c6x: Use generic time config
[deliverable/linux.git] / arch / parisc / kernel / firmware.c
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h> /* for boot_cpu_data */
71
72 static DEFINE_SPINLOCK(pdc_lock);
73 extern unsigned long pdc_result[NUM_PDC_RESULT];
74 extern unsigned long pdc_result2[NUM_PDC_RESULT];
75
76 #ifdef CONFIG_64BIT
77 #define WIDE_FIRMWARE 0x1
78 #define NARROW_FIRMWARE 0x2
79
80 /* Firmware needs to be initially set to narrow to determine the
81 * actual firmware width. */
82 int parisc_narrow_firmware __read_mostly = 1;
83 #endif
84
85 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86 * and MEM_PDC calls are always the same width as the OS.
87 * Some PAT boxes may have 64-bit IODC I/O.
88 *
89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91 * This allowed wide kernels to run on Cxxx boxes.
92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94 */
95
96 #ifdef CONFIG_64BIT
97 long real64_call(unsigned long function, ...);
98 #endif
99 long real32_call(unsigned long function, ...);
100
101 #ifdef CONFIG_64BIT
102 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104 #else
105 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
106 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107 #endif
108
109
110 /**
111 * f_extend - Convert PDC addresses to kernel addresses.
112 * @address: Address returned from PDC.
113 *
114 * This function is used to convert PDC addresses into kernel addresses
115 * when the PDC address size and kernel address size are different.
116 */
117 static unsigned long f_extend(unsigned long address)
118 {
119 #ifdef CONFIG_64BIT
120 if(unlikely(parisc_narrow_firmware)) {
121 if((address & 0xff000000) == 0xf0000000)
122 return 0xf0f0f0f000000000UL | (u32)address;
123
124 if((address & 0xf0000000) == 0xf0000000)
125 return 0xffffffff00000000UL | (u32)address;
126 }
127 #endif
128 return address;
129 }
130
131 /**
132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133 * @address: The return buffer from PDC.
134 *
135 * This function is used to convert the return buffer addresses retrieved from PDC
136 * into kernel addresses when the PDC address size and kernel address size are
137 * different.
138 */
139 static void convert_to_wide(unsigned long *addr)
140 {
141 #ifdef CONFIG_64BIT
142 int i;
143 unsigned int *p = (unsigned int *)addr;
144
145 if(unlikely(parisc_narrow_firmware)) {
146 for(i = 31; i >= 0; --i)
147 addr[i] = p[i];
148 }
149 #endif
150 }
151
152 #ifdef CONFIG_64BIT
153 void __cpuinit set_firmware_width_unlocked(void)
154 {
155 int ret;
156
157 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 __pa(pdc_result), 0);
159 convert_to_wide(pdc_result);
160 if (pdc_result[0] != NARROW_FIRMWARE)
161 parisc_narrow_firmware = 0;
162 }
163
164 /**
165 * set_firmware_width - Determine if the firmware is wide or narrow.
166 *
167 * This function must be called before any pdc_* function that uses the
168 * convert_to_wide function.
169 */
170 void __cpuinit set_firmware_width(void)
171 {
172 unsigned long flags;
173 spin_lock_irqsave(&pdc_lock, flags);
174 set_firmware_width_unlocked();
175 spin_unlock_irqrestore(&pdc_lock, flags);
176 }
177 #else
178 void __cpuinit set_firmware_width_unlocked(void) {
179 return;
180 }
181
182 void __cpuinit set_firmware_width(void) {
183 return;
184 }
185 #endif /*CONFIG_64BIT*/
186
187 /**
188 * pdc_emergency_unlock - Unlock the linux pdc lock
189 *
190 * This call unlocks the linux pdc lock in case we need some PDC functions
191 * (like pdc_add_valid) during kernel stack dump.
192 */
193 void pdc_emergency_unlock(void)
194 {
195 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
196 if (spin_is_locked(&pdc_lock))
197 spin_unlock(&pdc_lock);
198 }
199
200
201 /**
202 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
203 * @address: Address to be verified.
204 *
205 * This PDC call attempts to read from the specified address and verifies
206 * if the address is valid.
207 *
208 * The return value is PDC_OK (0) in case accessing this address is valid.
209 */
210 int pdc_add_valid(unsigned long address)
211 {
212 int retval;
213 unsigned long flags;
214
215 spin_lock_irqsave(&pdc_lock, flags);
216 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
217 spin_unlock_irqrestore(&pdc_lock, flags);
218
219 return retval;
220 }
221 EXPORT_SYMBOL(pdc_add_valid);
222
223 /**
224 * pdc_chassis_info - Return chassis information.
225 * @result: The return buffer.
226 * @chassis_info: The memory buffer address.
227 * @len: The size of the memory buffer address.
228 *
229 * An HVERSION dependent call for returning the chassis information.
