[PARISC] fix trivial spelling nit in asm/linkage.h
[deliverable/linux.git] / arch / parisc / kernel / firmware.c
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h> /* for boot_cpu_data */
72
73 static DEFINE_SPINLOCK(pdc_lock);
74 static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76
77 #ifdef CONFIG_64BIT
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80
81 /* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
89 *
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95 */
96
97 #ifdef CONFIG_64BIT
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101
102 #ifdef CONFIG_64BIT
103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109
110
111 /**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef CONFIG_64BIT
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128 #endif
129 return address;
130 }
131
132 /**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef CONFIG_64BIT
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150 #endif
151 }
152
153 /**
154 * set_firmware_width - Determine if the firmware is wide or narrow.
155 *
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
158 */
159 void __init set_firmware_width(void)
160 {
161 #ifdef CONFIG_64BIT
162 int retval;
163 unsigned long flags;
164
165 spin_lock_irqsave(&pdc_lock, flags);
166 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
167 convert_to_wide(pdc_result);
168 if(pdc_result[0] != NARROW_FIRMWARE)
169 parisc_narrow_firmware = 0;
170 spin_unlock_irqrestore(&pdc_lock, flags);
171 #endif
172 }
173
174 /**
175 * pdc_emergency_unlock - Unlock the linux pdc lock
176 *
177 * This call unlocks the linux pdc lock in case we need some PDC functions
178 * (like pdc_add_valid) during kernel stack dump.
179 */
180 void pdc_emergency_unlock(void)
181 {
182 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
183 if (spin_is_locked(&pdc_lock))
184 spin_unlock(&pdc_lock);
185 }
186
187
188 /**
189 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
190 * @address: Address to be verified.
191 *
192 * This PDC call attempts to read from the specified address and verifies
193 * if the address is valid.
194 *
195 * The return value is PDC_OK (0) in case accessing this address is valid.
196 */
197 int pdc_add_valid(unsigned long address)
198 {
199 int retval;
200 unsigned long flags;
201
202 spin_lock_irqsave(&pdc_lock, flags);
203 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
204 spin_unlock_irqrestore(&pdc_lock, flags);
205
206 return retval;
207 }
208 EXPORT_SYMBOL(pdc_add_valid);
209
210 /**
211 * pdc_chassis_info - Return chassis information.
212 * @result: The return buffer.
213 * @chassis_info: The memory buffer address.
214 * @len: The size of the memory buffer address.
215 *
216 * An HVERSION dependent call for returning the chassis information.
217 */
218 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
219 {
220 int retval;
221 unsigned long flags;
222
223 spin_lock_irqsave(&pdc_lock, flags);
224 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
225 memcpy(&pdc_result2, led_info, len);
226 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
227 __pa(pdc_result), __pa(pdc_result2), len);
228 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
229 memcpy(led_info, pdc_result2, len);
230 spin_unlock_irqrestore(&pdc_lock, flags);
231
232 return retval;
233 }
234
235 /**
236 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
237 * @retval: -1 on error, 0 on success. Other value are PDC errors
238 *
239 * Must be correctly formatted or expect system crash
240 */
241 #ifdef CONFIG_64BIT
242 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
243 {
244 int retval = 0;
245 unsigned long flags;
246
247 if (!is_pdc_pat())
248 return -1;
249
250 spin_lock_irqsave(&pdc_lock, flags);
251 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
252 spin_unlock_irqrestore(&pdc_lock, flags);
253
254 return retval;
255 }
256 #endif
257
258 /**
259 * pdc_chassis_disp - Updates chassis code
260 * @retval: -1 on error, 0 on success
261 */
262 int pdc_chassis_disp(unsigned long disp)
263 {
264 int retval = 0;
265 unsigned long flags;
266
267 spin_lock_irqsave(&pdc_lock, flags);
268 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
269 spin_unlock_irqrestore(&pdc_lock, flags);
270
271 return retval;
272 }
273
274 /**
275 * pdc_chassis_warn - Fetches chassis warnings
276 * @retval: -1 on error, 0 on success
277 */
278 int pdc_chassis_warn(unsigned long *warn)
279 {
280 int retval = 0;
281 unsigned long flags;
282
283 spin_lock_irqsave(&pdc_lock, flags);
284 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
285 *warn = pdc_result[0];
286 spin_unlock_irqrestore(&pdc_lock, flags);
287
288 return retval;
289 }
290
291 /**
292 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
293 * @pdc_coproc_info: Return buffer address.
294 *
295 * This PDC call returns the presence and status of all the coprocessors
296 * attached to the processor.
297 */
298 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
299 {
300 int retval;
301 unsigned long flags;
302
303 spin_lock_irqsave(&pdc_lock, flags);
304 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
305 convert_to_wide(pdc_result);
306 pdc_coproc_info->ccr_functional = pdc_result[0];
307 pdc_coproc_info->ccr_present = pdc_result[1];
308 pdc_coproc_info->revision = pdc_result[17];
309 pdc_coproc_info->model = pdc_result[18];
310 spin_unlock_irqrestore(&pdc_lock, flags);
311
312 return retval;
313 }
314
315 /**
316 * pdc_iodc_read - Read data from the modules IODC.
