
303 static void get_node_path(struct device *dev, struct hardware_path *path)
304 {
305 int i = 5;
306 memset(&path->bc, -1, 6);
307
308 if (is_pci_dev(dev)) {
309 unsigned int devfn = to_pci_dev(dev)->devfn;
310 path->mod = PCI_FUNC(devfn);
311 path->bc[i--] = PCI_SLOT(devfn);
312 dev = dev->parent;
313 }
314
315 while (dev != &root) {
316 if (is_pci_dev(dev)) {
317 unsigned int devfn = to_pci_dev(dev)->devfn;
318 path->bc[i--] = PCI_SLOT(devfn) | (PCI_FUNC(devfn)<< 5);
319 } else if (dev->bus == &parisc_bus_type) {
320 path->bc[i--] = to_parisc_device(dev)->hw_path;
321 }
322 dev = dev->parent;
323 }
324 }
325
326 static char *print_hwpath(struct hardware_path *path, char *output)
327 {
328 int i;
329 for (i = 0; i < 6; i++) {
330 if (path->bc[i] == -1)
331 continue;
332 output += sprintf(output, "%u/", (unsigned char) path->bc[i]);
333 }
334 output += sprintf(output, "%u", (unsigned char) path->mod);
335 return output;
336 }
337
338 /**
339 * print_pa_hwpath - Returns hardware path for PA devices
340 * dev: The device to return the path for
341 * output: Pointer to a previously-allocated array to place the path in.
342 *
343 * This function fills in the output array with a human-readable path
344 * to a PA device. This string is compatible with that used by PDC, and
345 * may be printed on the outside of the box.
346 */
347 char *print_pa_hwpath(struct parisc_device *dev, char *output)
348 {
349 struct hardware_path path;
350
351 get_node_path(dev->dev.parent, &path);
352 path.mod = dev->hw_path;
353 return print_hwpath(&path, output);
354 }
355 EXPORT_SYMBOL(print_pa_hwpath);
356
357 #if defined(CONFIG_PCI) || defined(CONFIG_ISA)
358 /**
359 * get_pci_node_path - Determines the hardware path for a PCI device
360 * @pdev: The device to return the path for
361 * @path: Pointer to a previously-allocated array to place the path in.
362 *
363 * This function fills in the hardware_path structure with the route to
364 * the specified PCI device. This structure is suitable for passing to
365 * PDC calls.
366 */
367 void get_pci_node_path(struct pci_dev *pdev, struct hardware_path *path)
368 {
369 get_node_path(&pdev->dev, path);
370 }
371 EXPORT_SYMBOL(get_pci_node_path);
372
373 /**
374 * print_pci_hwpath - Returns hardware path for PCI devices
375 * dev: The device to return the path for
376 * output: Pointer to a previously-allocated array to place the path in.
377 *
378 * This function fills in the output array with a human-readable path
379 * to a PCI device. This string is compatible with that used by PDC, and
380 * may be printed on the outside of the box.