230 */
231 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
232 {
233 int retval;
234 unsigned long flags;
235
236 spin_lock_irqsave(&pdc_lock, flags);
237 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
238 memcpy(&pdc_result2, led_info, len);
239 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
240 __pa(pdc_result), __pa(pdc_result2), len);
241 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
242 memcpy(led_info, pdc_result2, len);
243 spin_unlock_irqrestore(&pdc_lock, flags);
244
245 return retval;
246 }
247
248 /**
249 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
250 * @retval: -1 on error, 0 on success. Other value are PDC errors
251 *
252 * Must be correctly formatted or expect system crash
253 */
254 #ifdef CONFIG_64BIT
255 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
256 {
257 int retval = 0;
258 unsigned long flags;
259
260 if (!is_pdc_pat())
261 return -1;
262
263 spin_lock_irqsave(&pdc_lock, flags);
264 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
265 spin_unlock_irqrestore(&pdc_lock, flags);
266
267 return retval;
268 }
269 #endif
270
271 /**
272 * pdc_chassis_disp - Updates chassis code
273 * @retval: -1 on error, 0 on success
274 */
275 int pdc_chassis_disp(unsigned long disp)
276 {
277 int retval = 0;
278 unsigned long flags;
279
280 spin_lock_irqsave(&pdc_lock, flags);
281 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
282 spin_unlock_irqrestore(&pdc_lock, flags);
283
284 return retval;
285 }
286
287 /**
288 * pdc_chassis_warn - Fetches chassis warnings
289 * @retval: -1 on error, 0 on success
290 */
291 int pdc_chassis_warn(unsigned long *warn)
292 {
293 int retval = 0;
294 unsigned long flags;
295
296 spin_lock_irqsave(&pdc_lock, flags);
297 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
298 *warn = pdc_result[0];
299 spin_unlock_irqrestore(&pdc_lock, flags);
300
301 return retval;
302 }
303
304 int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
305 {
306 int ret;
307
308 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
309 convert_to_wide(pdc_result);
310 pdc_coproc_info->ccr_functional = pdc_result[0];
311 pdc_coproc_info->ccr_present = pdc_result[1];
312 pdc_coproc_info->revision = pdc_result[17];
313 pdc_coproc_info->model = pdc_result[18];
314
315 return ret;
316 }
317
318 /**
319 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
320 * @pdc_coproc_info: Return buffer address.
321 *
322 * This PDC call returns the presence and status of all the coprocessors
323 * attached to the processor.
324 */
325 int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
326 {
327 int ret;
328 unsigned long flags;
329
330 spin_lock_irqsave(&pdc_lock, flags);
331 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
332 spin_unlock_irqrestore(&pdc_lock, flags);
333
334 return ret;
335 }
336
337 /**
338 * pdc_iodc_read - Read data from the modules IODC.
339 * @actcnt: The actual number of bytes.
340 * @hpa: The HPA of the module for the iodc read.
341 * @index: The iodc entry point.
342 * @iodc_data: A buffer memory for the iodc options.
343 * @iodc_data_size: Size of the memory buffer.
344 *
345 * This PDC call reads from the IODC of the module specified by the hpa
346 * argument.
347 */
348 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
349 void *iodc_data, unsigned int iodc_data_size)
350 {
351 int retval;
352 unsigned long flags;
353
354 spin_lock_irqsave(&pdc_lock, flags);
355 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
356 index, __pa(pdc_result2), iodc_data_size);
357 convert_to_wide(pdc_result);
358 *actcnt = pdc_result[0];
359 memcpy(iodc_data, pdc_result2, iodc_data_size);
360 spin_unlock_irqrestore(&pdc_lock, flags);
361
362 return retval;
363 }
364 EXPORT_SYMBOL(pdc_iodc_read);
365
366 /**
367 * pdc_system_map_find_mods - Locate unarchitected modules.
368 * @pdc_mod_info: Return buffer address.
369 * @mod_path: pointer to dev path structure.
370 * @mod_index: fixed address module index.
371 *
372 * To locate and identify modules which reside at fixed I/O addresses, which
373 * do not self-identify via architected bus walks.
374 */
375 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
376 struct pdc_module_path *mod_path, long mod_index)
377 {
378 int retval;
379 unsigned long flags;
380
381 spin_lock_irqsave(&pdc_lock, flags);
382 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
383 __pa(pdc_result2), mod_index);
384 convert_to_wide(pdc_result);
385 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
386 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
387 spin_unlock_irqrestore(&pdc_lock, flags);
388
389 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
390 return retval;
391 }
392
393 /**
394 * pdc_system_map_find_addrs - Retrieve additional address ranges.
395 * @pdc_addr_info: Return buffer address.
396 * @mod_index: Fixed address module index.
397 * @addr_index: Address range index.
398 *
399 * Retrieve additional information about subsequent address ranges for modules
400 * with multiple address ranges.
401 */
402 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
403 long mod_index, long addr_index)
404 {
405 int retval;
406 unsigned long flags;
407
408 spin_lock_irqsave(&pdc_lock, flags);
409 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
410 mod_index, addr_index);
411 convert_to_wide(pdc_result);
412 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
413 spin_unlock_irqrestore(&pdc_lock, flags);
414
415 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
416 return retval;
417 }
418
419 /**
420 * pdc_model_info - Return model information about the processor.
421 * @model: The return buffer.
422 *
423 * Returns the version numbers, identifiers, and capabilities from the processor module.
424 */
425 int pdc_model_info(struct pdc_model *model)
426 {
427 int retval;
428 unsigned long flags;
429
430 spin_lock_irqsave(&pdc_lock, flags);
431 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
432 convert_to_wide(pdc_result);
433 memcpy(model, pdc_result, sizeof(*model));
434 spin_unlock_irqrestore(&pdc_lock, flags);
435
436 return retval;
437 }
438
439 /**
440 * pdc_model_sysmodel - Get the system model name.