317 * @actcnt: The actual number of bytes.
318 * @hpa: The HPA of the module for the iodc read.
319 * @index: The iodc entry point.
320 * @iodc_data: A buffer memory for the iodc options.
321 * @iodc_data_size: Size of the memory buffer.
322 *
323 * This PDC call reads from the IODC of the module specified by the hpa
324 * argument.
325 */
326 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
327 void *iodc_data, unsigned int iodc_data_size)
328 {
329 int retval;
330 unsigned long flags;
331
332 spin_lock_irqsave(&pdc_lock, flags);
333 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
334 index, __pa(pdc_result2), iodc_data_size);
335 convert_to_wide(pdc_result);
336 *actcnt = pdc_result[0];
337 memcpy(iodc_data, pdc_result2, iodc_data_size);
338 spin_unlock_irqrestore(&pdc_lock, flags);
339
340 return retval;
341 }
342 EXPORT_SYMBOL(pdc_iodc_read);
343
344 /**
345 * pdc_system_map_find_mods - Locate unarchitected modules.
346 * @pdc_mod_info: Return buffer address.
347 * @mod_path: pointer to dev path structure.
348 * @mod_index: fixed address module index.
349 *
350 * To locate and identify modules which reside at fixed I/O addresses, which
351 * do not self-identify via architected bus walks.
352 */
353 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
354 struct pdc_module_path *mod_path, long mod_index)
355 {
356 int retval;
357 unsigned long flags;
358
359 spin_lock_irqsave(&pdc_lock, flags);
360 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
361 __pa(pdc_result2), mod_index);
362 convert_to_wide(pdc_result);
363 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
364 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
365 spin_unlock_irqrestore(&pdc_lock, flags);
366
367 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
368 return retval;
369 }
370
371 /**
372 * pdc_system_map_find_addrs - Retrieve additional address ranges.
373 * @pdc_addr_info: Return buffer address.
374 * @mod_index: Fixed address module index.
375 * @addr_index: Address range index.
376 *
377 * Retrieve additional information about subsequent address ranges for modules
378 * with multiple address ranges.
379 */
380 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
381 long mod_index, long addr_index)
382 {
383 int retval;
384 unsigned long flags;
385
386 spin_lock_irqsave(&pdc_lock, flags);
387 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
388 mod_index, addr_index);
389 convert_to_wide(pdc_result);
390 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
391 spin_unlock_irqrestore(&pdc_lock, flags);
392
393 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
394 return retval;
395 }
396
397 /**
398 * pdc_model_info - Return model information about the processor.
399 * @model: The return buffer.
400 *
401 * Returns the version numbers, identifiers, and capabilities from the processor module.
402 */
403 int pdc_model_info(struct pdc_model *model)
404 {
405 int retval;
406 unsigned long flags;
407
408 spin_lock_irqsave(&pdc_lock, flags);
409 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
410 convert_to_wide(pdc_result);
411 memcpy(model, pdc_result, sizeof(*model));
412 spin_unlock_irqrestore(&pdc_lock, flags);
413
414 return retval;
415 }
416
417 /**
418 * pdc_model_sysmodel - Get the system model name.
419 * @name: A char array of at least 81 characters.
420 *
421 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
422 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
423 * on HP/UX.
424 */
425 int pdc_model_sysmodel(char *name)
426 {
427 int retval;
428 unsigned long flags;
429
430 spin_lock_irqsave(&pdc_lock, flags);
431 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
432 OS_ID_HPUX, __pa(name));
433 convert_to_wide(pdc_result);
434
435 if (retval == PDC_OK) {
436 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
437 } else {
438 name[0] = 0;
439 }
440 spin_unlock_irqrestore(&pdc_lock, flags);
441
442 return retval;
443 }
444
445 /**
446 * pdc_model_versions - Identify the version number of each processor.
447 * @cpu_id: The return buffer.
448 * @id: The id of the processor to check.
449 *
450 * Returns the version number for each processor component.
451 *
452 * This comment was here before, but I do not know what it means :( -RB
453 * id: 0 = cpu revision, 1 = boot-rom-version
454 */
455 int pdc_model_versions(unsigned long *versions, int id)
456 {
457 int retval;
458 unsigned long flags;
459
460 spin_lock_irqsave(&pdc_lock, flags);
461 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
462 convert_to_wide(pdc_result);
463 *versions = pdc_result[0];
464 spin_unlock_irqrestore(&pdc_lock, flags);
465
466 return retval;
467 }
468
469 /**
470 * pdc_model_cpuid - Returns the CPU_ID.
471 * @cpu_id: The return buffer.
472 *
473 * Returns the CPU_ID value which uniquely identifies the cpu portion of
474 * the processor module.
475 */
476 int pdc_model_cpuid(unsigned long *cpu_id)
477 {
478 int retval;
479 unsigned long flags;
480
481 spin_lock_irqsave(&pdc_lock, flags);
482 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
483 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
484 convert_to_wide(pdc_result);
485 *cpu_id = pdc_result[0];
486 spin_unlock_irqrestore(&pdc_lock, flags);
487
488 return retval;
489 }
490
491 /**
492 * pdc_model_capabilities - Returns the platform capabilities.