381 */
382 char *print_pci_hwpath(struct pci_dev *dev, char *output)
383 {
384 struct hardware_path path;
385
386 get_pci_node_path(dev, &path);
387 return print_hwpath(&path, output);
388 }
389 EXPORT_SYMBOL(print_pci_hwpath);
390
391 #endif /* defined(CONFIG_PCI) || defined(CONFIG_ISA) */
392
393 static void setup_bus_id(struct parisc_device *padev)
394 {
395 struct hardware_path path;
396 char *output = padev->dev.bus_id;
397 int i;
398
399 get_node_path(padev->dev.parent, &path);
400
401 for (i = 0; i < 6; i++) {
402 if (path.bc[i] == -1)
403 continue;
404 output += sprintf(output, "%u:", (unsigned char) path.bc[i]);
405 }
406 sprintf(output, "%u", (unsigned char) padev->hw_path);
407 }
408
409 struct parisc_device * create_tree_node(char id, struct device *parent)
410 {
411 struct parisc_device *dev = kmalloc(sizeof(*dev), GFP_KERNEL);
412 if (!dev)
413 return NULL;
414
415 memset(dev, 0, sizeof(*dev));
416 dev->hw_path = id;
417 dev->id.hw_type = HPHW_FAULTY;
418
419 dev->dev.parent = parent;
420 setup_bus_id(dev);
421
422 dev->dev.bus = &parisc_bus_type;
423 dev->dma_mask = 0xffffffffUL; /* PARISC devices are 32-bit */
424
425 /* make the generic dma mask a pointer to the parisc one */
426 dev->dev.dma_mask = &dev->dma_mask;
427 dev->dev.coherent_dma_mask = dev->dma_mask;
428 device_register(&dev->dev);
429
430 return dev;
431 }
432
433 struct match_id_data {
434 char id;
435 struct parisc_device * dev;
436 };
437
438 static int match_by_id(struct device * dev, void * data)
439 {
440 struct parisc_device * pdev = to_parisc_device(dev);
441 struct match_id_data * d = data;
442
443 if (pdev->hw_path == d->id) {
444 d->dev = pdev;
445 return 1;
446 }
447 return 0;
448 }
449
450 /**
451 * alloc_tree_node - returns a device entry in the iotree
452 * @parent: the parent node in the tree
453 * @id: the element of the module path for this entry
454 *
455 * Checks all the children of @parent for a matching @id. If none
456 * found, it allocates a new device and returns it.
457 */
458 static struct parisc_device * alloc_tree_node(struct device *parent, char id)
459 {
460 struct match_id_data d = {
461 .id = id,
462 };
463 if (device_for_each_child(parent, &d, match_by_id))
464 return d.dev;
465 else
466 return create_tree_node(id, parent);
467 }
468
469 static struct parisc_device *create_parisc_device(struct hardware_path *modpath)
470 {
471 int i;
472 struct device *parent = &root;
473 for (i = 0; i < 6; i++) {
474 if (modpath->bc[i] == -1)
475 continue;
476 parent = &alloc_tree_node(parent, modpath->bc[i])->dev;
477 }
478 return alloc_tree_node(parent, modpath->mod);
479 }
480
481 struct parisc_device *
482 alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path)
483 {
484 int status;
485 unsigned long bytecnt;
486 u8 iodc_data[32];
487 struct parisc_device *dev;
488 const char *name;
489
490 /* Check to make sure this device has not already been added - Ryan */
491 if (find_device_by_addr(hpa) != NULL)
492 return NULL;
493
494 status = pdc_iodc_read(&bytecnt, hpa, 0, &iodc_data, 32);
495 if (status != PDC_OK)
496 return NULL;
497
498 dev = create_parisc_device(mod_path);
499 if (dev->id.hw_type != HPHW_FAULTY) {
500 printk(KERN_ERR "Two devices have hardware path [%s]. "
501 "IODC data for second device: "
502 "%02x%02x%02x%02x%02x%02x\n"
503 "Rearranging GSC cards sometimes helps\n",
504 parisc_pathname(dev), iodc_data[0], iodc_data[1],
505 iodc_data[3], iodc_data[4], iodc_data[5], iodc_data[6]);
506 return NULL;
507 }
508
509 dev->id.hw_type = iodc_data[3] & 0x1f;
510 dev->id.hversion = (iodc_data[0] << 4) | ((iodc_data[1] & 0xf0) >> 4);
511 dev->id.hversion_rev = iodc_data[1] & 0x0f;
512 dev->id.sversion = ((iodc_data[4] & 0x0f) << 16) |
513 (iodc_data[5] << 8) | iodc_data[6];
514 dev->hpa.name = parisc_pathname(dev);
515 dev->hpa.start = hpa;
516 /* This is awkward. The STI spec says that gfx devices may occupy
517 * 32MB or 64MB. Unfortunately, we don't know how to tell whether
518 * it's the former or the latter. Assumptions either way can hurt us.