441 * @name: A char array of at least 81 characters.
442 *
443 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
444 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
445 * on HP/UX.
446 */
447 int pdc_model_sysmodel(char *name)
448 {
449 int retval;
450 unsigned long flags;
451
452 spin_lock_irqsave(&pdc_lock, flags);
453 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
454 OS_ID_HPUX, __pa(name));
455 convert_to_wide(pdc_result);
456
457 if (retval == PDC_OK) {
458 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
459 } else {
460 name[0] = 0;
461 }
462 spin_unlock_irqrestore(&pdc_lock, flags);
463
464 return retval;
465 }
466
467 /**
468 * pdc_model_versions - Identify the version number of each processor.
469 * @cpu_id: The return buffer.
470 * @id: The id of the processor to check.
471 *
472 * Returns the version number for each processor component.
473 *
474 * This comment was here before, but I do not know what it means :( -RB
475 * id: 0 = cpu revision, 1 = boot-rom-version
476 */
477 int pdc_model_versions(unsigned long *versions, int id)
478 {
479 int retval;
480 unsigned long flags;
481
482 spin_lock_irqsave(&pdc_lock, flags);
483 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
484 convert_to_wide(pdc_result);
485 *versions = pdc_result[0];
486 spin_unlock_irqrestore(&pdc_lock, flags);
487
488 return retval;
489 }
490
491 /**
492 * pdc_model_cpuid - Returns the CPU_ID.
493 * @cpu_id: The return buffer.
494 *
495 * Returns the CPU_ID value which uniquely identifies the cpu portion of
496 * the processor module.
497 */
498 int pdc_model_cpuid(unsigned long *cpu_id)
499 {
500 int retval;
501 unsigned long flags;
502
503 spin_lock_irqsave(&pdc_lock, flags);
504 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
505 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
506 convert_to_wide(pdc_result);
507 *cpu_id = pdc_result[0];
508 spin_unlock_irqrestore(&pdc_lock, flags);
509
510 return retval;
511 }
512
513 /**
514 * pdc_model_capabilities - Returns the platform capabilities.
515 * @capabilities: The return buffer.
516 *
517 * Returns information about platform support for 32- and/or 64-bit
518 * OSes, IO-PDIR coherency, and virtual aliasing.
519 */
520 int pdc_model_capabilities(unsigned long *capabilities)
521 {
522 int retval;
523 unsigned long flags;
524
525 spin_lock_irqsave(&pdc_lock, flags);
526 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
527 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
528 convert_to_wide(pdc_result);
529 if (retval == PDC_OK) {
530 *capabilities = pdc_result[0];
531 } else {
532 *capabilities = PDC_MODEL_OS32;
533 }
534 spin_unlock_irqrestore(&pdc_lock, flags);
535
536 return retval;
537 }
538
539 /**
540 * pdc_cache_info - Return cache and TLB information.
541 * @cache_info: The return buffer.
542 *
543 * Returns information about the processor's cache and TLB.
544 */
545 int pdc_cache_info(struct pdc_cache_info *cache_info)
546 {
547 int retval;
548 unsigned long flags;
549
550 spin_lock_irqsave(&pdc_lock, flags);
551 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
552 convert_to_wide(pdc_result);
553 memcpy(cache_info, pdc_result, sizeof(*cache_info));
554 spin_unlock_irqrestore(&pdc_lock, flags);
555
556 return retval;
557 }
558
559 /**
560 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
561 * @space_bits: Should be 0, if not, bad mojo!
562 *
563 * Returns information about Space ID hashing.
564 */
565 int pdc_spaceid_bits(unsigned long *space_bits)
566 {
567 int retval;
568 unsigned long flags;
569
570 spin_lock_irqsave(&pdc_lock, flags);
571 pdc_result[0] = 0;
572 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
573 convert_to_wide(pdc_result);
574 *space_bits = pdc_result[0];
575 spin_unlock_irqrestore(&pdc_lock, flags);
576
577 return retval;
578 }
579
580 #ifndef CONFIG_PA20
581 /**
582 * pdc_btlb_info - Return block TLB information.
583 * @btlb: The return buffer.
584 *
585 * Returns information about the hardware Block TLB.
586 */
587 int pdc_btlb_info(struct pdc_btlb_info *btlb)
588 {
589 int retval;
590 unsigned long flags;
591
592 spin_lock_irqsave(&pdc_lock, flags);
593 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
594 memcpy(btlb, pdc_result, sizeof(*btlb));
595 spin_unlock_irqrestore(&pdc_lock, flags);
596
597 if(retval < 0) {
598 btlb->max_size = 0;
599 }
600 return retval;
601 }
602
603 /**
604 * pdc_mem_map_hpa - Find fixed module information.
605 * @address: The return buffer
606 * @mod_path: pointer to dev path structure.
607 *
608 * This call was developed for S700 workstations to allow the kernel to find
609 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
610 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
611 * call.
612 *
613 * This call is supported by all existing S700 workstations (up to Gecko).