493 * @capabilities: The return buffer.
494 *
495 * Returns information about platform support for 32- and/or 64-bit
496 * OSes, IO-PDIR coherency, and virtual aliasing.
497 */
498 int pdc_model_capabilities(unsigned long *capabilities)
499 {
500 int retval;
501 unsigned long flags;
502
503 spin_lock_irqsave(&pdc_lock, flags);
504 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
505 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
506 convert_to_wide(pdc_result);
507 *capabilities = pdc_result[0];
508 spin_unlock_irqrestore(&pdc_lock, flags);
509
510 return retval;
511 }
512
513 /**
514 * pdc_cache_info - Return cache and TLB information.
515 * @cache_info: The return buffer.
516 *
517 * Returns information about the processor's cache and TLB.
518 */
519 int pdc_cache_info(struct pdc_cache_info *cache_info)
520 {
521 int retval;
522 unsigned long flags;
523
524 spin_lock_irqsave(&pdc_lock, flags);
525 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
526 convert_to_wide(pdc_result);
527 memcpy(cache_info, pdc_result, sizeof(*cache_info));
528 spin_unlock_irqrestore(&pdc_lock, flags);
529
530 return retval;
531 }
532
533 /**
534 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
535 * @space_bits: Should be 0, if not, bad mojo!
536 *
537 * Returns information about Space ID hashing.
538 */
539 int pdc_spaceid_bits(unsigned long *space_bits)
540 {
541 int retval;
542 unsigned long flags;
543
544 spin_lock_irqsave(&pdc_lock, flags);
545 pdc_result[0] = 0;
546 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
547 convert_to_wide(pdc_result);
548 *space_bits = pdc_result[0];
549 spin_unlock_irqrestore(&pdc_lock, flags);
550
551 return retval;
552 }
553
554 #ifndef CONFIG_PA20
555 /**
556 * pdc_btlb_info - Return block TLB information.
557 * @btlb: The return buffer.
558 *
559 * Returns information about the hardware Block TLB.
560 */
561 int pdc_btlb_info(struct pdc_btlb_info *btlb)
562 {
563 int retval;
564 unsigned long flags;
565
566 spin_lock_irqsave(&pdc_lock, flags);
567 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
568 memcpy(btlb, pdc_result, sizeof(*btlb));
569 spin_unlock_irqrestore(&pdc_lock, flags);
570
571 if(retval < 0) {
572 btlb->max_size = 0;
573 }
574 return retval;
575 }
576
577 /**
578 * pdc_mem_map_hpa - Find fixed module information.
579 * @address: The return buffer
580 * @mod_path: pointer to dev path structure.
581 *
582 * This call was developed for S700 workstations to allow the kernel to find
583 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
584 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
585 * call.
586 *
587 * This call is supported by all existing S700 workstations (up to Gecko).
588 */
589 int pdc_mem_map_hpa(struct pdc_memory_map *address,
590 struct pdc_module_path *mod_path)
591 {
592 int retval;
593 unsigned long flags;
594
595 spin_lock_irqsave(&pdc_lock, flags);
596 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
597 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
598 __pa(pdc_result2));
599 memcpy(address, pdc_result, sizeof(*address));
600 spin_unlock_irqrestore(&pdc_lock, flags);
601
602 return retval;
603 }
604 #endif /* !CONFIG_PA20 */
605
606 /**
607 * pdc_lan_station_id - Get the LAN address.
608 * @lan_addr: The return buffer.
609 * @hpa: The network device HPA.
610 *
611 * Get the LAN station address when it is not directly available from the LAN hardware.
612 */
613 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
614 {
615 int retval;
616 unsigned long flags;
617
618 spin_lock_irqsave(&pdc_lock, flags);
619 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
620 __pa(pdc_result), hpa);
621 if (retval < 0) {
622 /* FIXME: else read MAC from NVRAM */
623 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
624 } else {
625 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
626 }
627 spin_unlock_irqrestore(&pdc_lock, flags);
628
629 return retval;
630 }
631 EXPORT_SYMBOL(pdc_lan_station_id);
632
633 /**
634 * pdc_stable_read - Read data from Stable Storage.
635 * @staddr: Stable Storage address to access.
636 * @memaddr: The memory address where Stable Storage data shall be copied.
637 * @count: number of bytes to transfer. count is multiple of 4.
638 *
639 * This PDC call reads from the Stable Storage address supplied in staddr
640 * and copies count bytes to the memory address memaddr.
641 * The call will fail if staddr+count > PDC_STABLE size.
642 */
643 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
644 {
645 int retval;
646 unsigned long flags;
647
648 spin_lock_irqsave(&pdc_lock, flags);
649 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
650 __pa(pdc_result), count);
651 convert_to_wide(pdc_result);
652 memcpy(memaddr, pdc_result, count);
653 spin_unlock_irqrestore(&pdc_lock, flags);
654
655 return retval;
656 }
657 EXPORT_SYMBOL(pdc_stable_read);
658
659 /**
660 * pdc_stable_write - Write data to Stable Storage.