519 */
520 if (hpa == 0xf4000000 || hpa == 0xf8000000) {
521 dev->hpa.end = hpa + 0x03ffffff;
522 } else if (hpa == 0xf6000000 || hpa == 0xfa000000) {
523 dev->hpa.end = hpa + 0x01ffffff;
524 } else {
525 dev->hpa.end = hpa + 0xfff;
526 }
527 dev->hpa.flags = IORESOURCE_MEM;
528 name = parisc_hardware_description(&dev->id);
529 if (name) {
530 strlcpy(dev->name, name, sizeof(dev->name));
531 }
532
533 /* Silently fail things like mouse ports which are subsumed within
534 * the keyboard controller
535 */
536 if ((hpa & 0xfff) == 0 && insert_resource(&iomem_resource, &dev->hpa))
537 printk("Unable to claim HPA %lx for device %s\n",
538 hpa, name);
539
540 return dev;
541 }
542
543 static int parisc_generic_match(struct device *dev, struct device_driver *drv)
544 {
545 return match_device(to_parisc_driver(drv), to_parisc_device(dev));
546 }
547
548 #define pa_dev_attr(name, field, format_string) \
549 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf) \
550 { \
551 struct parisc_device *padev = to_parisc_device(dev); \
552 return sprintf(buf, format_string, padev->field); \
553 }
554
555 #define pa_dev_attr_id(field, format) pa_dev_attr(field, id.field, format)
556
557 pa_dev_attr(irq, irq, "%u\n");
558 pa_dev_attr_id(hw_type, "0x%02x\n");
559 pa_dev_attr(rev, id.hversion_rev, "0x%x\n");
560 pa_dev_attr_id(hversion, "0x%03x\n");
561 pa_dev_attr_id(sversion, "0x%05x\n");
562
563 static struct device_attribute parisc_device_attrs[] = {
564 __ATTR_RO(irq),
565 __ATTR_RO(hw_type),
566 __ATTR_RO(rev),
567 __ATTR_RO(hversion),
568 __ATTR_RO(sversion),
569 __ATTR_NULL,
570 };
571
572 struct bus_type parisc_bus_type = {
573 .name = "parisc",
574 .match = parisc_generic_match,
575 .dev_attrs = parisc_device_attrs,
576 .probe = parisc_driver_probe,
577 .remove = parisc_driver_remove,
578 };
579
580 /**
581 * register_parisc_device - Locate a driver to manage this device.
582 * @dev: The parisc device.
583 *
584 * Search the driver list for a driver that is willing to manage
585 * this device.
586 */
587 int register_parisc_device(struct parisc_device *dev)
588 {
589 if (!dev)
590 return 0;
591
592 if (dev->driver)
593 return 1;
594
595 return 0;
596 }
597
598 /**
599 * match_pci_device - Matches a pci device against a given hardware path
600 * entry.
601 * @dev: the generic device (known to be contained by a pci_dev).
602 * @index: the current BC index
603 * @modpath: the hardware path.
604 * @return: true if the device matches the hardware path.
605 */
606 static int match_pci_device(struct device *dev, int index,
607 struct hardware_path *modpath)
608 {
609 struct pci_dev *pdev = to_pci_dev(dev);
610 int id;
611
612 if (index == 5) {
613 /* we are at the end of the path, and on the actual device */
614 unsigned int devfn = pdev->devfn;
615 return ((modpath->bc[5] == PCI_SLOT(devfn)) &&
616 (modpath->mod == PCI_FUNC(devfn)));
617 }
618
619 id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5);
620 return (modpath->bc[index] == id);
621 }
622
623 /**
624 * match_parisc_device - Matches a parisc device against a given hardware
625 * path entry.
626 * @dev: the generic device (known to be contained by a parisc_device).
627 * @index: the current BC index
628 * @modpath: the hardware path.
629 * @return: true if the device matches the hardware path.