614 */
615 int pdc_mem_map_hpa(struct pdc_memory_map *address,
616 struct pdc_module_path *mod_path)
617 {
618 int retval;
619 unsigned long flags;
620
621 spin_lock_irqsave(&pdc_lock, flags);
622 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
623 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
624 __pa(pdc_result2));
625 memcpy(address, pdc_result, sizeof(*address));
626 spin_unlock_irqrestore(&pdc_lock, flags);
627
628 return retval;
629 }
630 #endif /* !CONFIG_PA20 */
631
632 /**
633 * pdc_lan_station_id - Get the LAN address.
634 * @lan_addr: The return buffer.
635 * @hpa: The network device HPA.
636 *
637 * Get the LAN station address when it is not directly available from the LAN hardware.
638 */
639 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
640 {
641 int retval;
642 unsigned long flags;
643
644 spin_lock_irqsave(&pdc_lock, flags);
645 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
646 __pa(pdc_result), hpa);
647 if (retval < 0) {
648 /* FIXME: else read MAC from NVRAM */
649 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
650 } else {
651 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
652 }
653 spin_unlock_irqrestore(&pdc_lock, flags);
654
655 return retval;
656 }
657 EXPORT_SYMBOL(pdc_lan_station_id);
658
659 /**
660 * pdc_stable_read - Read data from Stable Storage.
661 * @staddr: Stable Storage address to access.
662 * @memaddr: The memory address where Stable Storage data shall be copied.
663 * @count: number of bytes to transfer. count is multiple of 4.
664 *
665 * This PDC call reads from the Stable Storage address supplied in staddr
666 * and copies count bytes to the memory address memaddr.
667 * The call will fail if staddr+count > PDC_STABLE size.
668 */
669 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
670 {
671 int retval;
672 unsigned long flags;
673
674 spin_lock_irqsave(&pdc_lock, flags);
675 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
676 __pa(pdc_result), count);
677 convert_to_wide(pdc_result);
678 memcpy(memaddr, pdc_result, count);
679 spin_unlock_irqrestore(&pdc_lock, flags);
680
681 return retval;
682 }
683 EXPORT_SYMBOL(pdc_stable_read);
684
685 /**
686 * pdc_stable_write - Write data to Stable Storage.
687 * @staddr: Stable Storage address to access.
688 * @memaddr: The memory address where Stable Storage data shall be read from.
689 * @count: number of bytes to transfer. count is multiple of 4.
690 *
691 * This PDC call reads count bytes from the supplied memaddr address,
692 * and copies count bytes to the Stable Storage address staddr.
693 * The call will fail if staddr+count > PDC_STABLE size.
694 */
695 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
696 {
697 int retval;
698 unsigned long flags;
699
700 spin_lock_irqsave(&pdc_lock, flags);
701 memcpy(pdc_result, memaddr, count);
702 convert_to_wide(pdc_result);
703 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
704 __pa(pdc_result), count);
705 spin_unlock_irqrestore(&pdc_lock, flags);
706
707 return retval;
708 }
709 EXPORT_SYMBOL(pdc_stable_write);
710
711 /**
712 * pdc_stable_get_size - Get Stable Storage size in bytes.
713 * @size: pointer where the size will be stored.
714 *
715 * This PDC call returns the number of bytes in the processor's Stable
716 * Storage, which is the number of contiguous bytes implemented in Stable
717 * Storage starting from staddr=0. size in an unsigned 64-bit integer
718 * which is a multiple of four.
719 */
720 int pdc_stable_get_size(unsigned long *size)
721 {
722 int retval;
723 unsigned long flags;
724
725 spin_lock_irqsave(&pdc_lock, flags);
726 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
727 *size = pdc_result[0];
728 spin_unlock_irqrestore(&pdc_lock, flags);
729
730 return retval;
731 }
732 EXPORT_SYMBOL(pdc_stable_get_size);
733
734 /**
735 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
736 *
737 * This PDC call is meant to be used to check the integrity of the current
738 * contents of Stable Storage.
739 */
740 int pdc_stable_verify_contents(void)
741 {
742 int retval;
743 unsigned long flags;
744
745 spin_lock_irqsave(&pdc_lock, flags);
746 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
747 spin_unlock_irqrestore(&pdc_lock, flags);
748
749 return retval;
750 }
751 EXPORT_SYMBOL(pdc_stable_verify_contents);
752
753 /**
754 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
755 * the validity indicator.
756 *
757 * This PDC call will erase all contents of Stable Storage. Use with care!
758 */
759 int pdc_stable_initialize(void)
760 {
761 int retval;
762 unsigned long flags;
763
764 spin_lock_irqsave(&pdc_lock, flags);
765 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
766 spin_unlock_irqrestore(&pdc_lock, flags);
767
768 return retval;
769 }
770 EXPORT_SYMBOL(pdc_stable_initialize);
771
772 /**
773 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
774 * @hwpath: fully bc.mod style path to the device.
775 * @initiator: the array to return the result into
776 *
777 * Get the SCSI operational parameters from PDC.
778 * Needed since HPUX never used BIOS or symbios card NVRAM.
779 * Most ncr/sym cards won't have an entry and just use whatever
780 * capabilities of the card are (eg Ultra, LVD). But there are
781 * several cases where it's useful:
782 * o set SCSI id for Multi-initiator clusters,
783 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
784 * o bus width exported is less than what the interface chip supports.