661 * @staddr: Stable Storage address to access.
662 * @memaddr: The memory address where Stable Storage data shall be read from.
663 * @count: number of bytes to transfer. count is multiple of 4.
664 *
665 * This PDC call reads count bytes from the supplied memaddr address,
666 * and copies count bytes to the Stable Storage address staddr.
667 * The call will fail if staddr+count > PDC_STABLE size.
668 */
669 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
670 {
671 int retval;
672 unsigned long flags;
673
674 spin_lock_irqsave(&pdc_lock, flags);
675 memcpy(pdc_result, memaddr, count);
676 convert_to_wide(pdc_result);
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
678 __pa(pdc_result), count);
679 spin_unlock_irqrestore(&pdc_lock, flags);
680
681 return retval;
682 }
683 EXPORT_SYMBOL(pdc_stable_write);
684
685 /**
686 * pdc_stable_get_size - Get Stable Storage size in bytes.
687 * @size: pointer where the size will be stored.
688 *
689 * This PDC call returns the number of bytes in the processor's Stable
690 * Storage, which is the number of contiguous bytes implemented in Stable
691 * Storage starting from staddr=0. size in an unsigned 64-bit integer
692 * which is a multiple of four.
693 */
694 int pdc_stable_get_size(unsigned long *size)
695 {
696 int retval;
697 unsigned long flags;
698
699 spin_lock_irqsave(&pdc_lock, flags);
700 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
701 *size = pdc_result[0];
702 spin_unlock_irqrestore(&pdc_lock, flags);
703
704 return retval;
705 }
706 EXPORT_SYMBOL(pdc_stable_get_size);
707
708 /**
709 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
710 *
711 * This PDC call is meant to be used to check the integrity of the current
712 * contents of Stable Storage.
713 */
714 int pdc_stable_verify_contents(void)
715 {
716 int retval;
717 unsigned long flags;
718
719 spin_lock_irqsave(&pdc_lock, flags);
720 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
721 spin_unlock_irqrestore(&pdc_lock, flags);
722
723 return retval;
724 }
725 EXPORT_SYMBOL(pdc_stable_verify_contents);
726
727 /**
728 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
729 * the validity indicator.
730 *
731 * This PDC call will erase all contents of Stable Storage. Use with care!
732 */
733 int pdc_stable_initialize(void)
734 {
735 int retval;
736 unsigned long flags;
737
738 spin_lock_irqsave(&pdc_lock, flags);
739 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
740 spin_unlock_irqrestore(&pdc_lock, flags);
741
742 return retval;
743 }
744 EXPORT_SYMBOL(pdc_stable_initialize);
745
746 /**
747 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
748 * @hwpath: fully bc.mod style path to the device.
749 * @initiator: the array to return the result into
750 *
751 * Get the SCSI operational parameters from PDC.
752 * Needed since HPUX never used BIOS or symbios card NVRAM.
753 * Most ncr/sym cards won't have an entry and just use whatever
754 * capabilities of the card are (eg Ultra, LVD). But there are
755 * several cases where it's useful:
756 * o set SCSI id for Multi-initiator clusters,
757 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
758 * o bus width exported is less than what the interface chip supports.
759 */
760 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
761 {
762 int retval;
763 unsigned long flags;
764
765 spin_lock_irqsave(&pdc_lock, flags);
766
767 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
768 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
769 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
770
771 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
772 __pa(pdc_result), __pa(hwpath));
773 if (retval < PDC_OK)
774 goto out;
775
776 if (pdc_result[0] < 16) {
777 initiator->host_id = pdc_result[0];
778 } else {
779 initiator->host_id = -1;
780 }
781
782 /*
783 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
784 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
785 */
786 switch (pdc_result[1]) {
787 case 1: initiator->factor = 50; break;
788 case 2: initiator->factor = 25; break;
789 case 5: initiator->factor = 12; break;
790 case 25: initiator->factor = 10; break;
791 case 20: initiator->factor = 12; break;
792 case 40: initiator->factor = 10; break;
793 default: initiator->factor = -1; break;
794 }
795
796 if (IS_SPROCKETS()) {
797 initiator->width = pdc_result[4];
798 initiator->mode = pdc_result[5];
799 } else {
800 initiator->width = -1;
801 initiator->mode = -1;
802 }
803
804 out:
805 spin_unlock_irqrestore(&pdc_lock, flags);
806
807 return (retval >= PDC_OK);
808 }
809 EXPORT_SYMBOL(pdc_get_initiator);
810
811
812 /**
813 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
814 * @num_entries: The return value.
815 * @hpa: The HPA for the device.
816 *
817 * This PDC function returns the number of entries in the specified cell's
818 * interrupt table.
819 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
820 */
821 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
822 {
823 int retval;
824 unsigned long flags;
825
826 spin_lock_irqsave(&pdc_lock, flags);
827 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
828 __pa(pdc_result), hpa);
829 convert_to_wide(pdc_result);
830 *num_entries = pdc_result[0];
831 spin_unlock_irqrestore(&pdc_lock, flags);
832
833 return retval;
834 }
835
836 /**
837 * pdc_pci_irt - Get the PCI interrupt routing table.