630 */
631 static int match_parisc_device(struct device *dev, int index,
632 struct hardware_path *modpath)
633 {
634 struct parisc_device *curr = to_parisc_device(dev);
635 char id = (index == 6) ? modpath->mod : modpath->bc[index];
636
637 return (curr->hw_path == id);
638 }
639
640 struct parse_tree_data {
641 int index;
642 struct hardware_path * modpath;
643 struct device * dev;
644 };
645
646 static int check_parent(struct device * dev, void * data)
647 {
648 struct parse_tree_data * d = data;
649
650 if (check_dev(dev)) {
651 if (dev->bus == &parisc_bus_type) {
652 if (match_parisc_device(dev, d->index, d->modpath))
653 d->dev = dev;
654 } else if (is_pci_dev(dev)) {
655 if (match_pci_device(dev, d->index, d->modpath))
656 d->dev = dev;
657 } else if (dev->bus == NULL) {
658 /* we are on a bus bridge */
659 struct device *new = parse_tree_node(dev, d->index, d->modpath);
660 if (new)
661 d->dev = new;
662 }
663 }
664 return d->dev != NULL;
665 }
666
667 /**
668 * parse_tree_node - returns a device entry in the iotree
669 * @parent: the parent node in the tree
670 * @index: the current BC index
671 * @modpath: the hardware_path struct to match a device against
672 * @return: The corresponding device if found, NULL otherwise.
673 *
674 * Checks all the children of @parent for a matching @id. If none
675 * found, it returns NULL.
676 */
677 static struct device *
678 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath)
679 {
680 struct parse_tree_data d = {
681 .index = index,
682 .modpath = modpath,
683 };
684
685 struct recurse_struct recurse_data = {
686 .obj = &d,
687 .fn = check_parent,
688 };
689
690 device_for_each_child(parent, &recurse_data, descend_children);
691 return d.dev;
692 }
693
694 /**
695 * hwpath_to_device - Finds the generic device corresponding to a given hardware path.
696 * @modpath: the hardware path.
697 * @return: The target device, NULL if not found.
698 */
699 struct device *hwpath_to_device(struct hardware_path *modpath)
700 {
701 int i;
702 struct device *parent = &root;
703 for (i = 0; i < 6; i++) {
704 if (modpath->bc[i] == -1)
705 continue;
706 parent = parse_tree_node(parent, i, modpath);
707 if (!parent)
708 return NULL;
709 }
710 if (is_pci_dev(parent)) /* pci devices already parse MOD */
711 return parent;
712 else
713 return parse_tree_node(parent, 6, modpath);
714 }
715 EXPORT_SYMBOL(hwpath_to_device);
716
717 /**
718 * device_to_hwpath - Populates the hwpath corresponding to the given device.
719 * @param dev the target device
720 * @param path pointer to a previously allocated hwpath struct to be filled in
721 */
722 void device_to_hwpath(struct device *dev, struct hardware_path *path)
723 {
724 struct parisc_device *padev;
725 if (dev->bus == &parisc_bus_type) {
726 padev = to_parisc_device(dev);
727 get_node_path(dev->parent, path);
728 path->mod = padev->hw_path;
729 } else if (is_pci_dev(dev)) {
730 get_node_path(dev, path);
731 }
732 }
733 EXPORT_SYMBOL(device_to_hwpath);
734
735 #define BC_PORT_MASK 0x8
736 #define BC_LOWER_PORT 0x8
737
738 #define BUS_CONVERTER(dev) \
739 ((dev->id.hw_type == HPHW_IOA) || (dev->id.hw_type == HPHW_BCPORT))
740
741 #define IS_LOWER_PORT(dev) \
742 ((gsc_readl(dev->hpa.start + offsetof(struct bc_module, io_status)) \
743 & BC_PORT_MASK) == BC_LOWER_PORT)
744
745 #define MAX_NATIVE_DEVICES 64
746 #define NATIVE_DEVICE_OFFSET 0x1000
747
748 #define FLEX_MASK F_EXTEND(0xfffc0000)
749 #define IO_IO_LOW offsetof(struct bc_module, io_io_low)
750 #define IO_IO_HIGH offsetof(struct bc_module, io_io_high)
751 #define READ_IO_IO_LOW(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_LOW)
752 #define READ_IO_IO_HIGH(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_HIGH)
753
754 static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
755 struct device *parent);
756
757 void walk_lower_bus(struct parisc_device *dev)
758 {
759 unsigned long io_io_low, io_io_high;
760
761 if (!BUS_CONVERTER(dev) || IS_LOWER_PORT(dev))
762 return;
763
764 if (dev->id.hw_type == HPHW_IOA) {
765 io_io_low = (unsigned long)(signed int)(READ_IO_IO_LOW(dev) << 16);
766 io_io_high = io_io_low + MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET;
767 } else {
768 io_io_low = (READ_IO_IO_LOW(dev) + ~FLEX_MASK) & FLEX_MASK;
769 io_io_high = (READ_IO_IO_HIGH(dev)+ ~FLEX_MASK) & FLEX_MASK;
770 }
771
772 walk_native_bus(io_io_low, io_io_high, &dev->dev);
773 }
774
775 /**
776 * walk_native_bus -- Probe a bus for devices
777 * @io_io_low: Base address of this bus.