785 */
786 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
787 {
788 int retval;
789 unsigned long flags;
790
791 spin_lock_irqsave(&pdc_lock, flags);
792
793 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
794 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
795 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
796
797 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
798 __pa(pdc_result), __pa(hwpath));
799 if (retval < PDC_OK)
800 goto out;
801
802 if (pdc_result[0] < 16) {
803 initiator->host_id = pdc_result[0];
804 } else {
805 initiator->host_id = -1;
806 }
807
808 /*
809 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
810 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
811 */
812 switch (pdc_result[1]) {
813 case 1: initiator->factor = 50; break;
814 case 2: initiator->factor = 25; break;
815 case 5: initiator->factor = 12; break;
816 case 25: initiator->factor = 10; break;
817 case 20: initiator->factor = 12; break;
818 case 40: initiator->factor = 10; break;
819 default: initiator->factor = -1; break;
820 }
821
822 if (IS_SPROCKETS()) {
823 initiator->width = pdc_result[4];
824 initiator->mode = pdc_result[5];
825 } else {
826 initiator->width = -1;
827 initiator->mode = -1;
828 }
829
830 out:
831 spin_unlock_irqrestore(&pdc_lock, flags);
832
833 return (retval >= PDC_OK);
834 }
835 EXPORT_SYMBOL(pdc_get_initiator);
836
837
838 /**
839 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
840 * @num_entries: The return value.
841 * @hpa: The HPA for the device.
842 *
843 * This PDC function returns the number of entries in the specified cell's
844 * interrupt table.
845 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
846 */
847 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
848 {
849 int retval;
850 unsigned long flags;
851
852 spin_lock_irqsave(&pdc_lock, flags);
853 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
854 __pa(pdc_result), hpa);
855 convert_to_wide(pdc_result);
856 *num_entries = pdc_result[0];
857 spin_unlock_irqrestore(&pdc_lock, flags);
858
859 return retval;
860 }
861
862 /**
863 * pdc_pci_irt - Get the PCI interrupt routing table.
864 * @num_entries: The number of entries in the table.
865 * @hpa: The Hard Physical Address of the device.
866 * @tbl:
867 *
868 * Get the PCI interrupt routing table for the device at the given HPA.
869 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
870 */
871 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
872 {
873 int retval;
874 unsigned long flags;
875
876 BUG_ON((unsigned long)tbl & 0x7);
877
878 spin_lock_irqsave(&pdc_lock, flags);
879 pdc_result[0] = num_entries;
880 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
881 __pa(pdc_result), hpa, __pa(tbl));
882 spin_unlock_irqrestore(&pdc_lock, flags);
883
884 return retval;
885 }
886
887
888 #if 0 /* UNTEST CODE - left here in case someone needs it */
889
890 /**
891 * pdc_pci_config_read - read PCI config space.
892 * @hpa token from PDC to indicate which PCI device
893 * @pci_addr configuration space address to read from
894 *
895 * Read PCI Configuration space *before* linux PCI subsystem is running.
896 */
897 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
898 {
899 int retval;
900 unsigned long flags;
901
902 spin_lock_irqsave(&pdc_lock, flags);
903 pdc_result[0] = 0;
904 pdc_result[1] = 0;
905 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
906 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
907 spin_unlock_irqrestore(&pdc_lock, flags);
908
909 return retval ? ~0 : (unsigned int) pdc_result[0];
910 }
911
912
913 /**
914 * pdc_pci_config_write - read PCI config space.
915 * @hpa token from PDC to indicate which PCI device
916 * @pci_addr configuration space address to write
917 * @val value we want in the 32-bit register
918 *
919 * Write PCI Configuration space *before* linux PCI subsystem is running.
920 */
921 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
922 {
923 int retval;
924 unsigned long flags;
925
926 spin_lock_irqsave(&pdc_lock, flags);
927 pdc_result[0] = 0;
928 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
929 __pa(pdc_result), hpa,
930 cfg_addr&~3UL, 4UL, (unsigned long) val);
931 spin_unlock_irqrestore(&pdc_lock, flags);
932
933 return retval;
934 }
935 #endif /* UNTESTED CODE */
936
937 /**
938 * pdc_tod_read - Read the Time-Of-Day clock.
939 * @tod: The return buffer:
940 *
941 * Read the Time-Of-Day clock
942 */
943 int pdc_tod_read(struct pdc_tod *tod)
944 {
945 int retval;
946 unsigned long flags;
947
948 spin_lock_irqsave(&pdc_lock, flags);
949 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
950 convert_to_wide(pdc_result);
951 memcpy(tod, pdc_result, sizeof(*tod));
952 spin_unlock_irqrestore(&pdc_lock, flags);
953
954 return retval;
955 }
956 EXPORT_SYMBOL(pdc_tod_read);
957
958 /**
959 * pdc_tod_set - Set the Time-Of-Day clock.
960 * @sec: The number of seconds since epoch.
961 * @usec: The number of micro seconds.
962 *
963 * Set the Time-Of-Day clock.