838 * @num_entries: The number of entries in the table.
839 * @hpa: The Hard Physical Address of the device.
840 * @tbl:
841 *
842 * Get the PCI interrupt routing table for the device at the given HPA.
843 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
844 */
845 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
846 {
847 int retval;
848 unsigned long flags;
849
850 BUG_ON((unsigned long)tbl & 0x7);
851
852 spin_lock_irqsave(&pdc_lock, flags);
853 pdc_result[0] = num_entries;
854 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
855 __pa(pdc_result), hpa, __pa(tbl));
856 spin_unlock_irqrestore(&pdc_lock, flags);
857
858 return retval;
859 }
860
861
862 #if 0 /* UNTEST CODE - left here in case someone needs it */
863
864 /**
865 * pdc_pci_config_read - read PCI config space.
866 * @hpa token from PDC to indicate which PCI device
867 * @pci_addr configuration space address to read from
868 *
869 * Read PCI Configuration space *before* linux PCI subsystem is running.
870 */
871 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
872 {
873 int retval;
874 unsigned long flags;
875
876 spin_lock_irqsave(&pdc_lock, flags);
877 pdc_result[0] = 0;
878 pdc_result[1] = 0;
879 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
880 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
881 spin_unlock_irqrestore(&pdc_lock, flags);
882
883 return retval ? ~0 : (unsigned int) pdc_result[0];
884 }
885
886
887 /**
888 * pdc_pci_config_write - read PCI config space.
889 * @hpa token from PDC to indicate which PCI device
890 * @pci_addr configuration space address to write
891 * @val value we want in the 32-bit register
892 *
893 * Write PCI Configuration space *before* linux PCI subsystem is running.
894 */
895 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
896 {
897 int retval;
898 unsigned long flags;
899
900 spin_lock_irqsave(&pdc_lock, flags);
901 pdc_result[0] = 0;
902 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
903 __pa(pdc_result), hpa,
904 cfg_addr&~3UL, 4UL, (unsigned long) val);
905 spin_unlock_irqrestore(&pdc_lock, flags);
906
907 return retval;
908 }
909 #endif /* UNTESTED CODE */
910
911 /**
912 * pdc_tod_read - Read the Time-Of-Day clock.
913 * @tod: The return buffer:
914 *
915 * Read the Time-Of-Day clock
916 */
917 int pdc_tod_read(struct pdc_tod *tod)
918 {
919 int retval;
920 unsigned long flags;
921
922 spin_lock_irqsave(&pdc_lock, flags);
923 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
924 convert_to_wide(pdc_result);
925 memcpy(tod, pdc_result, sizeof(*tod));
926 spin_unlock_irqrestore(&pdc_lock, flags);
927
928 return retval;
929 }
930 EXPORT_SYMBOL(pdc_tod_read);
931
932 /**
933 * pdc_tod_set - Set the Time-Of-Day clock.
934 * @sec: The number of seconds since epoch.
935 * @usec: The number of micro seconds.
936 *
937 * Set the Time-Of-Day clock.
938 */
939 int pdc_tod_set(unsigned long sec, unsigned long usec)
940 {
941 int retval;
942 unsigned long flags;
943
944 spin_lock_irqsave(&pdc_lock, flags);
945 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
946 spin_unlock_irqrestore(&pdc_lock, flags);
947
948 return retval;
949 }
950 EXPORT_SYMBOL(pdc_tod_set);
951
952 #ifdef CONFIG_64BIT
953 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
954 struct pdc_memory_table *tbl, unsigned long entries)
955 {
956 int retval;
957 unsigned long flags;
958
959 spin_lock_irqsave(&pdc_lock, flags);
960 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
961 convert_to_wide(pdc_result);
962 memcpy(r_addr, pdc_result, sizeof(*r_addr));
963 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
964 spin_unlock_irqrestore(&pdc_lock, flags);
965
966 return retval;
967 }
968 #endif /* CONFIG_64BIT */
969
970 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
971 * so I guessed at unsigned long. Someone who knows what this does, can fix
972 * it later. :)
973 */
974 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
975 {
976 int retval;
977 unsigned long flags;
978
979 spin_lock_irqsave(&pdc_lock, flags);
980 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
981 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
982 spin_unlock_irqrestore(&pdc_lock, flags);
983
984 return retval;
985 }
986
987 /*
988 * pdc_do_reset - Reset the system.
989 *
990 * Reset the system.
991 */
992 int pdc_do_reset(void)
993 {
994 int retval;
995 unsigned long flags;
996
997 spin_lock_irqsave(&pdc_lock, flags);
998 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
999 spin_unlock_irqrestore(&pdc_lock, flags);
1000
1001 return retval;
1002 }
1003
1004 /*
1005 * pdc_soft_power_info - Enable soft power switch.