778 * @io_io_high: Last address of this bus.
779 * @parent: The parent bus device.
780 *
781 * A native bus (eg Runway or GSC) may have up to 64 devices on it,
782 * spaced at intervals of 0x1000 bytes. PDC may not inform us of these
783 * devices, so we have to probe for them. Unfortunately, we may find
784 * devices which are not physically connected (such as extra serial &
785 * keyboard ports). This problem is not yet solved.
786 */
787 static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
788 struct device *parent)
789 {
790 int i, devices_found = 0;
791 unsigned long hpa = io_io_low;
792 struct hardware_path path;
793
794 get_node_path(parent, &path);
795 do {
796 for(i = 0; i < MAX_NATIVE_DEVICES; i++, hpa += NATIVE_DEVICE_OFFSET) {
797 struct parisc_device *dev;
798
799 /* Was the device already added by Firmware? */
800 dev = find_device_by_addr(hpa);
801 if (!dev) {
802 path.mod = i;
803 dev = alloc_pa_dev(hpa, &path);
804 if (!dev)
805 continue;
806
807 register_parisc_device(dev);
808 devices_found++;
809 }
810 walk_lower_bus(dev);
811 }
812 } while(!devices_found && hpa < io_io_high);
813 }
814
815 #define CENTRAL_BUS_ADDR F_EXTEND(0xfff80000)
816
817 /**
818 * walk_central_bus - Find devices attached to the central bus
819 *
820 * PDC doesn't tell us about all devices in the system. This routine
821 * finds devices connected to the central bus.
822 */
823 void walk_central_bus(void)
824 {
825 walk_native_bus(CENTRAL_BUS_ADDR,
826 CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET),
827 &root);
828 }
829
830 static void print_parisc_device(struct parisc_device *dev)
831 {
832 char hw_path[64];
833 static int count;
834
835 print_pa_hwpath(dev, hw_path);
836 printk(KERN_INFO "%d. %s at 0x%lx [%s] { %d, 0x%x, 0x%.3x, 0x%.5x }",
837 ++count, dev->name, dev->hpa.start, hw_path, dev->id.hw_type,
838 dev->id.hversion_rev, dev->id.hversion, dev->id.sversion);
839
840 if (dev->num_addrs) {
841 int k;
842 printk(", additional addresses: ");
843 for (k = 0; k < dev->num_addrs; k++)
844 printk("0x%lx ", dev->addr[k]);
845 }
846 printk("\n");
847 }
848
849 /**
850 * init_parisc_bus - Some preparation to be done before inventory
851 */
852 void init_parisc_bus(void)
853 {
854 bus_register(&parisc_bus_type);
855 device_register(&root);
856 get_device(&root);
857 }
858
859
860 static int print_one_device(struct device * dev, void * data)
861 {
862 struct parisc_device * pdev = to_parisc_device(dev);
863
864 if (check_dev(dev))
865 print_parisc_device(pdev);
866 return 0;
867 }
868
869 /**
870 * print_parisc_devices - Print out a list of devices found in this system
871 */
872 void print_parisc_devices(void)
873 {
874 for_each_padev(print_one_device, NULL);
875 }
This page took 0.052086 seconds and 6 git commands to generate.