964 */
965 int pdc_tod_set(unsigned long sec, unsigned long usec)
966 {
967 int retval;
968 unsigned long flags;
969
970 spin_lock_irqsave(&pdc_lock, flags);
971 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
972 spin_unlock_irqrestore(&pdc_lock, flags);
973
974 return retval;
975 }
976 EXPORT_SYMBOL(pdc_tod_set);
977
978 #ifdef CONFIG_64BIT
979 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
980 struct pdc_memory_table *tbl, unsigned long entries)
981 {
982 int retval;
983 unsigned long flags;
984
985 spin_lock_irqsave(&pdc_lock, flags);
986 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
987 convert_to_wide(pdc_result);
988 memcpy(r_addr, pdc_result, sizeof(*r_addr));
989 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
990 spin_unlock_irqrestore(&pdc_lock, flags);
991
992 return retval;
993 }
994 #endif /* CONFIG_64BIT */
995
996 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
997 * so I guessed at unsigned long. Someone who knows what this does, can fix
998 * it later. :)
999 */
1000 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1001 {
1002 int retval;
1003 unsigned long flags;
1004
1005 spin_lock_irqsave(&pdc_lock, flags);
1006 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1007 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1008 spin_unlock_irqrestore(&pdc_lock, flags);
1009
1010 return retval;
1011 }
1012
1013 /*
1014 * pdc_do_reset - Reset the system.
1015 *
1016 * Reset the system.
1017 */
1018 int pdc_do_reset(void)
1019 {
1020 int retval;
1021 unsigned long flags;
1022
1023 spin_lock_irqsave(&pdc_lock, flags);
1024 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1025 spin_unlock_irqrestore(&pdc_lock, flags);
1026
1027 return retval;
1028 }
1029
1030 /*
1031 * pdc_soft_power_info - Enable soft power switch.
1032 * @power_reg: address of soft power register
1033 *
1034 * Return the absolute address of the soft power switch register
1035 */
1036 int __init pdc_soft_power_info(unsigned long *power_reg)
1037 {
1038 int retval;
1039 unsigned long flags;
1040
1041 *power_reg = (unsigned long) (-1);
1042
1043 spin_lock_irqsave(&pdc_lock, flags);
1044 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1045 if (retval == PDC_OK) {
1046 convert_to_wide(pdc_result);
1047 *power_reg = f_extend(pdc_result[0]);
1048 }
1049 spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051 return retval;
1052 }
1053
1054 /*
1055 * pdc_soft_power_button - Control the soft power button behaviour
1056 * @sw_control: 0 for hardware control, 1 for software control
1057 *
1058 *
1059 * This PDC function places the soft power button under software or
1060 * hardware control.
1061 * Under software control the OS may control to when to allow to shut
1062 * down the system. Under hardware control pressing the power button
1063 * powers off the system immediately.
1064 */
1065 int pdc_soft_power_button(int sw_control)
1066 {
1067 int retval;
1068 unsigned long flags;
1069
1070 spin_lock_irqsave(&pdc_lock, flags);
1071 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1072 spin_unlock_irqrestore(&pdc_lock, flags);
1073
1074 return retval;
1075 }
1076
1077 /*
1078 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1079 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1080 * who knows what other platform firmware might do with this OS "hook".
1081 */
1082 void pdc_io_reset(void)
1083 {
1084 unsigned long flags;
1085
1086 spin_lock_irqsave(&pdc_lock, flags);
1087 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1088 spin_unlock_irqrestore(&pdc_lock, flags);
1089 }
1090
1091 /*
1092 * pdc_io_reset_devices - Hack to Stop USB controller
1093 *
1094 * If PDC used the usb controller, the usb controller
1095 * is still running and will crash the machines during iommu
1096 * setup, because of still running DMA. This PDC call
1097 * stops the USB controller.
1098 * Normally called after calling pdc_io_reset().
1099 */
1100 void pdc_io_reset_devices(void)
1101 {
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&pdc_lock, flags);
1105 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1106 spin_unlock_irqrestore(&pdc_lock, flags);
1107 }
1108
1109 /* locked by pdc_console_lock */
1110 static int __attribute__((aligned(8))) iodc_retbuf[32];
1111 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1112
1113 /**
1114 * pdc_iodc_print - Console print using IODC.
1115 * @str: the string to output.
1116 * @count: length of str
1117 *
1118 * Note that only these special chars are architected for console IODC io:
1119 * BEL, BS, CR, and LF. Others are passed through.
1120 * Since the HP console requires CR+LF to perform a 'newline', we translate
1121 * "\n" to "\r\n".
1122 */
1123 int pdc_iodc_print(const unsigned char *str, unsigned count)
1124 {
1125 unsigned int i;
1126 unsigned long flags;
1127
1128 for (i = 0; i < count;) {
1129 switch(str[i]) {
1130 case '\n':
1131 iodc_dbuf[i+0] = '\r';
1132 iodc_dbuf[i+1] = '\n';
1133 i += 2;
1134 goto print;
1135 default:
1136 iodc_dbuf[i] = str[i];
1137 i++;
1138 break;
1139 }
1140 }
1141
1142 print:
1143 spin_lock_irqsave(&pdc_lock, flags);
1144 real32_call(PAGE0->mem_cons.iodc_io,
1145 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1146 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1147 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1148 spin_unlock_irqrestore(&pdc_lock, flags);
1149
1150 return i;
1151 }
1152
1153 /**
1154 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1155 *
1156 * Read a character (non-blocking) from the PDC console, returns -1 if
1157 * key is not present.