1006 * @power_reg: address of soft power register
1007 *
1008 * Return the absolute address of the soft power switch register
1009 */
1010 int __init pdc_soft_power_info(unsigned long *power_reg)
1011 {
1012 int retval;
1013 unsigned long flags;
1014
1015 *power_reg = (unsigned long) (-1);
1016
1017 spin_lock_irqsave(&pdc_lock, flags);
1018 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1019 if (retval == PDC_OK) {
1020 convert_to_wide(pdc_result);
1021 *power_reg = f_extend(pdc_result[0]);
1022 }
1023 spin_unlock_irqrestore(&pdc_lock, flags);
1024
1025 return retval;
1026 }
1027
1028 /*
1029 * pdc_soft_power_button - Control the soft power button behaviour
1030 * @sw_control: 0 for hardware control, 1 for software control
1031 *
1032 *
1033 * This PDC function places the soft power button under software or
1034 * hardware control.
1035 * Under software control the OS may control to when to allow to shut
1036 * down the system. Under hardware control pressing the power button
1037 * powers off the system immediately.
1038 */
1039 int pdc_soft_power_button(int sw_control)
1040 {
1041 int retval;
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&pdc_lock, flags);
1045 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1046 spin_unlock_irqrestore(&pdc_lock, flags);
1047
1048 return retval;
1049 }
1050
1051 /*
1052 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1053 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1054 * who knows what other platform firmware might do with this OS "hook".
1055 */
1056 void pdc_io_reset(void)
1057 {
1058 unsigned long flags;
1059
1060 spin_lock_irqsave(&pdc_lock, flags);
1061 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1062 spin_unlock_irqrestore(&pdc_lock, flags);
1063 }
1064
1065 /*
1066 * pdc_io_reset_devices - Hack to Stop USB controller
1067 *
1068 * If PDC used the usb controller, the usb controller
1069 * is still running and will crash the machines during iommu
1070 * setup, because of still running DMA. This PDC call
1071 * stops the USB controller.
1072 * Normally called after calling pdc_io_reset().
1073 */
1074 void pdc_io_reset_devices(void)
1075 {
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&pdc_lock, flags);
1079 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1080 spin_unlock_irqrestore(&pdc_lock, flags);
1081 }
1082
1083
1084 /**
1085 * pdc_iodc_putc - Console character print using IODC.
1086 * @c: the character to output.
1087 *
1088 * Note that only these special chars are architected for console IODC io:
1089 * BEL, BS, CR, and LF. Others are passed through.
1090 * Since the HP console requires CR+LF to perform a 'newline', we translate
1091 * "\n" to "\r\n".
1092 */
1093 void pdc_iodc_putc(unsigned char c)
1094 {
1095 /* XXX Should we spinlock posx usage */
1096 static int posx; /* for simple TAB-Simulation... */
1097 static int __attribute__((aligned(8))) iodc_retbuf[32];
1098 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1099 unsigned int n;
1100 unsigned long flags;
1101
1102 switch (c) {
1103 case '\n':
1104 iodc_dbuf[0] = '\r';
1105 iodc_dbuf[1] = '\n';
1106 n = 2;
1107 posx = 0;
1108 break;
1109 case '\t':
1110 pdc_iodc_putc(' ');
1111 while (posx & 7) /* expand TAB */
1112 pdc_iodc_putc(' ');
1113 return; /* return since IODC can't handle this */
1114 case '\b':
1115 posx-=2; /* BS */
1116 default:
1117 iodc_dbuf[0] = c;
1118 n = 1;
1119 posx++;
1120 break;
1121 }
1122
1123 spin_lock_irqsave(&pdc_lock, flags);
1124 real32_call(PAGE0->mem_cons.iodc_io,
1125 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1126 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1127 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1128 spin_unlock_irqrestore(&pdc_lock, flags);
1129 }
1130
1131 /**
1132 * pdc_iodc_outc - Console character print using IODC (without conversions).
1133 * @c: the character to output.
1134 *
1135 * Write the character directly to the IODC console.
1136 */
1137 void pdc_iodc_outc(unsigned char c)
1138 {
1139 unsigned int n;
1140 unsigned long flags;
1141
1142 /* fill buffer with one caracter and print it */
1143 static int __attribute__((aligned(8))) iodc_retbuf[32];
1144 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1145
1146 n = 1;
1147 iodc_dbuf[0] = c;
1148
1149 spin_lock_irqsave(&pdc_lock, flags);
1150 real32_call(PAGE0->mem_cons.iodc_io,
1151 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1152 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1153 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1154 spin_unlock_irqrestore(&pdc_lock, flags);
1155 }
1156
1157 /**
1158 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1159 *
1160 * Read a character (non-blocking) from the PDC console, returns -1 if
1161 * key is not present.