1158 */
1159 int pdc_iodc_getc(void)
1160 {
1161 int ch;
1162 int status;
1163 unsigned long flags;
1164
1165 /* Bail if no console input device. */
1166 if (!PAGE0->mem_kbd.iodc_io)
1167 return 0;
1168
1169 /* wait for a keyboard (rs232)-input */
1170 spin_lock_irqsave(&pdc_lock, flags);
1171 real32_call(PAGE0->mem_kbd.iodc_io,
1172 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1173 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1174 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1175
1176 ch = *iodc_dbuf;
1177 status = *iodc_retbuf;
1178 spin_unlock_irqrestore(&pdc_lock, flags);
1179
1180 if (status == 0)
1181 return -1;
1182
1183 return ch;
1184 }
1185
1186 int pdc_sti_call(unsigned long func, unsigned long flags,
1187 unsigned long inptr, unsigned long outputr,
1188 unsigned long glob_cfg)
1189 {
1190 int retval;
1191 unsigned long irqflags;
1192
1193 spin_lock_irqsave(&pdc_lock, irqflags);
1194 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1195 spin_unlock_irqrestore(&pdc_lock, irqflags);
1196
1197 return retval;
1198 }
1199 EXPORT_SYMBOL(pdc_sti_call);
1200
1201 #ifdef CONFIG_64BIT
1202 /**
1203 * pdc_pat_cell_get_number - Returns the cell number.
1204 * @cell_info: The return buffer.
1205 *
1206 * This PDC call returns the cell number of the cell from which the call
1207 * is made.
1208 */
1209 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1210 {
1211 int retval;
1212 unsigned long flags;
1213
1214 spin_lock_irqsave(&pdc_lock, flags);
1215 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1216 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1217 spin_unlock_irqrestore(&pdc_lock, flags);
1218
1219 return retval;
1220 }
1221
1222 /**
1223 * pdc_pat_cell_module - Retrieve the cell's module information.
1224 * @actcnt: The number of bytes written to mem_addr.
1225 * @ploc: The physical location.
1226 * @mod: The module index.
1227 * @view_type: The view of the address type.
1228 * @mem_addr: The return buffer.
1229 *
1230 * This PDC call returns information about each module attached to the cell
1231 * at the specified location.
1232 */
1233 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1234 unsigned long view_type, void *mem_addr)
1235 {
1236 int retval;
1237 unsigned long flags;
1238 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1239
1240 spin_lock_irqsave(&pdc_lock, flags);
1241 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1242 ploc, mod, view_type, __pa(&result));
1243 if(!retval) {
1244 *actcnt = pdc_result[0];
1245 memcpy(mem_addr, &result, *actcnt);
1246 }
1247 spin_unlock_irqrestore(&pdc_lock, flags);
1248
1249 return retval;
1250 }
1251
1252 /**
1253 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1254 * @cpu_info: The return buffer.
1255 * @hpa: The Hard Physical Address of the CPU.
1256 *
1257 * Retrieve the cpu number for the cpu at the specified HPA.
1258 */
1259 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1260 {
1261 int retval;
1262 unsigned long flags;
1263
1264 spin_lock_irqsave(&pdc_lock, flags);
1265 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1266 __pa(&pdc_result), hpa);
1267 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1268 spin_unlock_irqrestore(&pdc_lock, flags);
1269
1270 return retval;
1271 }
1272
1273 /**
1274 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1275 * @num_entries: The return value.
1276 * @cell_num: The target cell.
1277 *
1278 * This PDC function returns the number of entries in the specified cell's
1279 * interrupt table.
1280 */
1281 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1282 {
1283 int retval;
1284 unsigned long flags;
1285
1286 spin_lock_irqsave(&pdc_lock, flags);
1287 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1288 __pa(pdc_result), cell_num);
1289 *num_entries = pdc_result[0];
1290 spin_unlock_irqrestore(&pdc_lock, flags);
1291
1292 return retval;
1293 }
1294
1295 /**
1296 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1297 * @r_addr: The return buffer.
1298 * @cell_num: The target cell.
1299 *
1300 * This PDC function returns the actual interrupt table for the specified cell.
1301 */
1302 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1303 {
1304 int retval;
1305 unsigned long flags;
1306
1307 spin_lock_irqsave(&pdc_lock, flags);
1308 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1309 __pa(r_addr), cell_num);
1310 spin_unlock_irqrestore(&pdc_lock, flags);
1311
1312 return retval;
1313 }
1314
1315 /**
1316 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1317 * @actlen: The return buffer.
1318 * @mem_addr: Pointer to the memory buffer.
1319 * @count: The number of bytes to read from the buffer.
1320 * @offset: The offset with respect to the beginning of the buffer.
1321 *
1322 */
1323 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1324 unsigned long count, unsigned long offset)
1325 {
1326 int retval;
1327 unsigned long flags;
1328
1329 spin_lock_irqsave(&pdc_lock, flags);
1330 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1331 __pa(pdc_result2), count, offset);
1332 *actual_len = pdc_result[0];
1333 memcpy(mem_addr, pdc_result2, *actual_len);
1334 spin_unlock_irqrestore(&pdc_lock, flags);
1335
1336 return retval;
1337 }
1338
1339 /**
1340 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1341 * @pci_addr: PCI configuration space address for which the read request is being made.
1342 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1343 * @mem_addr: Pointer to return memory buffer.