1162 */
1163 int pdc_iodc_getc(void)
1164 {
1165 unsigned long flags;
1166 static int __attribute__((aligned(8))) iodc_retbuf[32];
1167 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1168 int ch;
1169 int status;
1170
1171 /* Bail if no console input device. */
1172 if (!PAGE0->mem_kbd.iodc_io)
1173 return 0;
1174
1175 /* wait for a keyboard (rs232)-input */
1176 spin_lock_irqsave(&pdc_lock, flags);
1177 real32_call(PAGE0->mem_kbd.iodc_io,
1178 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1179 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1180 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1181
1182 ch = *iodc_dbuf;
1183 status = *iodc_retbuf;
1184 spin_unlock_irqrestore(&pdc_lock, flags);
1185
1186 if (status == 0)
1187 return -1;
1188
1189 return ch;
1190 }
1191
1192 int pdc_sti_call(unsigned long func, unsigned long flags,
1193 unsigned long inptr, unsigned long outputr,
1194 unsigned long glob_cfg)
1195 {
1196 int retval;
1197 unsigned long irqflags;
1198
1199 spin_lock_irqsave(&pdc_lock, irqflags);
1200 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1201 spin_unlock_irqrestore(&pdc_lock, irqflags);
1202
1203 return retval;
1204 }
1205 EXPORT_SYMBOL(pdc_sti_call);
1206
1207 #ifdef CONFIG_64BIT
1208 /**
1209 * pdc_pat_cell_get_number - Returns the cell number.
1210 * @cell_info: The return buffer.
1211 *
1212 * This PDC call returns the cell number of the cell from which the call
1213 * is made.
1214 */
1215 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1216 {
1217 int retval;
1218 unsigned long flags;
1219
1220 spin_lock_irqsave(&pdc_lock, flags);
1221 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1222 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1223 spin_unlock_irqrestore(&pdc_lock, flags);
1224
1225 return retval;
1226 }
1227
1228 /**
1229 * pdc_pat_cell_module - Retrieve the cell's module information.
1230 * @actcnt: The number of bytes written to mem_addr.
1231 * @ploc: The physical location.
1232 * @mod: The module index.
1233 * @view_type: The view of the address type.
1234 * @mem_addr: The return buffer.
1235 *
1236 * This PDC call returns information about each module attached to the cell
1237 * at the specified location.
1238 */
1239 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1240 unsigned long view_type, void *mem_addr)
1241 {
1242 int retval;
1243 unsigned long flags;
1244 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1245
1246 spin_lock_irqsave(&pdc_lock, flags);
1247 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1248 ploc, mod, view_type, __pa(&result));
1249 if(!retval) {
1250 *actcnt = pdc_result[0];
1251 memcpy(mem_addr, &result, *actcnt);
1252 }
1253 spin_unlock_irqrestore(&pdc_lock, flags);
1254
1255 return retval;
1256 }
1257
1258 /**
1259 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1260 * @cpu_info: The return buffer.
1261 * @hpa: The Hard Physical Address of the CPU.
1262 *
1263 * Retrieve the cpu number for the cpu at the specified HPA.
1264 */
1265 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1266 {
1267 int retval;
1268 unsigned long flags;
1269
1270 spin_lock_irqsave(&pdc_lock, flags);
1271 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1272 __pa(&pdc_result), hpa);
1273 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1274 spin_unlock_irqrestore(&pdc_lock, flags);
1275
1276 return retval;
1277 }
1278
1279 /**
1280 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1281 * @num_entries: The return value.
1282 * @cell_num: The target cell.
1283 *
1284 * This PDC function returns the number of entries in the specified cell's
1285 * interrupt table.
1286 */
1287 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1288 {
1289 int retval;
1290 unsigned long flags;
1291
1292 spin_lock_irqsave(&pdc_lock, flags);
1293 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1294 __pa(pdc_result), cell_num);
1295 *num_entries = pdc_result[0];
1296 spin_unlock_irqrestore(&pdc_lock, flags);
1297
1298 return retval;
1299 }
1300
1301 /**
1302 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1303 * @r_addr: The return buffer.
1304 * @cell_num: The target cell.
1305 *
1306 * This PDC function returns the actual interrupt table for the specified cell.
1307 */
1308 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1309 {
1310 int retval;
1311 unsigned long flags;
1312
1313 spin_lock_irqsave(&pdc_lock, flags);
1314 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1315 __pa(r_addr), cell_num);
1316 spin_unlock_irqrestore(&pdc_lock, flags);
1317
1318 return retval;
1319 }
1320
1321 /**
1322 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1323 * @actlen: The return buffer.
1324 * @mem_addr: Pointer to the memory buffer.
1325 * @count: The number of bytes to read from the buffer.
1326 * @offset: The offset with respect to the beginning of the buffer.
1327 *
1328 */
1329 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1330 unsigned long count, unsigned long offset)
1331 {
1332 int retval;
1333 unsigned long flags;
1334
1335 spin_lock_irqsave(&pdc_lock, flags);
1336 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1337 __pa(pdc_result2), count, offset);
1338 *actual_len = pdc_result[0];
1339 memcpy(mem_addr, pdc_result2, *actual_len);
1340 spin_unlock_irqrestore(&pdc_lock, flags);
1341
1342 return retval;
1343 }
1344
1345 /**
1346 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1347 * @pci_addr: PCI configuration space address for which the read request is being made.
1348 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1349 * @mem_addr: Pointer to return memory buffer.