1344 *
1345 */
1346 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1347 {
1348 int retval;
1349 unsigned long flags;
1350
1351 spin_lock_irqsave(&pdc_lock, flags);
1352 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1353 __pa(pdc_result), pci_addr, pci_size);
1354 switch(pci_size) {
1355 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1356 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1357 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1358 }
1359 spin_unlock_irqrestore(&pdc_lock, flags);
1360
1361 return retval;
1362 }
1363
1364 /**
1365 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1366 * @pci_addr: PCI configuration space address for which the write request is being made.
1367 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1368 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1369 * written to PCI Config space.
1370 *
1371 */
1372 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1373 {
1374 int retval;
1375 unsigned long flags;
1376
1377 spin_lock_irqsave(&pdc_lock, flags);
1378 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1379 pci_addr, pci_size, val);
1380 spin_unlock_irqrestore(&pdc_lock, flags);
1381
1382 return retval;
1383 }
1384 #endif /* CONFIG_64BIT */
1385
1386
1387 /***************** 32-bit real-mode calls ***********/
1388 /* The struct below is used
1389 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1390 * real32_call_asm() then uses this stack in narrow real mode
1391 */
1392
1393 struct narrow_stack {
1394 /* use int, not long which is 64 bits */
1395 unsigned int arg13;
1396 unsigned int arg12;
1397 unsigned int arg11;
1398 unsigned int arg10;
1399 unsigned int arg9;
1400 unsigned int arg8;
1401 unsigned int arg7;
1402 unsigned int arg6;
1403 unsigned int arg5;
1404 unsigned int arg4;
1405 unsigned int arg3;
1406 unsigned int arg2;
1407 unsigned int arg1;
1408 unsigned int arg0;
1409 unsigned int frame_marker[8];
1410 unsigned int sp;
1411 /* in reality, there's nearly 8k of stack after this */
1412 };
1413
1414 long real32_call(unsigned long fn, ...)
1415 {
1416 va_list args;
1417 extern struct narrow_stack real_stack;
1418 extern unsigned long real32_call_asm(unsigned int *,
1419 unsigned int *,
1420 unsigned int);
1421
1422 va_start(args, fn);
1423 real_stack.arg0 = va_arg(args, unsigned int);
1424 real_stack.arg1 = va_arg(args, unsigned int);
1425 real_stack.arg2 = va_arg(args, unsigned int);
1426 real_stack.arg3 = va_arg(args, unsigned int);
1427 real_stack.arg4 = va_arg(args, unsigned int);
1428 real_stack.arg5 = va_arg(args, unsigned int);
1429 real_stack.arg6 = va_arg(args, unsigned int);
1430 real_stack.arg7 = va_arg(args, unsigned int);
1431 real_stack.arg8 = va_arg(args, unsigned int);
1432 real_stack.arg9 = va_arg(args, unsigned int);
1433 real_stack.arg10 = va_arg(args, unsigned int);
1434 real_stack.arg11 = va_arg(args, unsigned int);
1435 real_stack.arg12 = va_arg(args, unsigned int);
1436 real_stack.arg13 = va_arg(args, unsigned int);
1437 va_end(args);
1438
1439 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1440 }
1441
1442 #ifdef CONFIG_64BIT
1443 /***************** 64-bit real-mode calls ***********/
1444
1445 struct wide_stack {
1446 unsigned long arg0;
1447 unsigned long arg1;
1448 unsigned long arg2;
1449 unsigned long arg3;
1450 unsigned long arg4;
1451 unsigned long arg5;
1452 unsigned long arg6;
1453 unsigned long arg7;
1454 unsigned long arg8;
1455 unsigned long arg9;
1456 unsigned long arg10;
1457 unsigned long arg11;
1458 unsigned long arg12;
1459 unsigned long arg13;
1460 unsigned long frame_marker[2]; /* rp, previous sp */
1461 unsigned long sp;
1462 /* in reality, there's nearly 8k of stack after this */
1463 };
1464
1465 long real64_call(unsigned long fn, ...)
1466 {
1467 va_list args;
1468 extern struct wide_stack real64_stack;
1469 extern unsigned long real64_call_asm(unsigned long *,
1470 unsigned long *,
1471 unsigned long);
1472
1473 va_start(args, fn);
1474 real64_stack.arg0 = va_arg(args, unsigned long);
1475 real64_stack.arg1 = va_arg(args, unsigned long);
1476 real64_stack.arg2 = va_arg(args, unsigned long);
1477 real64_stack.arg3 = va_arg(args, unsigned long);
1478 real64_stack.arg4 = va_arg(args, unsigned long);
1479 real64_stack.arg5 = va_arg(args, unsigned long);
1480 real64_stack.arg6 = va_arg(args, unsigned long);
1481 real64_stack.arg7 = va_arg(args, unsigned long);
1482 real64_stack.arg8 = va_arg(args, unsigned long);
1483 real64_stack.arg9 = va_arg(args, unsigned long);
1484 real64_stack.arg10 = va_arg(args, unsigned long);
1485 real64_stack.arg11 = va_arg(args, unsigned long);
1486 real64_stack.arg12 = va_arg(args, unsigned long);
1487 real64_stack.arg13 = va_arg(args, unsigned long);
1488 va_end(args);
1489
1490 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1491 }
1492
1493 #endif /* CONFIG_64BIT */
1494
This page took 0.063137 seconds and 5 git commands to generate.