1350 *
1351 */
1352 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1353 {
1354 int retval;
1355 unsigned long flags;
1356
1357 spin_lock_irqsave(&pdc_lock, flags);
1358 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1359 __pa(pdc_result), pci_addr, pci_size);
1360 switch(pci_size) {
1361 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1362 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1363 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1364 }
1365 spin_unlock_irqrestore(&pdc_lock, flags);
1366
1367 return retval;
1368 }
1369
1370 /**
1371 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1372 * @pci_addr: PCI configuration space address for which the write request is being made.
1373 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1374 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1375 * written to PCI Config space.
1376 *
1377 */
1378 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1379 {
1380 int retval;
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&pdc_lock, flags);
1384 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1385 pci_addr, pci_size, val);
1386 spin_unlock_irqrestore(&pdc_lock, flags);
1387
1388 return retval;
1389 }
1390 #endif /* CONFIG_64BIT */
1391
1392
1393 /***************** 32-bit real-mode calls ***********/
1394 /* The struct below is used
1395 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1396 * real32_call_asm() then uses this stack in narrow real mode
1397 */
1398
1399 struct narrow_stack {
1400 /* use int, not long which is 64 bits */
1401 unsigned int arg13;
1402 unsigned int arg12;
1403 unsigned int arg11;
1404 unsigned int arg10;
1405 unsigned int arg9;
1406 unsigned int arg8;
1407 unsigned int arg7;
1408 unsigned int arg6;
1409 unsigned int arg5;
1410 unsigned int arg4;
1411 unsigned int arg3;
1412 unsigned int arg2;
1413 unsigned int arg1;
1414 unsigned int arg0;
1415 unsigned int frame_marker[8];
1416 unsigned int sp;
1417 /* in reality, there's nearly 8k of stack after this */
1418 };
1419
1420 long real32_call(unsigned long fn, ...)
1421 {
1422 va_list args;
1423 extern struct narrow_stack real_stack;
1424 extern unsigned long real32_call_asm(unsigned int *,
1425 unsigned int *,
1426 unsigned int);
1427
1428 va_start(args, fn);
1429 real_stack.arg0 = va_arg(args, unsigned int);
1430 real_stack.arg1 = va_arg(args, unsigned int);
1431 real_stack.arg2 = va_arg(args, unsigned int);
1432 real_stack.arg3 = va_arg(args, unsigned int);
1433 real_stack.arg4 = va_arg(args, unsigned int);
1434 real_stack.arg5 = va_arg(args, unsigned int);
1435 real_stack.arg6 = va_arg(args, unsigned int);
1436 real_stack.arg7 = va_arg(args, unsigned int);
1437 real_stack.arg8 = va_arg(args, unsigned int);
1438 real_stack.arg9 = va_arg(args, unsigned int);
1439 real_stack.arg10 = va_arg(args, unsigned int);
1440 real_stack.arg11 = va_arg(args, unsigned int);
1441 real_stack.arg12 = va_arg(args, unsigned int);
1442 real_stack.arg13 = va_arg(args, unsigned int);
1443 va_end(args);
1444
1445 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1446 }
1447
1448 #ifdef CONFIG_64BIT
1449 /***************** 64-bit real-mode calls ***********/
1450
1451 struct wide_stack {
1452 unsigned long arg0;
1453 unsigned long arg1;
1454 unsigned long arg2;
1455 unsigned long arg3;
1456 unsigned long arg4;
1457 unsigned long arg5;
1458 unsigned long arg6;
1459 unsigned long arg7;
1460 unsigned long arg8;
1461 unsigned long arg9;
1462 unsigned long arg10;
1463 unsigned long arg11;
1464 unsigned long arg12;
1465 unsigned long arg13;
1466 unsigned long frame_marker[2]; /* rp, previous sp */
1467 unsigned long sp;
1468 /* in reality, there's nearly 8k of stack after this */
1469 };
1470
1471 long real64_call(unsigned long fn, ...)
1472 {
1473 va_list args;
1474 extern struct wide_stack real64_stack;
1475 extern unsigned long real64_call_asm(unsigned long *,
1476 unsigned long *,
1477 unsigned long);
1478
1479 va_start(args, fn);
1480 real64_stack.arg0 = va_arg(args, unsigned long);
1481 real64_stack.arg1 = va_arg(args, unsigned long);
1482 real64_stack.arg2 = va_arg(args, unsigned long);
1483 real64_stack.arg3 = va_arg(args, unsigned long);
1484 real64_stack.arg4 = va_arg(args, unsigned long);
1485 real64_stack.arg5 = va_arg(args, unsigned long);
1486 real64_stack.arg6 = va_arg(args, unsigned long);
1487 real64_stack.arg7 = va_arg(args, unsigned long);
1488 real64_stack.arg8 = va_arg(args, unsigned long);
1489 real64_stack.arg9 = va_arg(args, unsigned long);
1490 real64_stack.arg10 = va_arg(args, unsigned long);
1491 real64_stack.arg11 = va_arg(args, unsigned long);
1492 real64_stack.arg12 = va_arg(args, unsigned long);
1493 real64_stack.arg13 = va_arg(args, unsigned long);
1494 va_end(args);
1495
1496 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1497 }
1498
1499 #endif /* CONFIG_64BIT */
1500
This page took 0.064025 seconds and 5 git commands to generate.